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Abstract 

The cybersecurity of critical Thai digital infrastructure is a pressing concern for national security. This research, 

conducted in collaboration with Thailand's Department of Special Investigation (DSI), presents a comprehensive security 

assessment of 27 specifically selected websites across financial, commercial, and educational sectors. Our investigation 

focuses on three critical attacks: SSL stripping, homograph redirection attacks, and keylogger injection. The findings reveal 

that 96.3% (26/27) of the examined websites are vulnerable to SSL stripping attacks due to inadequate HTTP Strict Transport 

Security (HSTS) implementation. Notably, even the sole website with proper HSTS Preload configuration demonstrated 

susceptibility to homograph attacks. Furthermore, all examined websites were susceptible to keylogger injection after 

successful Man-in-the-Middle (MITM) attacks, even when password hashing was used. To counter these threats, we propose 

an enhanced security framework integrating a Time-based Salted Hash Password (TSHP) mechanism and an On-Screen 

Keyboard (OSK) for login interfaces. Experimental evaluation shows that TSHP improves resistance to brute-force and replay 

attacks by generating dynamic, time-variant hashes, while OSK input prevented 100% of JavaScript keylogger captures when 

used exclusively. These countermeasures offer practical, low-cost solutions to strengthen Thailand’s digital services, enabling 

immediate deployment without infrastructure overhaul. Our findings provide actionable recommendations for policymakers 

and system administrators to enhance the cybersecurity posture of Thai web platforms, with broader implications for securing 

digital economies globally. 
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1.  Introduction 

Thailand's rapid digitalization of financial, 

commercial, and educational services has heightened 

concerns about cybersecurity vulnerabilities. Despite 

the widespread adoption of HTTPS protocols, many 

critical web platforms remain exposed to input-level 

threats that exploit weaknesses prior to encryption, 

particularly Man-in-the-Middle (MITM) attacks  

that leverage Secure Sockets Layer (SSL) stripping, 

homograph redirection, and JavaScript-based keylogger 

injection. These threats bypass conventional 

transmission-layer defenses, posing significant risks to 

user privacy and credential security, especially during 

authentication. 

Several studies have evaluated SSL stripping 

attacks. However, most have overlooked the practical 

implications of input-level interception under active 

MITM conditions. Recent assessments by Thai 

government cybersecurity units, such as 

Puangpronpitag & Puangpronpitag (2022), 

Khachenrum et al. (2023), and Chanbuala et al. (2024), 

have revealed persistent weaknesses in HTTPS 
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deployment and input protection across critical public 

and private web services. Although HTTPS is widely 

adopted, its effectiveness is compromised when 

HTTP Strict Transport Security (HSTS) is improperly 

configured. Puangpronpitag & Puangpronpitag (2022), 

Khachenrum et al. (2023), and our previous study 

(Chanbuala et al., 2024) focused on SSL stripping  

in Thai e-banking websites. However, they did  

not consider homograph redirection attacks, which 

can bypass even preloaded HSTS mechanisms. 

Puangpronpitag & Puangpronpitag (2022) and 

Khachenrum et al. (2023) also failed to address the 

threat of keylogger injection, which renders client-

side password hashing ineffective. Moreover, their 

experiments were limited in scope, covering only  

a subset of websites. In contrast, the present study 

evaluates all 27 high-priority websites (spanning 

financial, educational, and commercial sectors) 

identified by the Technology and Cyber Crime 

Division of Thailand’s Department of Special 

Investigation (DSI). The DSI has emphasized the 

urgent need for a comprehensive assessment of SSL 

stripping, homograph redirection, and keylogger 

injection, as well as robust defenses against hashed 

password brute-force attacks and input-level 

interception. 

To address this gap, this study sets out three 

main objectives. First, we aim to identify and assess 

the prevalence and root cause of input-level attacks, 

specifically SSL stripping, homograph redirection, 

and JavaScript-based keylogger injection attacks on 

27 Thai websites (selected by Thailand DSI’s 

Technology and Cyber Crime Division) across 

financial, educational, and commercial sectors. 

Second, we systematically analyze the effectiveness 

of current mitigation techniques, including HSTS 

configurations and password hashing, under active 

MITM conditions. Third, based on the findings, we 

propose and evaluate two practical countermeasures: 

(1) a Time-based Salted-Hash Password (TSHP) 

mechanism to resist brute-force and replay attacks, 

and (2) an On-Screen Keyboard (OSK) to defend 

against JavaScript-based keylogging. The following 

research questions guide these objectives: Q1) To 

what extent are Thai web platforms vulnerable to SSL 

stripping and keylogging attacks despite HTTPS 

adoption? Q2) How effective are current HSTS and 

password protection mechanisms in preventing input-

level credential theft? Q3) Can TSHP and OSK 

significantly enhance input-layer security in practical 

deployment scenarios? We hypothesize that H1) most 

Thai websites lack robust HSTS implementation, 

rendering them susceptible to SSL stripping and 

homograph attacks, and H2) the proposed TSHP and 

OSK mechanisms will significantly reduce the 

success rate of credential theft in controlled attack 

scenarios. 

The impact of our work is threefold: (1) it 

provides actionable findings to DSI’s IT Crime 

department, supporting targeted remediation across 

Thai web infrastructure; (2) it offers system 

administrators practical guidelines for deploying 

input-level protections and securing HSTS 

configurations against downgrade and injection 

attacks; and (3) it presents a hybrid authentication 

model that integrates time-sensitive hashing and 

OSK-based input isolation, offering a viable defense 

for password-based authentication. 

