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Abstract 

Early detection and classification of gastrointestinal tract pathologies are crucial for better prognosis and reduced 

mortality rates, such as in colorectal cancer. In this paper, we introduce MECNET, a new hybrid deep learning framework for 

efficient classification of endoscopic images. The proposed framework integrates the feature refiner module with state-of-the-

art CNN architectures such as VGG19, ResNet50, and EfficientNet for improved performance in image analysis and 

classification tasks. The feature refiner module successively applies grayscale, Gaussian, and LPQ filters to extract meaningful 

texture features, which play an important role in differentiating disease categories. Our proposed scheme has been tested on 

several available datasets, namely WCE, Kvasir, GastroVision, and SCPolyp including 13,000 images from four categories: 

normal colon, polyps, esophagus, and ulcerative conditions. The MECNET model attained an appreciable performance metric, 

outperforming state-of-the-art methods at accuracy and F1 scores of 97.4% and 97.34% on the WCE test set and 97.2% and 

97.26% on the Kvasir test set, respectively. This proves that MECNET does not only excel in classification but also generalizes 

well across diverse datasets. The novelty of this work lies inincorporating a feature refiner module with established CNN 

architectures and utilizinga hybrid ensemble approach. This approach will provide a boost to the model's performance. The 

proposed framework addresses key challenges in medical image classification: improving feature extraction by making full 

use of advanced transfer learning techniques.  
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1.  Introduction 

The integration of artificial intelligence (AI) 

and related technologies such as machine learning, 

deep learning, etc., into healthcare has brought about 

a transformative shift in how medical data is 

interpreted by professionals (Bordbar et al., 2023). 

The accumulation of the data has enabled AI systems 

to identify patterns and insights that may not be 

obvious to human practitioners and, thereby 

improving diagnostic accuracy. Medical imaging is 

one such area that has advanced tremendously by the 

incorporation of AI, thereby improving disease 

diagnosis accuracy (Kumar et al., 2023). Colorectal 

cancer (CRC) is one of the most common 

gastrointestinal cancers worldwide (Sabah, & Hassan, 

2024). It is the second most frequent cancer in 

womenand the third most common in males, with a 

very high mortality rate (Sung et al., 2021). CRC 

cases are expected to rise by 80% by 2035; hence, 

effective prevention, early detection, and treatment 

strategies are critical. Significant developments in 

medical image analysis for gastrointestinal pathology 

have been driven by ensemble deep-learning 

techniques. The AI-assisted system aims to ease the 

burden on endoscopists and clinicians, supporting 

them in making rapid and accurate diagnostic 

decisions. Deep learning, particularly convolutional 

neural networks (CNNs), has enhanced image-based 
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studies by providing tools for classification and 

detection tasks across various medical domains. 

Convolutional neural networks (CNNs) have 

emerged as strong image analysis tools, particularly 

for classification and computer vision tasks 

(Pogorelov et al., 2017; Kumari, & Wasim, 2023). 

Researchers have employed a variety of CNN 

architectures, including AlexNet, VGG16, DenseNet, 

ResNet, and EfficientNet, to tackle diverse image 

classification challenges, demonstrating their 

effectiveness across domains (Kumar et al., 2023). 

Wu et al., (2023) applied an ensemble of Inception-

v3, ResNet101, and DenseNet201 on the CE-MRI 

benchmark dataset for multiclass brain tumor 

classification, incorporating genetic algorithms to 

optimize accuracy with reduced parameters. Sima, & 

Cincar (2021) achieved an accuracy of 71.33% using 

ShuffleNet and ResNet-50 on the Kvasir v2 dataset, 

while Islam et al., (2022) reported a notable accuracy 

of 93.22% for polyp classification using pre-trained 

CNNs with SVM. He et al., (2023) made significant 

advancements in early gastric cancer detection with 

the E-YOLO architecture, achieving an accuracy of 

94.16%. Similarly, Srivastava et al., (2022) introduced 

FocalConvNet, achieving an F1 score of 67.34% in 

pathology detection, while Rani et al., (2022) used 

Inception ResNetV2 for bleeding detection with an 

accuracy of 95.62% on the WCE dataset. Yue et al., 

(2023) implemented a CNN on the Hyper-Kvasir 

model and achieved accuracy of 90.75% and F1 score 

of 65.41%. Bordbar et al., (2023) set a remarkable 

97% accuracy benchmark on the WCE dataset  

using DenseNet. Park et al., (2023) implemented 

InceptionNet-V3 with Star-GAN (accuracy: 94.9%) 

further advancing the field. Mushtaq et al., (2023) and 

Jha et al., (2023) introduced innovative models and 

datasets, respectively, contributing to the growing body 

of knowledge in gastrointestinal image classification. 

