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Abstract  

Early and accurate detection of breast cancer via ultrasound imaging is essential, yet the high dimensionality of raw 

ultrasound features can hinder classifier performance and increase computational burden. Comparison between Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for feature reduction in a breast-cancer ultrasound 

diagnostic pipeline, alongside t-SNE for exploratory visualization. The research utilized 1,200 breast ultrasound images with 

400 benign, 400 malignant, and 400 normal images obtained from Baheya Hospital (Cairo, Egypt). Minority classes were 

balanced using data augmentation techniques like rotation and flipping. PCA reduced the data to 172 components, preserving 

90% of data variance, while LDA used two components. t-SNE generated a two-dimensional visual representation. Classifiers, 

including Support Vector Machine (SVM), Random Forest (RF), and XGBoost, were trained on: (a) the full feature set, (b) 

PCA-reduced data, and (c) LDA-reduced data. Evaluation metrics included precision, recall, and F1-score. Compression ratio 

and signal-to-noise ratio (SNR) measured image compression via PCA.Without reduction, XGBoost achieved the highest F1-

score (76.97%), precision (77.40%), and recall (76.55%). PCA yielded a modest precision gain (XGBoost: 78.65%) but 

reduced recall and net F1-score (76.37%). LDA significantly degraded performance (XGBoost F1: 63.99%; RF F1: 60.13%; 

SVM F1: 42.05%). PCA compression reduced image size by 2.68x with an SNR of 48.91 dB, while LDA offered no 

compression benefit. t-SNE visualization revealed clear non-linear class clusters, underscoring the dataset’s intrinsic 

complexity. For ultrasound-based breast cancer diagnosis, preserving full high-dimensional features and using a powerful non-

linear model (e.g., XGBoost) yields optimal accuracy. PCA is best reserved for storage or runtime efficiency, LDA for 

scenarios with very low dimensional constraints, and t-SNE for exploratory data analysis. This comparative study highlights 

that dimensionality reduction may harm performance in complex imaging data and recommends context-specific use of PCA 

and LDA to avoid loss of critical diagnostic information. 

 

Keywords: breast cancer classification; principal component analysis; linear discriminant analysis; feature extraction 

 

 

1.  Introduction 

Breast cancer is one of the deadliest diseases 

worldwide, claiming millions of lives every year 

(NDTV World, 2024). Timely treatment relies heavily 

on early detection. Among the diagnostic tools, 

ultrasonic imaging has become a key modality, utilizing 

sophisticated image processing techniques to enhance 

diagnostic accuracy. Integrating intelligent models 

with imaging technologies has proven highly effective 

in improving the prediction and classification of 

breast cancer using clinical imaging data by extracting 

pertinent features for analysis. 
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The integration of medical imaging with 

intelligent models has gained significant attention in recent 

years, promising advancements in accuracy, efficiency, 

and reliability of disease prediction. These models 

support healthcare professionals by complementing 

traditional diagnostic approaches. Specifically, in 

breast cancer diagnosis, intelligent models help 

address the limitations of manual interpretation, 

which can be error-prone and time-consuming. 

Ultrasound is a cost-effective and non-invasive 

imaging modality widely used in breast cancer 

diagnosis, playing a key role in detecting suspicious 

lesions. However, interpretation is manual, subjective, 

and dependent on radiologist expertise, increasing 

variability and the risk of missed diagnoses. Intelligent 

models trained on large, annotated datasets can identify 

complex patterns, subtle anomalies, and feature 

correlations that traditional analysis may overlook. This 

capability reduces diagnostic errors, accelerates 

evaluations, and improves clinical workflows. Recent 

advancements in intelligent imaging systems and 

ensemble learning methods have shown remarkable 

success in breast cancer detection and classification. 

These models extract high-dimensional features from 

ultrasound images to differentiate between benign  
and malignant tissues accurately (Maiprasert, & 

Kitbumrungrat, 2023; Pechprasarn et al., 2023). 