The remainder of this paper is organized as 

follows. Section 2 presents background information 

and related work. Section 3 describes the research 

method, experimental setup, tools, experimental test-

bed, ethical considerations, attack execution and 

validation, and proposed solutions along with 

evaluation frameworks. Section 4 presents the results 

of our attacking experiments. Sections 5 and 6 

elaborate on the design and evaluation of our 

proposed solutions (TSHP and OSK). Section 7 

discusses implications, limitations, and future work, 

followed by conclusions in Section 8. 

 

2.  Background & Related Work 

2.1 Hypertext Transfer Protocol Secure (HTTPS) 

and SSL Stripping Attacks 

HTTPS (Rescorla, 2000) is a secure version of 

HTTP, utilizing Transport Layer Security (TLS), 

formerly known as Secure Sockets Layer (SSL), to 

prevent eavesdroppers from accessing sensitive 

information. However, there have been several 

proposals to intercept HTTPS connections, 

particularly through SSL stripping attacks by 

Marlinspike (2009). SSL stripping is an MITM attack 

that downgrades a secure HTTPS connection to an 

unsecured HTTP connection. Together with user 

ignorance, even if a "not secure" warning appears, this 

attack enables attackers to capture usernames and 

passwords in plaintext, gaining unauthorized access to 

accounts without alerting the victim. 

 

2.2 HTTP Strict Transport Security (HSTS) 

HTTP Strict Transport Security (HSTS) 

(Hodges et al., 2012) is a critical web security protocol 

that enforces HTTPS connections between browsers 

and web servers, effectively preventing connection 
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downgrades to insecure HTTP and mitigating SSL 

stripping attacks. The mechanism operates by 

transmitting a "Strict-Transport-Security" HTTP 

header containing a policy duration parameter, 

instructing browsers to maintain HTTPS connectivity. 

However, the standard HSTS implementation proved 

vulnerable to HSTS hijacking attacks (Buffermet, 

2024), which could circumvent security enforcement 

and facilitate Denial of Service (DoS) attacks on 

HSTS-configured websites. These vulnerabilities  

led to the deprecation of non-preloaded HSTS 

configurations and the subsequent introduction of the 

preload mechanism. While preloaded HSTS with 

preload lists represents an essential defense against 

SSL stripping attacks, its adoption remains limited. 

Recent studies have documented that numerous 

websites either lack HSTS configuration entirely or 

utilize non-preloaded HSTS implementations, leaving 

them susceptible to SSL stripping attacks and 

unauthorized data interception. 

 

2.3 Homograph Attacks 

Phishing websites often use domain names that 

closely resemble legitimate websites to deceive 

potential victims. These fraudulent sites typically 

appear as advertisements (ads) in Google search 

results when users cannot remember the full URL of 

the website and search for it. Without noticing the 

anomalies, users can become victims. There were 

several phishing cases of Thai banks via Google ads, 

such as Jirawankul (2015), Bangkok Bank (2023). 

Although Google has since implemented enhanced 

measures to prevent fraudulent advertising, Google 

Search remains vulnerable to similar security risks. 

Specifically, the Google Search page lacks HSTS 

Preload implementation (as shown in the right part of 

Figure 1), creating opportunities for SSL stripping 

attacks. Additionally, attackers can employ 

homograph redirection attack techniques by 

modifying the Top-Level Domain (TLD) from '.com' 

to '.corn' to redirect users to fraudulent websites, even 

when the legitimate sites implement HSTS Preload (as 

demonstrated in Figure 1). This attack scheme 

represents a persistent threat to user security, 

bypassing robust security implementations. 

 

2.4 Keylogger Injection Attacks 

Keylogger injection represents a client-side 

attack vector wherein malicious JavaScript code is 

inserted into webpages to intercept user input before 

encryption or hashing. These attacks typically follow 

successful MITM compromises, leveraging tools such 

as Bettercap's keylogger.js module and associated 

caplets (Bettercap, 2024) to execute the attack. 

Unlike system-level keyloggers, which operate at the 

operating system layer, browser-based keyloggers 

function within the client's browser environment. The 

attacks can be launched through intercepted network 

traffic. They are commonly introduced through 

MITM, Cross-Site Scripting (XSS), or compromised 

third-party resources. The injected scripts attach event 

listeners (e.g., keydown, input) to form fields of 

interest, particularly authentication components. This 

allows real-time capture of sensitive data, including 

credentials. This attack is particularly concerning 

because interception occurs before encryption or 

hashing processes, rendering properly secured sites 

vulnerable. Figure 2 illustrates a JavaScript payload 

injected into the Document Object Model (DOM) 

designed to capture and exfiltrate user credentials 

from a standard login form. This study also 

investigates the security implications of this attack.

 

 

 
Figure 1 Exploiting non-HSTS preload vulnerability in Google Search 
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Figure 2 JavaScript payload for keystrokes capture on the victim’s login page 

 

 
Figure 3 Network test-bed setup for MITM and SSL stripping attacks 

 

3.  Research Method 

3.1 Experimented Websites and Ethical 

Considerations 

The selection of websites for this study was 

based on recommendations from the Technology and 

Cyber Crime Division of Thailand’s Department of 

Special Investigation (DSI). The DSI identified three 

high-risk sectors where vulnerabilities could significantly 

impact public trust and national cybersecurity posture: 

financial institutions, educational platforms, and 

commercial services. Twenty-seven websites were 

selected and categorized as follows: 13 e-banking 

platforms, 12 university registration systems, and two 

e-commerce websites. 