Chae, & Cho (2023) proposed transformer based model 

for polyp classification. They and implemented vision 

transformer for this task. Their model achieved F1 

Score of 87 for early intestine cancer. The trend 

continued, with Navale et al., (2024), achieving an 

accuracy of 94.93% using a diverse set of models. 

Kumar et al., (2024) proposed a deep-learning model 

for CRC classification with a genetic algorithm for 

weight optimization. The main limitation of the 

model was its increased complexity. Kaur, & Kumar, 

(2024) achieved 94% accuracy with VGG16 for 

image classification.Despite the extraordinary 

achievements of these deep learning methods, there 

remains room for improvement.  

The research gaps in existing literature include 

a scarcity of public datasets with good-quality 

images, challenges in image processing, and lack of 

uniform standards for image collection, all of which 

have limited the efficiency of deep learning 

techniques. 

 

2.  Objectives 

  The specific objectives of this study are: 

1. To enhance image preprocessing by 

implementing text removal and applying a Feature 

Refiner Module (FRM) using grayscale, Gaussian, 

and LPQ filters to improve the quality of diagnostic 

features in endoscopic images. 

2. To design and train a Modified Ensemble 

Convolutional Neural Network (MECNET) that 

integrates pre-trained CNN architectures (EfficientNet 

and ResNet50) with the FRM, enabling high-precision 

multiclass classification of gastrointestinal images. 

3. To evaluate the performance of MECNET  

on multiple publicly available datasets (WCE, Kvasir, 

GastroVision, SCPolyp) and assess its generalizability 

across different GI disease categories. 

4. To compare MECNET’s performance with 

existing state-of-the-art deep learning models, 

demonstrating improvements in accuracy, precision, 

recall, and F1 score. 

 

3.  Material and Methods 

This study presents a comprehensive methodology 

for the classification of gastrointestinal (GI) tract 

conditions using a deep learning framework, MECNET. 

The methodology encompasses five key components: 

dataset acquisition, image pre-processing, feature 

refinement, model development, and performance 

evaluation. 

We utilized multiple publicly available 

endoscopic image datasets representing a diverse 

range of GI conditions, including normal colon, 

polyps, esophageal disorders, and ulcerative colitis. 

Image preprocessing stepssuch as text removal, noise 

reduction, resizing, and normalization were applied to 

enhance image quality and ensure consistency across 

datasets. A Feature Refiner Module (FRM) was 

introduced to improve feature extraction by applying 

grayscale transformation, Gaussian filtering, and 

Local Phase Quantization (LPQ), targeting the 

enhancement of texture and spatial details critical for 

accurate classification. 

For model development, we implemented and 

fine-tuned an ensemble of pre-trained convolutional 
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neural networks (CNNs), specifically ResNet50 and 

EfficientNet, integrated with the FRM to form the 

proposed MECNET architecture. Transfer learning 

and hyperparameter optimization were employed to 

improve generalization and performance. The models 

were trained and evaluated using standard metrics, 

accuracy, precision, recall, and F1 score, on both seen 

and unseen datasets to ensure robustness and 

reliability. The following subsections detail each 

methodological component in depth. 

 

3.1 Dataset 

Accurate detection and classification of 

colorectal cancer (CRC) using deep learning models 

heavily depend on the availability of high-quality, 

diverse medical imaging datasets. However, acquiring 

and maintaining such datasets is inherently challenging 

due to privacy concerns, annotation requirements, and 

variability in imaging equipment. To address these 

limitations and ensure robust model training, this study 

employed four established and diverse endoscopic 

image datasets: WCE, Kvasir, GastroVision, and 

SCPolyp, supplemented by additional anonymized 

clinical images obtained from collaborating medical 

institutions. 