Although mammography remains the clinical 

gold standard, ultrasound imaging is increasingly 

favored for its cost-effectiveness and radiation-free 

nature, particularly for women with dense breast 

tissue or in low-resource settings. However, modern 

ultrasound systems produce hundreds of high-

resolution images per exam, resulting in extremely 

high-dimensional feature spaces that can challenge 

classifier performance. While dimensionality-reduction 

techniques like Principal Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA) are widely 

adopted in clinical AI pipelines (Zhao et al., 2020), 

their true impact on diagnostic accuracy, especially 

for subtle tissue differentiation, remains underexplored. 

This study positions dimensionality reduction at the 

center of the diagnostic pipeline and empirically 

evaluates how PCA and LDA affect the performance 

of machine learning models for breast cancer 

classification using ultrasound imagery. 

 

1.1 Literature Review 

Research on breast cancer imaging has been 

increasingly focused on two related challenges: how 

compression can effectively reduce the large and 

highly correlated feature spaces captured by medical 

images, and how well the compressed representation 

can support accurate classification and it turns out PCA 

and LDA are dominating the dimension reduction 

field whereas nonlinear methods like t-distributed 

Stochastic Neighbor Embedding (t-SNE) are better 

used on exploratory visualization aids, yet  feature 

trimming can erase subtle features like textural cues 

that help to distinguish between benign, malignant and 

normal breast tissue.  

The research by Li et al., (2023) demonstrated 

that linear Support Vector Machine (SVM) achieved 

superior performance than LDA and multiple 

mathematical models for classifying 926 breast 

nodules through analysis of all Breast Imaging 

Reporting and Data System (BI-RADS) descriptors. 

At the same time, PCA served as an exploratory tool 

to visualize class overlap (Li et al., 2023). The 

combination of 107 radiomic features and peripheral-

immune markers by Zhao et al., (2023) yielded a 

logistic model with an area under the curve (AUC) of 

0.91, which declined when low-variance filters were 

applied (Zhao et al., 2023). 

Multiple multicenter cohorts replicated this 

phenomenon throughout 2024. Support-vector 

machines achieved the best AUC score of 0.92 when 

used with all features for pre-operative axillary-

burden prediction whereas an LDA baseline 

experienced almost 9 percentage points of reduced 

performance (Yao et al., 2024a). The same research 

team used original intratumoral and peritumoral 

signatures as inputs in a separate neoadjuvant 

chemotherapy study where gradient-boosted trees 

achieved a macro-AUC higher than 0.80 across three 

molecular subtypes (Yao et al., 2024b). The research 

of Wu et al., (2024) showed that Extreme Gradient 

Boosting (XGBoost) with Boruta-selected features 

working on five unaltered features, produced better 

results than nine alternative pipelines which contained 

either PCA or LDA. 

Region-based studies continually demonstrate 

that the use of dimensionality reduction depends on 

data type: in the case of mammography, Wongnil et 

al., (2024) retained full resolution pixels and interfaced 

an AlexNet best region-CNN with an SVM, 

exceeding a YOLOv4 single-pass detector on 3,265 

images. Conversely, in a tabular clinical situation, 

Panyamit et al., (2022), compressed 12 heart-failure 

tabular variables into three principal components to 

match the accuracy of the full-feature set at 96 %, thus 

demonstrating that PCA that is selected properly can 

reduce most of the variables when spatial information 

is irrelevant. 
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By contrast, LDA now serves mostly as a 

transparent baseline. Recent HER-2 studies strongly 

supported the point: For instance, both Xie et al., 

(2025) and Luo et al., (2025) each utilized thousands 

of unreduced radiomic and deep features, resulting in 

external test AUCs above 0.86 with augmented forests 

or transformer backbone feature extraction, while 

omitting LDA from the final comparison. Even for 

datatypes comparable to histopathology, where LDA 

might be more suitable (e.g., tumor-infiltrating 

lymphocytes), Liu et al., (2025) simply kept the five 

most important variables But, again, the model had 

first searched all 1,712 features and descriptors before 

using LDA. 