All experiments were conducted under the 

oversight of the DSI, with written authorization to 

simulate attacks as a collaborative research project in 

a controlled environment. Only login pages and endpoints 

were examined. No server-side modifications or 

intrusion attempts were made. The experiments were 

conducted under strictly controlled conditions without 

engaging in any real attacks on actual users. Although 

SSL stripping and traffic interception were employed, 

no sensitive information was accessed. The captured 

usernames and passwords were simulated data (not 

real user data) for testing purposes. All data collected 

during testing were limited to browser-side events, 

HTTP traffic patterns, and other traffic traces 

necessary for evaluating SSL stripping, homograph 

deception, and keylogger injection scenarios. 

Furthermore, this paper anonymizes the names of 

experimented websites using abbreviations and does 

not disclose the actual websites. 

 

3.2 Tools and Test-bed 

Figure 3 illustrates our experimental test-bed, 

which consists of a simple LAN connected to the 

internet, with special controls in place to enable ARP 

poisoning of both the gateway and the victim for 

MITM testing. The victim machine (running Windows 

10) uses Chrome to access university registration, e-

banking, and e-commerce websites via a gateway 

switch. The attacker, connected to the same network 

switch, uses Bettercap v.33 (Bettercap, 2024) on Kali 

Linux v.2024.3 (Offensive Security, 2024) to perform 

MITM attacks, including SSL stripping, homograph 

redirection, keylogger injection, and data sniffing. 

Wireshark v.4.4.0-1 (Wireshark Foundation, 2023) is 

employed for packet inspection. Figure 4 demonstrates a 

compromised login scenario. After SSL stripping is 

executed, the victim’s browser displays a “Not 

secure” warning, an alert frequently ignored by users.
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Figure 4 Browser security warnings triggered during SSL stripping attack 

 

3.3 Attack Execution and Validation Criteria 

Each selected website was simulated with three 

attack scenarios: SSL stripping, homograph redirection, 

and JavaScript-based keylogger injection. SSL 

stripping was considered successful if the HTTPS 

upgrade could be downgraded to HTTP. We assumed 

users might ignore the browser’s “Not Secure” 

warning, as documented in several real-world cases 

and studies. Before each test, the victim's browser 

history was cleared to simulate first-time access, 

replicating real-world attack scenarios where malware 

reset session states to bypass HTTPS protections. 

Homograph redirection was validated by replacing a 

legitimate domain with a visually similar one (e.g., 

“.com” to “.corn”) and observing whether users were 

redirected to the impersonated domain via modified 

search results. Keylogger injection was confirmed 

when the attacker’s machine captured keystrokes 

from input fields in plaintext before submission. 

All attacks were carried out using customized 

Bettercap caplets, modified to optimize SSL 

downgrading, enable keylogger JavaScript payload 

injection, and facilitate real-time DNS response 

redirection. Each test was repeated 10 times per 

website to ensure consistency. The success criteria for 

each attack were binary (Success/Fail), and results 

were documented in tabular form for analysis. Browser 

behaviors (e.g., security warnings, redirections) were 

logged using screen capture tools and HTTP packet 

inspection via Wireshark.  

 

3.4 Our Proposed Solutions and Evaluation 

Frameworks 

To address the weaknesses found from our 

attacking experiments, we propose two mechanisms: 

1. Time-based Salted Hash Password (TSHP): 
A method that combines time-based one-time 

password (TOTP) with salted hashing on the client 

side, preventing credential reuse and reducing 

susceptibility to replay and brute-force attacks. 

2. On-Screen Keyboard (OSK): A browser-

based virtual keyboard that mitigates keylogger 

injection attacks by bypassing traditional input event 

capture via JavaScript.  
Sections 5 (TSHP) and 6 (OSK) thoroughly 

present the details of the mechanisms and their 

evaluations. An evaluation framework was designed 

to assess the effectiveness of the proposed solutions 

(TSHP and OSK), focusing on three key aspects: 

attack resistance, performance, and usability. They 

can be explained as follows. 

Attack Resistance: In MITM scenarios, TSHP 

was evaluated against replay, brute-force, and 

rainbow-table attacks. Similarly, OSK was tested by 

attempting JavaScript-based keylogger injections, 

with success criteria for preventing plaintext 

keystroke leakage during interactions with the DOM. 

Performance: Each experiment was run 30 

times, and the results were averaged with a 95% 

confidence interval. The average login latency was 

used to evaluate computational impact, including 

client-side hashing and Time-based One Time 

Password (TOTP) (M’Raihi et al., 2011) generation. 

For OSK, the typing delay and total submission time 

were recorded.   

Usability: Small-scale tests were conducted 

with 30 participants to observe input accuracy and 

interaction comfort. Both secured and unsecured login 

forms were tested for comparison.

 



CHANBUALA ET AL. 