These datasets encompass a wide range of 

gastrointestinal tract regions, including the colon, 

sigmoid, rectum, and esophagus. Prior to analysis, all 

images underwent preprocessing to remove noise and 

improve quality using standardized enhancement 

techniques. The images were then organized into four 

diagnostic categories to support multiclass classification: 

• Normal Cases: Images of healthy colonic 

mucosa, showing smooth surfaces and intact vascular 

patterns (Figure 1a). These serve as baseline controls 

within the dataset. 

• Polyp Cases: Images illustrating abnormal 

polypoid growths in the colon or rectum, which carry 

malignant potential if left untreated (Figure 1b). 

• Esophagus Cases: Images of the esophagus 

displaying signs of conditions such as esophagitis, 

characterized by mucosal inflammation and structural 

disruption (Figure 1c). 

• Ulcerative Cases: Images depicting ulcerative 

colitis, an inflammatory bowel disease affecting the 

colon and rectum, typically presenting with mucosal 

bleeding and granularity (Figure 1d). 

This curated dataset, representing four clinically 

relevant GI categories, serves as a foundational resource 

for training and evaluating the proposed deep learning 

model, MECNET. Its diversity and structure enable a 

comprehensive assessment of the model’s classification 

performance across varying pathological conditions. 

The dataset utilized in this study comprises a 

comprehensive collection of endoscopic images 

categorized into four distinct classes. The WCE dataset 

contributes 1,500 images per category. The Kvasir 

dataset provides 1,000 images per category. The 

SCPolyp dataset includes 500 images per category. 

The GastroVision dataset offers 150 images per 

category. In total, the dataset contains 13,000 images, 

representing a diverse range of gastrointestinal 

conditions. For model evaluation, we implemented and 

tested the frameworks both with and without the novel 

Feature Refiner module. This rigorous evaluation 

process enables a thorough assessment of model 

performance and the impact of the Feature Refiner on 

classification accuracy and predictive capabilities. 

 

3.2 Image Preprocessing 

Text Removal from Images: 

Medical images frequently contain text 

annotations or labels that can obscure areas of 

interest, potentially impairing the accuracy of model 

training and prediction. To address this issue, it is 

essential to remove any text present in the images. We 

employed a standard watermark removal technique 

implemented in Python to achieve this. After text 

removal, the images were resized and normalized to 

ensure consistency and optimal quality. The dataset 

was then partitioned into training, validation, and test 

sets to facilitate rigorous model evaluation and 

performance assessment. 
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(a) (b) (c) (d) 

Figure 1 Representative images from the dataset used for classification 

(a) Normal colon image with smooth mucosa and visible vasculature, (b) Colon image showing a polyp, 

(c) Esophageal image depicting erosive esophagitis,  
(d) Ulcerative colitis image with bleeding, granular mucosa and ulcerations 

 

Feature Refinement 

The classification of gastrointestinal diseases 

from endoscopic images follows a systematically 

structured pipeline consisting of five critical stages, each 

designed to optimize model performance and ensure 

robust, accurate classification. The datasetfor this study 

was sourced from publicly available repositories, 

covering four diagnostic categories: normal colon, 

polyps, esophagus, and ulcerative conditions. The 

images were carefully curatedto eliminate low-quality 

samples, followed by preprocessing steps, including 

resizing, intensity normalization, and data 

augmentation, to standardize the dataset. For multi-scale 

feature extraction, a custom Feature Refiner Module 

(FRM) was used, involving Local Phase Quantization 

(LPQ) and Gaussian filtering.  

 

Model Training 

CNN architectures (VGG19, ResNet50, 

EfficientNet), with transfer learning were fine-tuned 

for gastrointestinal image classification, and hyper-

parameter tuning was employed to optimize model 

performance. Finally, the final model was evaluated 

using accuracy, precision, and F1-score, and Grad-

CAM visualizations were employed to enhance 

interpretability for clinical use. 