PCA serves as an explicit data reduction 

technique in these applications, not for predictive 

analysis purposes (Fernandes et al., 2024). A 12-

kilobyte nomogram developed by Zhang et al., (2024) 

used six rotated principal components derived from 

ten sonographic descriptors to distinguish mucinous 

carcinoma from fibro-adenoma with 92 % accuracy, 

although this did not exceed baseline performance. 

The combination of DenseNet embedding compression 

to 256 PCs followed by LASSO reduced GPU memory 

requirements by 60% without compromising the Ki-

67 prediction AUC at 0.84 (Cen et al.,2025). The 

research confirms that using PCA as a compression 

method provides operational benefits for storage and 

runtime efficiency but does not enhance predictive 

discrimination power. 

Across diagnostic imaging domains, 

dimensionality-reduction techniques are applied with 

distinct purposes: Principal Component Analysis 

(PCA) is typically used for data compression and 

runtime efficiency, t-Distributed Stochastic Neighbor 

Embedding (t-SNE) serves primarily as an 

exploratory visualization tool to highlight latent data 

structure, and Linear Discriminant Analysis (LDA) is 

generally retained as a transparent, interpretable 

baseline, but seldom used for complex, high-

dimensional, nonlinear datasets like ultrasound. In 

most cases, researchers either adopt these methods 

based on convention or apply them separately in 

different pipelines. Despite their prevalence, no prior 

study has performed a direct, head-to-head empirical 

comparison of PCA and LDA under identical 

experimental conditions using the same dataset and 

classifier architectures within a clinically relevant 

context like breast ultrasound imaging. This absence 

leaves a methodological gap in understanding how 

classical reduction techniques perform relative to each 

other, and whether they are truly suitable in preserving 

diagnostic signals embedded in medical imaging data. 

Therefore, this study seeks to systematically evaluate 

PCA, LDA, and t-SNE within a unified experimental 

framework, employing multiple classifiers and 

consistent datasets, to inform evidence-based 

decisions on dimensionality-reduction strategies for 

breast cancer detection using ultrasound images. 

 

2.  Objectives 

This study aims to evaluate the impact of 

Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) on the diagnostic 

performance of machine learning models for breast 

cancer classification using ultrasound imagery, and to 

compare their effectiveness across multiple classifiers 

with support from t-SNE visualization. 

 

3 Methods 

3.1 Principal Component Analysis (PCA) 

PCA is a technique used to reduce the 

dimensionality of high-dimensional datasets by 

identifying and prioritizing the principal components 

that account for the greatest variance within the data. 

In this application, PCA is used to extract critical 

features from ultra-sound images, including texture, 

shape, and intensity characteristics. These extracted 

features are subsequently projected onto lower-

dimensional subspaces, which serve to optimize data 

representation. Leveraging these reduced-dimension 

features, machine learning algorithms are then 

implemented to develop predictive models, facilitating 

the accurate diagnosis of breast cancer as shown in 

Figure 1.
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Figure 1 Overview of PCA feature extraction pipeline applied to breast ultrasound images 

 

 
Figure 2 Workflow of LDA-based supervised dimensionality reduction for tumor classification 

 

3.2 Linear Discriminant Analysis (LDA) 

LDA is a supervised dimensionality reduction 

technique commonly used to classify data into distinct 

categories. It works by transforming the original 

feature space into a lower-dimensional space while 

preserving class-discriminatory information. Projecting 

new data points into this reduced space allows LDA 

facilitates efficient classification tasks. In our 

research, LDA is applied to identify features that are 

most relevant for distinguishing between benign and 

malignant tumors. By leveraging these discriminative 

features, predictive models can be constructed to 

accurately classify ultrasound images, enabling the 

differentiation of benign from malignant cases with 

enhanced precision as shown in Figure 2. 