JCST Vol. 15 No. 4, October-December 2025, Article 146 

6 

Table 1 SSL stripping and password sniffing results 

Site ID HSTS Config SSL Stripping Success Password Sniffing 

Reg1  Yes Cleartext 

Reg2  Yes Cleartext 

Reg3 Non-preloaded Yes Cleartext 

Reg4  Yes Cleartext 

Reg5 Non-preloaded Yes Cleartext 

Reg6 Non-preloaded Yes Cleartext 

Reg7  Yes Cleartext 

Reg8  Yes Cleartext 

Reg9  Yes Cleartext 

Reg10 Non-preloaded Yes Cleartext 

Reg11  Yes Cleartext 

Reg12  Yes Cleartext 

Ebank1 Non-preloaded Yes Cleartext 

Ebank2 Non-preloaded Yes Cleartext 

Ebank3 Non-preloaded Yes Cleartext 

Ebank4 Non-preloaded Yes Hashed 

Ebank5 Non-preloaded Yes Cleartext 

Ebank6 Non-preloaded Yes Hashed 

Ebank7 Non-preloaded Yes Cleartext 

Ebank8  Yes Hashed 

Ebank9 Non-preloaded Yes Cleartext 

Ebank10 Non-preloaded Yes Cleartext 

Ebank11  Yes Cleartext 

Ebank12 Non-preloaded Yes Cleartext 

Ebank13 ✓ (preloaded) No - 

Ecommerce1 Non-preloaded Yes Cleartext 

Ecommerce2  Yes Hashed 

 

4.  Results 

4.1 Results of Experiment 1: SSL Stripping 

The first set of experiments focused on SSL 

stripping attacks and password sniffing on the login 

pages of 27 targeted websites. The experimental 

results, as presented in Table 1, indicated that 26 

websites were vulnerable to SSL stripping attacks, 

with 22 of these 26 websites having their passwords 

exposed in cleartext. Four websites (ebank4, ebank6, 

ebank8, ecommerce2) employed password hashing to 

protect against attackers. Only one website (ebank13) 

successfully withstood both SSL stripping and 

password sniffing attacks. A significant observation is 

that 11 compromised sites lacked HSTS implementation. 

The remaining 15 websites implemented HSTS with 

a non-preloaded configuration, which was obsolete 

and no longer functional. Only one website (ebank13) 

utilized the secure preloaded HSTS configuration.  

 

4.2 Results of Experiment 2: Homograph 

Redirection 

This second set of experiments aimed to 

evaluate the impact of homograph redirection attacks. 

We selected an e-banking website from  

Table 1 that effectively prevents SSL stripping 

attacks through HSTS Preload implementation. 

Before initiating the attack, the attacker configured 

the hstshijack.cap file, located in Bettercap's caplets 

folder. The configuration parameters included: 

hstshijack.targets: specifying attack targets 

hstshijack.replacements: defining website 

content modifications 

dns.spoof.domains: specifying domains to be 

spoofed 

To execute the attack, the attacker added 

relevant domains, including Google's domain and the 

target website's domain, modifying their TLD from 

'.com' to '.corn'. These configurations enabled the 

attacker to bypass HSTS Preload restrictions and 

conduct effective attacks. The detailed configuration 

file example is shown in Figure 5. 
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The experimental results (illustrated in Figure 

6) demonstrated that websites implementing HSTS 

Preload effectively mitigate SSL Stripping attacks but 

remain vulnerable to homograph redirection attacks. 

When users are successfully deceived and access the 

fraudulent website, attackers can capture sensitive 

information, including passwords. 

To address these issues, we suggest that 

domain names be easy to remember and that users be 

encouraged to access websites directly to reduce the 

risks associated with searching through Google. 

Additionally, Google should enforce HSTS Preload 

on all its services and monitor for fake advertisements 

and domains. Browsers should detect unusual TLDs, 

such as '.corn', and display warnings to users. 

4.3 Results of Experiment 3: Keylogger Injection 

This experiment assessed the injection of 

JavaScript-based keyloggers through MITM 

manipulation of unsecured HTTP traffic.  

Table 2 summarizes the outcome of keylogger 

injection tests. All 27 websites, including 13 financial 

platforms, 12 university registration systems, and two 

e-commerce portals, were found to be vulnerable. The 

script keylogger.js successfully captured login 

credentials before submission in every case, including 

those with hashed password implementation and 

HSTS configuration. No platform demonstrated any 

form of input-level protection.

 

 

Figure 5  Bettercap HSTS hijack configuration for combined SSL stripping and homograph attack 

 

 
Figure 6 Homograph attack results on HSTS-preloaded website 
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Table 2 Keylogger injection results 

Site ID HSTS Preload Password Hashed Keylogger Success Note 

Reg1 No No Yes Plaintext credential captured 

Reg2 No No Yes Plaintext credential captured 

Reg3 No No Yes Plaintext credential captured 

Reg4 No No Yes Plaintext credential captured 

Reg5 No No Yes Plaintext credential captured 

Reg6 No No Yes Plaintext credential captured 

Reg7 No No Yes Plaintext credential captured 

Reg8 No No Yes Plaintext credential captured 

Reg9 No No Yes Plaintext credential captured 

Reg10 No No Yes Plaintext credential captured 

Reg11 No No Yes Plaintext credential captured 

Reg12 No No Yes Plaintext credential captured 

Ebanking1 No No Yes Plaintext credential captured 

Ebanking2 No No Yes Plaintext credential captured 

Ebanking3 No No Yes Plaintext credential captured 

Ebanking4 No Yes Yes Plaintext credential captured 

Ebanking5 No No Yes Plaintext credential captured 

Ebanking6 No Yes Yes Plaintext credential captured 

Ebanking7 No No Yes Plaintext credential captured 

Ebanking8 No Yes Yes Plaintext credential captured 

Ebanking9 No No Yes Plaintext credential captured 

Ebanking10 No No Yes Plaintext credential captured 

Ebanking11 No No Yes Plaintext credential captured 

Ebanking12 No No Yes Plaintext credential captured 

Ebanking13 Yes No Yes Redirected via homograph 

Ecommerce1 No No Yes Plaintext credential captured 

Ecommerce2 No Yes Yes Plaintext credential captured 

 

 
Figure 7 Salted Hash Password authentication with mobile OTP as a dynamic salt 
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Using Bettercap, we injected a keylogger.js 

script into intercepted login pages. This script 

captured input events from the username and 

password fields. It transmitted the data to a local 

logging server before form submission, allowing us to 

acquire credentials in plaintext in every case. 