 

3.3 Implementation Details 

A feature refiner module was integrated with 

modified ResNet50 and EfficientNet models, both pre-

trained on ImageNet dataset, to build the enhanced 

ensemble convolutional neural network model 

MECNET. By adapting the top layers of the pre-

trained models, we developed this model by adding 

additional convolutional layers, dense layers, a 

softmax layer, and output layers. Several 

hyperparameters were introduced to improve model 

robustness, including Gaussian noise, dropout rates, 

and L1 regularization. To optimize performance, 

these hyper-parameters were fine-tuned. Ensemble 

models were constructed using the most effective 

selected models. Additionally, the ensemble 

framework was further refined to enhance accuracy. 

Two types of images were input into the ensemble 

model: images processed through the feature refiner 

module and original images from the dataset. This 

approach significantly improved the model's overall 

performance. In the results section, detailed 

performance metrics and results are provided. This 

module is designed to extract features in both spatial 

and frequency domains using a specialized filter. 

Before being input into the neural network, the 

images were processed through this module to 

enhance feature representation. The module employs 

a combination of grayscale, Gaussian, and Local 

Pattern Quantization (LPQ) filters to extract salient 

features from the input images. The mathematical 

formulation of the grayscale filter is provided in 

Equation 1. 

 

G(i, j | d, θ) = 

∑ *M
m=1 ∑ *N

n=1 {1, if I(m,n)=i and I(m+∆x, n+∆y)= j,    (1) 

                             0, otherwise  

 

In this formulation, III denotes the input 

image, while MMM and NNN represent its height and 

width, respectively. The terms Δx\Delta xΔx and 

Δy\Delta yΔy correspond to displacements along the 

x-axis and y-axis, parameterized by a specified 

distance and orientation. 
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Figure 2 CNN architecture for gastrointestinal image classification. The architecture includes convolutional layers with 

ReLU activation, followed by pooling layers, flattening, and fully connected layers, culminating in a softmax output layer 

for multiclass prediction 

 

Figure 3 Methodological workflow (MECNET):Two best pre-trained deep learning models with modified top layers, 

combined with Feature refined module (FR) for optimal feature extraction and classification 

 

The Local Phase Quantization (LPQ) algorithm 

functions as a texture descriptor by capturing the local 

phase information of an image. LPQ is calculated 

within a pixel's immediate neighborhood as given in 

equation 2, and the resulting patterns are quantized 

into binary format. The Local Binary Pattern (LBP) 

operator is then applied to these patterns to generate 

the final LPQ code. Furthermore, Gabor filters are 

employed in image processing to analyze textures 

across multiple scales and orientations, as defined in 

Equation 3. They are especially adept at capturing 

textural features, like edges, lines, and patterns within 

an image. The Feature Refiner module was applied 

separately to each of the three-color channels of the 

image to extract texture features. These processed 

images were then input into the ensemble model. All 

models were implemented using Python on Google 

Colab. The models selected for this study include 

VGG19 (Simonyan, & Zisserman, 2014), ResNet50 

(He et al., 2016), EfficientNet (Tan, & Le, 2019), an 

ensemble model (EM), and Modified Ensemble 

Convolutional Neural Network (MECNET). Algorithms 

1 and 2 present the implementation process of proposed 

method.  

 

LPQ(x,y) = SN (I(x+1,y)−I(x,y)) ʘSN (I(x,y−1)−I(x,y)) (2) 

 

I(x, y) specify the pixel intensity at coordinates (x,y) 

in the grayscale image. SN is the sign function that 

yields -1 for negative values, 0 for zero, and 1 for 

positive values, while ʘ signifies the bitwise XOR 

operation. 
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G(x, y | f,θ)=exp(-
x'2 + γ2y'2

2σ2 )cos(2π
x'

λ
+∅) (3) 

 

Where: x’= x cos(θ) + y sin(θ), y’= -x sin(θ) + y cos 

(θ), γ= aspect ratio, σ= Standard deviation of 

Gaussian envelope,λ= wavelength of sinusoidal 

factor,∅= phase offset.  

 

Algorithm 1 (Image pre-processing) 

Input Colon and Rectal Images: 

Normal Raw Medical Images 

Output: 

Dataset with Preprocessed Image Details 

 

Begin 

1. Load colon and rectal images:  

I = {I0, I1, I2, ..., In} // List of image instances 

in the initial dataset 

2. Apply Text Removal Method to remove any 

text: 

For each image in the folder: 

Remove text or watermark using image 

processing techniques (Thresholding & inpainting.) 