 

3.3 t-distributed Stochastic Neighbor Embedding 

(t-SNE) 

t-SNE transforms high-dimensional feature 

vectors into 2D or 3D maps, placing points nearer to 

one another if they are more correlated. The algorithm 

converts distance data between points into probability 

distributions before it places points through repeated 

iterations to match low-dimensional distributions with 

high-dimensional ones. The t-SNE algorithm provides 

outstanding results for exploratory visualizations 

because it highlights local structures, showing benign 

and malignant scans alongside normal scans as 

distinct clusters on the 2D or 3D maps. We include t-

SNE as a diagnostic tool instead of a classification 

tool to validate the separability of features within the 

data. 
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3.4 Support Vector Machine (SVM) 

SVM is a classification algorithm used in 

image analysis. The concept of SVM involves finding 

the optimal hyperplane that best separates two classes 

in the feature space. SVM trains the algorithm to recognize 

patterns and features effective in distinguishing 

cancerous tumors from non-cancerous ones, by 

learning on labeled datasets. Importantly, SVM also 

can deal with large high dimensional datasets while 

remaining robust to noise and outliers. In addition, 

SVM has long been found to be superior to the other 

machine learning algorithms in terms of classification 

accuracy and computational efficiency and thus is an 

obvious choice for breast cancer diagnosis and other 

similar applications (Tambe et al., 2025). 

 

3.5 Random Forest 

Random Forest is an ensemble method that 

learns many decision trees which are trained on 

bootstrap sample of data. Individual trees usually 

overfit but averaging votes from each tree 

dramatically reduces variance, making the model both 

robust to noise and resistant to overfitting. It is used 

in this paper because of its ability to capture complex, 

non-linear patterns between pixel-level textures, and 

to handle high-dimensional feature sets.  

 

3.6 Extreme Gradient Boosting (XGBoost) 

XGBoost, which stands for Extreme Gradient 

Boosted decision trees, is a technique that builds many 

smaller trees sequentially where each one ensures it 

learns from the mistakes of the previous trees. This 

boosting strategy captures subtle, non-linear 

interactions within ultrasound images. We chose 

XGBoost because it performs well with high-

dimensional data. 

 

3.7 About the Dataset  

In this paper, we work with a well-rounded 

dataset collected from breast ultrasound images, 

which is considered one of the major resources for 

advanced research in breast cancer diagnosis. The 

dataset was gathered using state-of-the-art imaging 

technologies from Baheya Hospital, a specialized 

breast cancer hospital in Cairo, Egypt (Al-Dhabyani 

et al., 2020). As a result, it comprises high-quality data 

with clinically significant material, enabling the 

development and analysis of various machine learning 

models for detecting and categorizing cancer cases 

more accurately using ultrasound images. The dataset 

includes three classes: benign, malignant, and normal. 

Each class had 400 images while training to ensure 

class balance, and minority class where data augmented 

using rotation and flipping techniques. 

Since early detection is critical in breast cancer, 

this dataset given here serves as a very good base for 

the development of an automated diagnostic system. 

This dataset enables machine learning models to 

extract subtle patterns and features from ultrasound 

images with minimal constraints from human absence 

or variability due to human error and inter-observer 

differences. The diverse and clinically representative 

samples in the dataset make it an ideal source of 

comprehensive training and testing of models aimed 

at accurate and generalizable diagnostics. 

 

4 Results and Analysis 

4.1 Comparing PCA and LDA 

4.1.1 Using Graphs 

PCA was applied to reduce dimensional space 

on the dataset then a scatter plot of the data was 

generated with the first principal component plotted 

on the x-axis and the second on the y-axis. The 

resulting scatter plot from Figure 3 shows different 

clusters, purple dots represent the benign cases, green 

dots represent the malignant cases and yellow dots 

represent the normal cases. This visualization helps to 

show the separability of the clusters and offers 

insights into the structure of the data when using PCA. 

Observations from Figure 3 suggest that the 

circular clustering pattern implies even dispersion of 

variance across principal components, without any 

significant patterns in the data. This even distribution 

may result from the images having similar features, 

making it difficult for the algorithm to differentiate 

between classes. Hence, using PCA on the breast 

cancer dataset does not appear effective in capturing 

the inherent data structure or uncovering significant 

variables. 