Notably, websites (ebank4, ebank6, ebank8, 

ecommerce2) utilizing password hashing mechanisms 

provided no adequate defense, as the keylogger 

intercepted data before client-side hashing occurred. 

This demonstrates that hashing alone cannot protect 

against input compromise when JavaScript injection 

is possible. 

Additionally, even websites with proper HSTS 

Preload (ebank13) were still vulnerable due to 

homograph redirection attacks that led users to 

spoofed domains outside the preload scope. Thus, 

they were ultimately vulnerable to MITM and 

keylogger injection.  

 

5.  Time-based Salted Hash Password (TSHP) 

Mechanism 

5.1 Concept and Motivation 

From the first set of experiments (in Section 4), 

it is clear that hashing the password can be helpful as 

a second layer of prevention against data sniffing, 

particularly when SSL is stripped. Furthermore, the 

Salted Hash Password (SHP) effectively enhances 

system security by incorporating salt into the 

password hashing process. This technique protects 

against rainbow-table attacks, which utilize 

precomputed tables to crack hashes from all possible 

passwords. SHP generally makes rainbow-table 

attacks more challenging, as using unique salts results 

in different hash values even for the same password. 

However, while salt usage can mitigate the risk of 

such attacks, certain limitations may still allow 

successful attacks in specific scenarios: (1) Fixed Salt: 

If the salt is fixed or non-random, rainbow-table 

attacks can become easier. Precomputed rainbow 

tables that incorporate the fixed salt can be created in 

advance and utilized effectively. (2) Predictable Salt: 

If the salt is predictable, such as using user-specific 

data like usernames or system-defined constants, 

rainbow-table attacks may be feasible. (3) Weak Salt: 

If the salt is not complex or lengthy enough, such as 

using short or non-random salts, it can simplify hash 

cracking through pre-computation or the use of 

rainbow tables. 

We propose a TSHP mechanism that integrates 

dynamic, time-sensitive values into the hashing 

process to address these issues. Instead of using a 

fixed salt, our method leverages a TOTP generated on 

the client side as a dynamic salt. This results in a 

unique hash each time the user logs in, even with the 

same password. Furthermore, since the TOTP value 

changes every 30 seconds and is never transmitted 

directly, this approach mitigates the risks posed by 

keyloggers and credential replay. The server validates 

the submitted hash by regenerating the same TOTP 

within a permissible time window. 

 

5.2 Implementation Design 

The TSHP mechanism enhances traditional 

password authentication by combining a static user 

password with a dynamic salt generated via TOTP. 

Figure 7 illustrates the login flow using TSHP. The 

following steps outline the client–server interaction: 

TOTP Generation (Client-Side): The TOTP 

value is generated based on a shared secret key and 

the current time, following the TOTP algorithm (RFC 

6238). The TOTP can be generated using a mobile 

authenticator app (e.g., Google Authenticator or 

FreeOTP), synchronized with the user’s account. The 

app displays a six-digit code that refreshes every 30 

seconds, which is then programmatically accessed or 

scanned (via QR or API) by the client interface. 

Hashing Process: The client-side application 

concatenates the user’s password with the TOTP 

value (used as a dynamic salt) and computes a secure 

hash (e.g., SHA3-512). This results in a time-variant 

hash even if the password remains unchanged. 

Data Transmission: Only the computed hash 

is transmitted to the server. The TOTP value is not 

sent, minimizing the risk of interception and replay. 

Server Verification: Upon receiving the hash, 

the server regenerates the TOTP using the known 

secret and current time, and verifies it against the 

received hash using a  ± 30-second window. If a match 

is found, authentication is successful.  
This design supports a hybrid approach, where 

mobile apps generate the TOTP externally while the 

browser or web client uses it as a local salt for hashing. 

It enables strong, time-based authentication without 

sending OTPs over the network.  

 

5.3 Security Analysis 

The TSHP mechanism significantly enhances 

input-level security compared to traditional password 

hashing. The inclusion of a time-based dynamic salt 

mitigates several critical attacks: 

Replay Attack Mitigation: Each login attempt 

produces a different hash due to the changing TOTP 

salt. Even if an attacker captures the hash, it cannot be 
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reused in future sessions because the corresponding 

TOTP will have expired. 

Brute-Force and Rainbow Table Resistance: 
The dynamic salt makes precomputed hash tables 

infeasible. Using TOTP-based dynamic salts reduces 

the effectiveness of brute-force and dictionary attacks 

by limiting the valid hash window. A detailed 

evaluation is provided in Section 5.5. 

Keylogger Bypass (Partial): While TSHP 

does not prevent keylogging, it ensures that the 

captured password alone is insufficient. Without 

access to a valid TOTP at the time of login, an attacker 

cannot recreate the correct hash for reuse. 

Backward Compatibility: The scheme can be 

implemented on top of existing authentication systems, 

requiring only a minor change in how the server 

verifies incoming hashes. 