3. Resize all images to a standard size: 

Resize all images to either 224x224 or 

256x256 

4. Add all pre-processed images to the final 

dataset: 

Add all processed images (normal and 

upgraded) to the final dataset for further model 

training or analysisreturn dataset 

End Algorithm 

 

Algorithm 2 (Image, Classification) 

Input: 

Colon and Rectal Images  

Output: 

Predicted Class: Cancerous, Non-Cancerous, 

Polyps, Normal, Ulcerative, Esophagus 

 

Begin  

1. Extract features using the Feature refiner 

module. 

2. Apply and evaluate deep learning models to 

Train dataset:  

For each model in Model List (e.g., ResNet50, 

EfficientNetB0 etc.): 

Train model using Train dataset  

Evaluate model on Validation dataset to 

measure performance 

3. Select the best-performing model: 

Choose the model with the highest 

performance on the Validation dataset 

4. The features extracted from Deep Learning 

models and a Feature refiner module are combined 

and passed to the proposed model (MECNET). 

5. MECNET was evaluated on validation set. 

6. Test the optimal (MECNET) model:  

Test the selected model on Test dataset to 

evaluate final accuracy and performance metrics 

7. Output predicted class for each test image:  

For each test image in TestSet: 

Apply the optimal model 

Return predicted classes (Normal, Polyps, 

Ulcerative, Esophagus) 

End Algorithm 

 

Transfer learning was employed across all 

models using weights pre-trained on ImageNet. The 

ensemble model was constructed by integrating the 

two best-performing models: EfficientNet and 

ResNet50. The best results were obtained with hyper-

parameters setting such as batch size of 32, 100 

epochs, a dropout rate of 0.2, and L2 regularization, 

and the Adam optimizer as detailed in Table 1. 

Models were fine-tuned by adjusting hyperparameters to 

achieve optimal performance. 

 

 

Table 1 Selected hyperparameters for training MECNET and baseline models 

Sr No. Parameter Value 

1 Batch Size 32/64/128 

2 Epochs 30 -100 

3 dropout 0.1-0.5 

4 Regularization L1/L2 

5 Optimizer Adam/SGD 

6 learning rate 0.001 -0.01 

7 Loss function Categorical sparse Entropy 
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3.4 Model Evaluation 

Binary and multiclass classifications were 

performed and the model evaluation was done based 

on accuracy, precision, recall, and F1 score. The 

calculations for accuracy, precision, recall, and F1 

score were performed according to the formulas 

provided in Equations 4, 5, 6, and 7 respectively. 

 

Accuracy = 
(TP+TN)

(TP+FP+TN+FN)
 (4) 

Precision = 
TP

(TP+FP)
 (5) 

Recall =
TP

(TP+FN)
 (6) 

F1 score= 
(2* Precision* Recall)

(Precision + Recall)
 (7) 

 

4.  Results and Discussion 

The selected models were implemented with 

the same configuration on chosen datasets and the 

results were tabulated and discussed in this section. 

 

4.1 Model Performance on Datasets 

The performance of the models, based on the 

chosen parameters across multiple datasets, is 

displayed in both tabular and graphical formats. Table 

2 outlines the results for the training and validation 

datasets. 

Our proposed model achieved an accuracy of 

99.6% (95% CI: 0.9947-0.9973) on the training set 

and 99.37% (95% CI: 0.9912-0.9962) on the 

validation set, outperforming all other examined 

models. The results for the WCE and Kvasir test sets 

are presented in Table 3. The observed performance 

aligns with the training and validation datasets, 

demonstrating the model's effective generalization to 

unseen data. The MECNET model outperforms all 

other models in terms of accuracy, precision, recall, 

and F1 score. 

The models were also tested on data from 

various medical sources, and results were evaluated. 

Model Evaluation on the GastroVision dataset is 

presented in Table 4. 

Our proposed model, MECNET, outperformed 

the other models, achieving an accuracy of 97.3% 

(95% CI: 0.9659–0.9801) and an F1 score of 97.2% 

(95% CI: 0.9648–0.9792) on SCPolyp dataset. 

Detailed results are presented in Table 5. 