While the scatter plot presented in Figure 4 

depicts the relationship between the first discriminant 

component (x-axis) and the second discriminant 

component (y-axis), as obtained through LDA. This 

visualization demonstrates the improved separability 

achieved through LDA, suggesting its potential for 

identifying class-discriminatory features in the dataset.
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Figure 3 PCA scatter plot showing data distribution across the first two principal components for benign, malignant, and 

normal breast tissue 

 

Figure 4 LDA projection revealing class separation across two discriminant components 
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Figure 5 t-SNE 2D visualization of ultrasound feature embeddings, illustrating clear cluster separability among benign, 

malignant, and normal classes 

 

Figure 5 illustrates a two-dimensional t-SNE 

projection of the three classes. Cluster of benign 

concentrate in the lower-left quadrant, malignant class 

on the upper-left, and normal class forms a well-

separated cloud to the right. Only a thin band of mixed 

colors appear along the cluster borders, indicating 

limited class overlap and few malignant classes and 

one benign class in normal class cluster. This clear 

spatial segregation confirms that the extracted 

features capture meaningful anatomical differences 

and validates t-SNE’s value as an exploratory sanity 

check before formal modelling. 

Overall, Figures 3, 4, and 5 show that PCA’s 

top-variance axes compress the ultrasound data 

efficiently but leave benign, malignant and normal 

scans heavily intermixed, so variance alone is not 

diagnostic. LDA, on the other hand, realigns the space 

and starts to peel the groups apart but still benign and 

malignant overlap shows that a purely linear split is 

insufficient. t-SNE finally exposes the full, curved 

structure of the data, producing three well-defined 

clusters with minimal overlap and indicating that the 

remaining separability is non-linear. Hence, t-SNE 

enables better visualization, especially for radiologists 

who can map and identify out-of-distribution cases for 

further review. Even data curators can quickly detect 

mislabeled images and remove noise before training. 

 

 

 

4.1.2 By Performance 

To compare and evaluate the performance of 

the SVM classifier on the PCA and LDA outputs, we 

define three key performance metrics: precision, 

recall, and F1 score. Precision is defined as the 

fraction of relevant instances among the retrieved 

instances. A high precision score indicates a low false 

positive rate, meaning the classifier rarely labels 

irrelevant instances as relevant. Recall is the fraction 

of relevant instances that are successfully retrieved. A 

high recall shows that the classifier has a small false 

negative rate (few missed instances). F1 score is a 

weighted harmonic mean of precision, giving more 

weight to the lower of the two values.It is a good 

overall measure for assessing the classifier to which it 

applies. 

We first trained the SVM classifier without 

using PCA or LDA, and the results are shown in Table 

1. We then applied PCA and LDA to the dataset to 

reduce its dimensionality and evaluate their effect on 

classification performance. For PCA analysis, the 

optimal number of components was determined to 

explain at least 90% of the dataset’s variance. A graph 

was plotted showing how the number of components 

relates to the explained variance ratio (solid line). The 

smallest number of components was then selected to 

retain most of the dataset’s information while 

reducing dimensionality. The classifier was trained on 

the PCA-reduced dataset using SVM and compared 

with the LDA-based results.
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Figure 6 Cumulative explained variance curve used to select the number of PCA components retaining 90% of data variance 

 
Table 1 Performance Comparison of SVM Classifier with and Without Dimensionality Reduction 

SVM Precision Recall F1-Score 

Without PCA-LDA 68.10% 68.58% 68.04% 

With PCA 71.27% 66.02% 59.95% 

With LDA 69.65% 39.10% 42.05% 

 

Figure 6 shows that 172 components are 

needed to explain 90% of the variance in the dataset. 

The evaluation metrics corresponding to these 172 

components are presented in Table 1. Similarly, when 

using LDA, only two components can be plotted, as 

the dataset contains three classes. The maximum 

number of LDA components is limited to two, based 

on the formula n ≤ min(n_features, n_classes − 1) = min 

(n_features, 2). In contrast, PCA is an unsupervised 

method that does not require class labels and is not 

subject to this restriction. 

The issue of having more classes than features is 

not unique to image datasets; it can occur in any dataset 

where the number of classes exceeds the number of 

features. However, in the case of image data, it is 

common to encounter very high-dimensional inputs, 

such as pixel-level features, which increases the 

relevance of dimensionality reduction techniques. Table 

1 presents the evaluation metrics for LDA using two 

components. 