However, some limitations exist. The 

mechanism relies on client-side scripting, which can 

be compromised if the site is hacked. It also requires 

time synchronization between client and server, 

which may cause false negatives in hash validation if 

the clocks drift significantly. 
 

5.4 Performance and Compatibility 

To evaluate TSHP, we measured its impact on 

login performance and compatibility with standard 

web platforms. The results are as follows: 

Login Latency: Client-side hashing with a 

dynamic TOTP salt introduces negligible delay. In our 

prototype implementation using SHA3-512, the 

average login time increased by only 16-22 

milliseconds compared to standard password 

submission. This overhead is acceptable for most web 

applications and remains imperceptible to end-users. 

Device and Browser Support: TSHP is fully 

compatible with major web browsers and operating 

systems.  

Infrastructure Requirements: Server-side 

deployment requires minimal changes. It requires 

only the ability to regenerate TOTP values and 

validate incoming hashes within a time window. Only 

an OTP initial secret key for each user must be stored. 

Deployment Results: We deployed TSHP on 

a secure login prototype and tested it across different 

browser–device combinations. All logins were 

successful within the expected time window. Results 

are summarized in Table 3, which reports successful 

login rate, hash validation time, and compatibility by 

device class. 

These findings confirm that TSHP can be 

deployed in real-world systems without degrading 

performance or requiring extensive infrastructure 

upgrades. All tests were conducted using the default 

browser configurations, without requiring any additional 

plugins or browser extensions. TOTP values were 

generated using standard mobile applications (e.g., 

Google Authenticator), and time synchronization was 

verified across all devices to ensure consistent hash 

validation. Security performance under brute-force 

conditions is evaluated in Section 5.5.

 
Table 3 TSHP authentication deployment results across multiple devices 

Device Type Browser Avg. Hash Validation Time (ms) Login Success Rate 

Windows Laptop Chrome (v120) 19.7 100% 

Android Smartphone Chrome Mobile 21.2 100% 

iPhone Safari (v16) 20.5 100% 

macOS Firefox 18.9 100% 

Linux Workstation Edge (Linux) 22.0 100% 

 

Table 4 Estimated time to crack SHA3-512 password hashes with dynamic MOTP-based salt using RTX 4090 

Password Type Character Set Total Hashes to Compute Time to Crack (seconds) 

?d?d?d?d?d?d Digits (6 characters) 106 × 106 = 1012 197.54 

?d?d?d?d?d?d?d?d Digits (8 characters) 108 × 106 = 1014 19,800 

?l?l?l?l?l?l?l?l Lowercase letters (8 characters) 268 × 106 = 2.0882706×1017 41,296,287.09 
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5.5 Brute-force Evaluation 

To evaluate the proposed TSHP mechanism's 

brute-force resistance, we conducted offline hash-

cracking simulations using SHA3-512 and dynamic 

salts generated from Mobile OTP (MOTP), refreshed 

every 30 seconds based on the TOTP standard. The 

experiment was performed using Hashcat (mode 

17600) on an NVIDIA GeForce RTX 4090, with a 

measured cracking speed of 5056.8 million hashes per 

second (MH/s) (Croley, 2022). The estimated time to 

crack each hash was calculated using: 
 

Time to Crack= 
Total Hashes to Compute

GPU Speed (MH/s)
 

 

Three password types were tested. The time-to-

crack estimates presented in Table 4 highlight the 

robustness of the TSHP mechanism against brute-

force attacks, particularly when combined with 

SHA3-512 and dynamic salts refreshed via Mobile 

OTP (MOTP). They also illustrate how password 

complexity influences resistance. For example, a 

weak 6-digit numeric password such as “123456” can 

be cracked in under 4 minutes (197.54 seconds). In 

real password policies, these very weak ones (or even 

the weaker ones) are still allowed in some systems, 

e.g., some tested university registration systems and 

some tested e-banking systems. The 30-second 

refresh cycle can prevent cracking for this sample. 

However, the real password can be weaker than this 

and may be cracked within 30 seconds. This finding 

highlights the vulnerability of systems, even when 

TSHP is implemented, and underscores the 

importance of robust password practices. 

However, several organizations, including 

Thai financial and educational platforms, have 

enforced password policies that require a minimum of 

8 characters with a mix of alphanumeric and special 

characters, following NIST SP 800-63B guidelines. 

Such policies align with the "complex" password type 

tested, which includes 95 possible characters 

(lowercase, uppercase, digits, and special characters). 

For an 8-character password, Table 4 estimates a 

cracking time of approximately 1.3 years. Hence, 

MOTP's 30-second refresh cycle ensures that even if 

a hash is compromised, its validity is short-lived, 

adding a critical layer of protection against offline 

attacks. While traditional salted hash mechanisms 

(e.g., fixed or predictable salts) remain susceptible to 

precomputed attacks (such as rainbow-table attacks), 

using time-variant salts from MOTP significantly 

reduces this risk. 

These findings emphasize the importance of 

aligning password policies with the cryptographic 

strengths of TSHP. Organizations should enforce 

complex passwords with at least eight characters and 

consider integrating TSHP with user education to 

promote stronger credential creation. Additionally, 

the negligible performance overhead of TSHP (as 

shown in Table 3) makes it feasible for widespread 

adoption without compromising user experience, 

thereby enhancing security against brute-force threats 

in real-world deployments. 