 

Table 2 Performance of individual and ensemble models on training and validation datasets 

Models 
Accuracy Precision Recall F1 

Train Val Train Val Train Val Train Val 

Efficient Net 0.989 0.983 0.985 0.983 0.985 0.981 0.985 0.982 

ResNet50 0.994 0.982 0.992 0.982 0.991 0.981 0.992 0.982 

VGG19 0.961 0.947 0.958 0.946 0.948 0.946 0.953 0.946 

OEM 0.995 0.973 0.994 0.972 0.993 0.972 0.973 0.972 

MECNET 0.996 0.993 0.995 0.992 0.994 0.992 0.994 0.992 

 
Table 3 Test set performance of models on WCE and Kvasir datasets 

Models 
Accuracy Precision Recall F1 

WCE Kvasir WCE Kvasir WCE Kvasir WCE Kvasir 

EfficientNet 0.9681 0.967 0.654 0.965 0.962 0.960 0.963 0.962 

ResNet50 0.951 0.95 0.958 0.958 0.957 0.951 0.958 0.954 

VGG19 0.945 0.932 0.941 0.930 0.940 0.942 0.940 0.936 

OEM 0.96 0.9603 0.962 0.962 0.961 0.959 0.961 0.960 

MECNET 0.974 0.972 0.974 0.972 0.973 0.972 0.973 0.972 

 

Table 4 Classification results of models on the GastroVision dataset 

Model Accuracy Precision Recall F1 

EfficientNet 96.3 96.1 96 96.1 

ResNet50 94.9 95.6 95.3 95.5 

VGG19 93.4 93.1 93.9 93.7 

OEM 95.8 96 96.1 95.9 

MECNET 97.5 97.3 97.4 97.3 
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Table 5 Performance of models on the unseen SCPolyp dataset 

Model Accuracy Precision Recall F1 

Efficient Net 0.963 0.962 0.963 0.963 

ResNet50 0.961 0.962 0.961 0.961 

VGG19 0.931 0.931 0.932 0.931 

OEM 0.965 0.965 0.964 0.964 

MECNET 0.973 0.972 0.973 0.972 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 Prediction and visualization results from the MECNET model. (a) Predicted polyp with 96% confidence, (b) 

Predicted normal colon with 99% confidence, (c) Grad-CAM heatmap using AUTUMN colormap, (d) Grad-CAM heatmap 

using JET colormap to localize pathology 

 

 
Figure 5 Learning curve of MECNET on the test dataset 
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After testing, several sample images were 

individually passed to the model, which correctly 

predicted most of them. The predicted output of the 

proposed model is shown in Figure 4. 

 

4.2 Discussion 

The proposed MECNET model demonstrates 

high efficacy in the classification of gastrointestinal 

(GI) tract conditions, particularly for early colorectal 

cancer detection. This performance is driven by the 

integration of a Feature Refiner Module (FRM), 

which enhances image texture features through 

grayscale, Gaussian, and Local Phase Quantization 

(LPQ) filtering. These preprocessing steps 

significantly improve the discriminative power of 

extracted features, enabling better differentiation 

between subtle tissue variations in normal, polyp, 

ulcerative, and esophageal images. 

A key advantage of MECNET lies in its 

ensemble architecture, which fuses the strengths of 

EfficientNet and ResNet50. By combining pre-

trained convolutional layers and customizing the 

upper layers with fine-tuned hyperparameters and 

dropout, the model achieves excellent generalization 

on both seen and unseen datasets. Notably, MECNET 

achieved an F1 score of 97.34% on WCE, 97.26% on 

Kvasir, and 97.2% on SCPolyp, outperforming each 

of its individual backbone models by 2–4%. This 

confirms that the ensemble not only stabilizes 

predictions but also compensates for the limitations 

of each individual architecture. 

The inclusion of text removal and intensity 

normalization in the image preprocessing pipeline 

also contributes to increased accuracy by reducing 

background noise and standardizing input quality. 

These steps ensured that critical diagnostic features 

were preserved while minimizing irrelevant artifacts 

that might confuse the model. 

Compared to prior works, MECNET 

consistently shows stronger performance. For 

instance, Park et al., (2023) reported 94.9% accuracy 

using InceptionNet-V3 on Kvasir, while Bordbar et 

al., (2023) achieved 97% using DenseNet on WCE. 