Comparing the SVM classifier results using 

PCA and LDA for dimensionality reduction reveals 

several notable performance trends. With PCA, 

dimensionality reduction led to a slight improvement 

in precision but a noticeable decline in recall and F1 

score. This suggests that although PCA effectively 

removed redundant features and improved precision 

by reducing false positives, it may have also discarded 

crucial information needed to distinguish relevant 

instances. As a result, the classifier struggled to 

identify all true positives, lowering recall and the 

overall F1 score. 

The SVM classifier with LDA-based 

dimensionality reduction achieved higher precision 

than the baseline model. However, both recall and F1 

score were significantly lower. This indicates that while 

LDA successfully extracted discriminative features that 

reduced false positives, it may have overfit the training 

data. Overfitting typically leads to poor generalization, 

as the model becomes too closely tailored to the 

training data, reducing predictive performance on 

unseen instances. 

From Table 1, SVM without PCA or LDA 

demonstrates the highest F1 score of 68.04%. As the 

best-performing algorithm in terms of F1 score, it also 

achieved its peak precision of 68.10% and the highest 

recall of 68.58%. SVM using PCA achieved an F1 

score of 59.95%, yielding slightly inferior results 

compared to the baseline. While it improved precision 

marginally, the trade-off in recall reduced its overall 

performance. SVM with LDA achieved an F1 score of 

42.05%, establishing itself as the worst-performing 

algorithm among those studied. This significant drop 

in performance suggests that LDA may have 

discarded essential information or overfit the data, 

hindering its classification capability. 
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Table 2 Random Forest Classifier Metrics Across Full, PCA-Reduced, and LDA-Reduced Feature Sets 

Random Forest Precision Recall F1-Score 

Without PCA-LDA 73.20% 74.05% 73.62% 

With PCA 75.10% 71.88% 73.45% 

With LDA 70.56% 52.49% 60.13% 

 
Table 3 XGBoost Classifier Performance on Full Feature Set Versus PCA and LDA Dimensionality Reduction 

XGBoost Precision Recall F1-Score 

Without PCA-LDA 77.40% 76.55% 76.97% 

With PCA 78.65% 74.20% 76.37% 

With LDA 71.12% 58.46% 63.99% 

 

From Table 2, we see that Random Forest 

performs with the best balance of precision, recall, 

and F1 score when all original features are used. This 

suggests that the full feature set provides Random 

Forest with the necessary information to classify 

instances effectively. Using PCA increases precision 

by approximately 2%, but there is a slight drop in 

recall, and the F1 score remains nearly unchanged. 

This indicates that while PCA may filter out some 

noise, it also removes subtle features that contribute 

to recall performance. In contrast, applying LDA 

further degrades performance. Recall drops to 52%, 

and the F1 score falls to 60%, indicating that LDA 

removes textural details essential for Random Forest’s 

effectiveness. This suggests that LDA oversimplifies 

the feature space, leading to a loss of key information 

needed for accurate classification. 

The XGBoost model using the unreduced 

feature set delivered the highest F1 score of 76.97% 

in Table 3, indicating that gradient-boosted trees 

perform best when the full dataset is retained, even 

with its inherent nonlinearity. While PCA slightly 

improves precision, it reduces recall and maintains an 

equivalent F1 score. This suggests that PCA is more 

beneficial for accelerating training rather than 

enhancing accuracy. Its dimensionality reduction does 

not preserve all the information critical for optimal 

model performance. 

In contrast, LDA severely degrades performance. 

The high-order texture interactions that XGBoost 

relies on are largely eliminated in LDA’s bottleneck 

processing. This results in an almost 18-percentage-

point drop in recall and a corresponding decline in F1 

score to the mid-60s. Deploying boosted-tree 

ensembles for breast cancer ultrasound classification 

requires a broad feature space. Minimizing the use of 

aggressive linear reducers like LDA is essential to 

preserve the complexity that these models are 

designed to exploit. 