 

6.  On-Screen Keyboard 

6.1 Concept and Motivation 

While TSHP can protect credentials during 

transmission, it cannot prevent input-level attacks, 

such as keylogging, before the data reaches the TSHP 

process. JavaScript-based keyloggers, like those 

included in Bettercap, intercept user input at the client 

side and capture passwords in cleartext, even when 

password hashing is employed. Our experiments 

(aforementioned in Section 4.3) confirmed that all 

tested websites, including those with client-side 

hashing, were vulnerable to such keylogger injection 

after SSL stripping and MITM attacks. This highlights 

a critical gap in input-level protection that TSHP 

alone cannot address. To mitigate this risk, we 

introduce an On-Screen Keyboard (OSK) as an 

additional defense layer. The OSK allows users to 

enter passwords via mouse clicks, avoiding physical 

keystrokes that keyloggers rely on. When combined 

with SHP, the OSK ensures that passwords are neither 

intercepted during entry nor reused after transmission, 

providing end-to-end input protection.  

 

6.2 Testing the Effectiveness of OSK in Preventing 

Keylogger Attacks 

We tested the OSK against JavaScript-based 

keylogger scripts by entering the password 

“Password2024” using four different input methods. 

First, using the keyboard only failed to prevent 

attacks, consistent with results from previous 

experiments. Second, using the OSK alone 

successfully prevented keystroke capture. Third, 

combining OSK and keyboard input revealed that if 

the keyboard is used at the end, keyloggers can 

capture previously entered OSK data, indicating that 

ending with keyboard input is insecure. Finally, when 

the OSK was used for the final input after the 

keyboard, it successfully prevented the sniffing of 

OSK-entered portions of the password. These results 

are summarized in Table 5. 
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Table 5 Password input methods and keystroke logging results 

Password Input Method Keystroke Logging 

Keyboard Only (“Password2024”) “Password2024” 

OSK Only (“Password2024”) Not Detected 

OSK (“Password”)+Keyboard (“2024”) “Password2024” 

Keyboard (“Password”)+OSK (“2024”) “Password” 

OSK (“Pass”)+Keyboard (“word”)+OSK (“2024”) “Password” 

These findings highlighted that OSK was 

effective only when used exclusively, without mixing 

input from a physical keyboard. Further analysis  

of Bettercap’s keylogger scripts revealed three 

primary data capture mechanisms: Capture Method 1 

(Keystroke Logging), which intercepts individual 

characters as they are typed; Capture Method 2 

(Keystroke Triggers), which uses keypress events to 

extract values from text fields; and Capture Method 3 

(Submit Button Triggers), which captures the full 

contents of input fields when a form is submitted. The 

OSK successfully mitigated Capture Methods 1 and 2 

by eliminating keystroke events. However, Capture 

Method 3 remained a vulnerability, as submitting a 

form using a standard <input type="submit"> element 

can still trigger keylogger data extraction. To reduce 

this risk, developers could replace the default submit 

input with a <button> element and a secure JavaScript 

onclick handler (e.g., onclick='submitForm()'), which 

may limit keyloggers’ ability to intercept data. 

Nonetheless, adaptive keylogger scripts could still 

target this method. In summary, while the OSK 

significantly reduced the risk of input interception, it 

was not a comprehensive solution to the problem. Its 

effectiveness is maximized when combined with 

dynamic authentication mechanisms (e.g., TSHP) and 

robust protection against SSL stripping 

 

6.3 Usability and Compatibility 

To evaluate the real-world applicability, the 

OSK prototype was tested across major browsers 

(Chrome, Firefox, Safari, and Edge) and devices 

(Windows, macOS, Android, and iOS). The component 

functioned consistently across platforms, requiring no 

plugins or browser extensions, and utilized only 

standard HTML and JavaScript APIs. A lightweight 

JavaScript module integrates the OSK directly into 

existing login forms, supporting both desktop and 

mobile interfaces while remaining compatible with 

Content Security Policies (CSP). Integration is 

straightforward, requiring minimal developer effort. A 

small-scale usability test with 30 participants showed 

that 90% found the OSK intuitive and easy to use, and 

80% appreciated layout randomization for added 

security, while login time increased by only 4-6 

seconds.  

 

7.  Recommendation, Discussion, Limitations, and 

Future Work 

7.1 Recommendation for Different Stakeholders  

We provide stakeholder-specific recommendations 

to support actionable improvements, categorized into 

short-term and long-term measures. For web developers, 

the short-term recommendations are: (1) implementing 

HSTS with preload across all production domains, (2) 

deploying the TSHP mechanism and OSK for user 

login interfaces, and (3) hardening form submission 

processes to reduce client-side attack vectors. The long-

term recommendations are: (1) transitioning toward 

passwordless authentication systems (e.g., FIDO2, 

passkeys), and (2) integrating behavioral anomaly 

detection to detect phishing or homograph attacks.  
For policymakers and regulators, our short-term 

recommendations are: (1) issuing national guidelines 

for HSTS configuration and basic MITM defenses,  
(2) promoting awareness campaigns about domain 

spoofing and HTTPS warnings. Also, the long-term 

recommendations are: (1) motivating adoption of 

modern passwordless authentication standards through 

policy or funding, (2) establishing mandatory 

cybersecurity baselines for financial and educational 

institutions. 