Our model surpasses both benchmarks, confirming 

that the hybrid design of MECNET offers a tangible 

improvement in clinical decision support. While these 

studies used either standalone architectures or simple 

ensembles, MECNET’s deep integration of refined 

feature inputs and architectural diversity plays a 

decisive role in its superior accuracy. 

Despite these promising outcomes, MECNET 

is not without limitations. The combined use of 

ResNet50 and EfficientNet increases model 

complexity, resulting in higher computational costs 

during training. For example, MECNET took 

approximately 490 seconds per epoch on the Kvasir 

dataset, compared to 359 and 455 seconds for 

EfficientNet and ResNet50, respectively. Moreover, 

the trainable parameters in MECNET significantly 

exceed those in its base models. This complexity 

could pose barriers to deployment in resource-

constrained environments. 

To mitigate these limitations, future work 

should explore lightweight alternatives, such as 

knowledge distillation or pruning techniques, which 

could reduce model size while maintaining high 

performance. Additionally, although MECNET has 

been tested on diverse public datasets, it has yet to be 

evaluated in clinical settings with real-world hospital 

data. Such validation will be critical to assessing the 

model’s robustness in variable imaging conditions 

and its readiness for integration into diagnostic 

workflows. 

 

 

 

 

Table 6 Comparative accuracy of MECNET and existing models on GI image classification datasets. 

Sr. No. Author Dataset Accuracy 

1 UÇan et al., (2022) Kvasir 93.5% 

2 Yue et al., (2023) Kvasir 90.75% 

3 Park et al., (2023) Kvasir 94.9% 

4 Mary et al., (2023) Kvasir 94.21% 

5 MECNET (Proposed) Kvasir 97.2% 

6 Rani et al., (2022) WCE 95.62 

7 Bordbar et al., (2023) WCE 97% 

8 MECNET (Proposed) WCE 97.4% 
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Compared to recent studies, MECNET 

achieves higher classification performance across key 

GI datasets. As shown in Table 6, previous models 

such as Park et al., (2023) (94.9% on Kvasir) and Rani 

et al., (2022) (95.62% on WCE) achieved strong 

performance; however, MECNET surpasses these 

benchmarks, achieving 97.2% and 97.4%, 

respectively. This suggests that the integration of a 

Feature Refiner Module with ensemble deep learning 

contributes significantly to overall accuracy and 

robustness across diverse datasets. 

In summary, MECNET introduces a robust, 

generalizable, and high-performing framework for 

gastrointestinal disease classification. Its innovative 

use of refined image preprocessing, ensemble 

modeling, and transfer learning marks a significant 

advancement over current state-of-the-art methods. 

By continuing to reduce model complexity and 

expand validation datasets, MECNET holds great 

potential for future clinical deployment 

 

5.  Conclusion 

This study presents MECNET, a hybrid deep 

learning framework that demonstrates high efficacy 

in the automatic classification of gastrointestinal (GI) 

tract diseases, with particular focus on colorectal 

cancer detection. By integrating a Feature Refiner 

Module with advanced CNN architectures such as 

VGG19, ResNet50, and EfficientNet, MECNET 

achieves superior performance across multiple 

benchmark datasets in terms of accuracy, precision, 

recall, and F1 score. The adoption of robust 

preprocessing techniques and multi-scale feature 

extraction significantly enhances the model’s 

capability to interpret complex medical images, while 

its strong generalization on unseen data underscores 

its potential for real-world clinical deployment. 

The results establish MECNET as a 

competitive and scalable solution in the field of 

medical image analysis, contributing to the 

advancement of AI-assisted diagnostic systems. 

However, the study also acknowledges limitations, 

including increased model complexity, the reliance 

on publicly available datasets, and the lack of clinical 

validation. Future work should prioritize model 

optimization for real-time applications, integration 

with diverse clinical datasets, and prospective 

evaluation in healthcare settings. 

Overall, this research contributes to the 

growing field of AI in gastroenterology and offers a 

promising direction for enhancing early detection and 

diagnosis of GI diseases. MECNET’s strong 

performance and modular design pave the way for 

further innovations in intelligent diagnostic tools 

aimed at improving patient care and reducing 

diagnostic burdens in clinical practice. 
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