 

4.2 Comparing with PCA and without PCA 

To evaluate the effectiveness of PCA on our 

dataset, we applied PCA and assessed its impact on 

image compression. This process aims to preserve 

important features while reducing image quality. We 

then measured the Signal-to-Noise Ratio (SNR), 

which indicates the quality of the image after 

compression. A high SNR signifies that the 

compressed image closely resembles the original and 

maintains good quality. In contrast, a low SNR 

suggests that the compressed image differs 

significantly from the original and may exhibit poor 

quality. 

From Figure 7, the ultrasound image achieves 

a compression ratio of 2.68, indicating that the size of 

the original grayscale image has been reduced by a 

factor of 2.68 after applying PCA compression. In 

other words, the compressed image requires only 

approximately 37.31% of the original storage space 

while retaining most of its important features. 

Additionally, the image yields a Signal-to-Noise 

Ratio (SNR) of 48.91 dB. A higher SNR indicates that 

the compressed data is more similar in quality to the 

original. In this case, an SNR of 48.91 dB reflects a 

high level of fidelity, suggesting that the compression 

process preserved image quality effectively and 

introduced minimal noise or distortion. 

 

4.3 Comparing LDA and without LDA 

LDA is not an image compression method. 

When applied, we observe that the compression ratio 

remains at 1, meaning no compression has occurred. 

Similarly, the SNR is 0 dB, indicating no improvement 

in signal-to-noise ratio. These results can be seen in 

Figure 8. LDA is a supervised machine learning 

algorithm used for classification and dimensionality 

reduction. It aims to find a projection of the data that 

maximizes class separability while preserving as 

much relevant information as possible. 
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Figure 7 Comparison between original ultrasound image and PCA-reconstructed image after dimensionality reduction  

(SNR = 48.91 dB; compression ratio = 2.68×) 

 

 
Figure 8 Original image vs. LDA-processed reconstruction; no compression or visual fidelity preserved due to class-

dependent projection 

 

5.  Conclusion 

This study compared three dimensionality 

reduction techniques-PCA, LDA, and t-SNE-paired 

with SVM, Random Forest, and XGBoost classifiers 

on a balanced set of 1,200 breast ultrasound images. 

PCA reduced image size by 37% and slightly 

improved precision, while LDA enhanced visual class 

separation in 2D but eliminated essential high-order 

features. t-SNE revealed that fundamental class 

differentiation follows a non-linear pattern. The 

highest F1 scores were achieved with the full feature 

set: XGBoost ≈ 77%, Random Forest ≈ 74%, and 

SVM ≈ 68%, indicating that neither PCA nor LDA 

provided performance benefits and in some cases, led 

to degradation. Automated diagnosis of breast cancer 

via ultrasound should prioritize using the complete 

high-dimensional feature set, with XGBoost as the 

preferred model. PCA may be reserved for storage or 

runtime efficiency, LDA for low-feature or rare 

scenarios, and t-SNE for exploration analysis rather 

than as a preprocessing step. 

In general, dimensionality reduction techniques 

like PCA and LDA are valuable tools for reducing the 

computational complexity of machine learning models, 

especially when handling high-dimensional datasets 

such as medical imaging. These methods aim to 

simplify the feature space while retaining the most 

critical information, and they may improve model 

performance under certain conditions. However, for 

ultrasound image data, the application of PCA and 

LDA proved less effective. The dimensionality reduction 

process removed key information needed for accurate 



SAIYED, & KANTIPUDI 

JCST Vol. 15 No. 3, July - September 2025, Article 125 
 

11 

classification, resulting in a loss of performance. This 

suggests that the feature transformations generated by 

PCA and LDA did not preserve the intrinsic data 

structure necessary for effective breast cancer 

diagnosis. A key finding was that retaining all original 

features led to better F1 scores than those obtained 

after dimensionality reduction. This highlights the 

sensitivity of classification models to even minor 

changes in the feature space. While dimensionality 

reduction can reduce computational load and enhance 

efficiency, it must also preserve the discriminative 

features required for identifying malignancies. 

Overall, this study emphasizes the need to align 

preprocessing strategies with the complexity of the 

data and the demands of clinical accuracy.  
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