 

7.2 Performance Trade-offs of Our Solutions 

The primary security benefit of TSHP was its 

resistance to brute-force attacks, with cracking times 

for complex passwords exceeding one year (Table 4, 

Section 5.5). This robustness came at the cost of minor 

computational overhead for hash generation and 

validation, which is justified for high-security 

applications like financial services. Similarly, the 

OSK’s protection against keyloggers addressed a 

critical vulnerability in Section 4.3. However, its 

usability impact may deter adoption in scenarios 

prioritizing speed over security, such as casual e-

commerce platforms. Organizations must balance 

these trade-offs based on their risk profiles. For 

instance, Thai banks facing frequent phishing and 
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MITM attacks may prioritize TSHP and OSK despite 

minor performance costs. At the same time, 

educational platforms with lower risk may opt for 

simpler defenses to preserve user experience. 

 

7.3 Practical Implementation Challenges of 

Solutions 

Implementing TSHP and OSK in real-world 

systems present some challenges. First, TSHP requires 

precise time synchronization between clients and servers 

to ensure TOTP accuracy. Misconfigurations, common 

in distributed systems, could lead to login failures, 

particularly in regions with unreliable network 

connectivity, such as rural Thailand. Second, 

integrating OSK into existing login forms requires 

developer effort to adapt front-end interfaces, 

especially for legacy systems lacking modern 

JavaScript support. This could increase deployment 

costs for smaller organizations, such as local 

educational institutions. 

Additionally, user adoption posed a challenge. 

While enhancing security, the OSK’s randomized 

layout may confuse less tech-savvy users, a significant 

concern given Thailand’s diverse digital literacy 

levels. Training and user education campaigns were 

essential to mitigate resistance, particularly for older 

demographics accessing financial services. 

 

7.4 Comparing TSHP with Traditional Password-

based and Modern Passwordless Approaches 

Table 6 presents a feature-based comparison of 

our proposed TSHP mechanism against traditional 

password-based and modern passwordless 

authentication approaches. Our TSHP approach 

demonstrated significant improvements over 

conventional systems. It employed time-based dynamic 

salting using TOTP, which provided robust replay 

protection. The optional integration of an OSK added 

partial resistance to keylogger attacks, enhancing 

security at the input layer. Particularly, TSHP 

supported client-side hashing, reducing exposure of 

plaintext passwords during transmission, and incurred 

low infrastructure cost, making it suitable for 

integration with existing systems. By contrast, the 

traditional fixed salt method lacks dynamic salting and 

replay protection and offers no defense against 

keyloggers. Although it supported client-side hashing 

and remains inexpensive to deploy, its static nature 

leaves it vulnerable to rainbow-table attacks. The 

TOTP + Password model, while offering dynamic 

salting and replay protection, does not incorporate 

client-side hashing or defenses against keyloggers. 

Modern passwordless approaches such as 

WebAuthn (Hodges et al., 2021), FIDO2 (Kuchhal et 

al., 2023) and Passkeys offer strong protection against 

keyloggers, replay attacks, and eliminate the need for 

passwords. These approaches relied on asymmetric 

cryptography and Public Key Infrastructure (PKI) or 

secure hardware elements (e.g., YubiKeys, platform 

authenticators). However, they come with a high 

infrastructure cost (as shown in Table 6), requiring 

hardware tokens, secure enclave integration, or cross-

device credential management. 

While these passwordless authentication 

approaches are gaining momentum globally, the 

adoption within Thailand remains limited due to 

legacy infrastructure, inconsistent device support, and 

low user readiness. Most financial, commercial, and 

educational platforms examined in this study still rely 

on traditional password-based systems. As a result, 

our proposed TSHP mechanism served as a practical 

transitional solution. By incorporating time-based 

dynamic salting and optional secure input via OSK, it 

mitigates threats such as SSL stripping, password 

sniffing, and keylogging without requiring significant 

infrastructure changes. This makes it especially 

suitable for resource-constrained environments 

aiming to enhance security without complete 

migration to passwordless systems.  

 

Table 6 Feature-based functional comparison of TSHP, traditional, and modern authentication mechanisms 

Method Dynamic Salt 
Replay 

Protection 

Keylogger 

Resistant 
Passwordless 

Client-side 

Hashing 

Infrastructure 

Cost 

TSHP (Proposed) Yes (TOTP) Yes 
Partial (with 

OSK) 
No Yes Low 

Traditional Fixed Salt No No No No Yes Low 

TOTP + Password  
(no hashing) 

Yes Yes No No No Low 

WebAuthn/FIDO2 N/A (PKI) Yes Yes Yes No High 

Passkeys 
N/A (Device 

sync) 
Yes Yes Yes No High 
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7.5 Other Limitations and Future Work 

The 27 selected Thai websites provided valuable 

test samples as they aligned with the targets specified 

by the Technology and Cyber Crime Division of DSI. 

However, the dataset size was limited, and testing on a 

broader range of sectors could provide deeper insights. 

This could be a future research direction. 

This study was confined to web-based login 

pages and simulated MITM scenarios. Advanced 

threats were outside its scope, such as screen capture 

malware and clipboard sniffers. Further investigation 

could focus on developing robust client-side security 

measures, integrating machine learning for detecting 

homograph redirection attacks, and enhancing browser 

security features to counter TLD manipulation. 

Moreover, this research concentrated exclusively 

on input-level threats, including SSL stripping, 

homograph redirection, and JavaScript-based keylogger 

injection. Other SSL/TLS-related vulnerabilities were 

not addressed, including certificate spoofing, TLS 

version downgrade attacks, and manipulation of 

certificate authority (CA) trust. These attack vectors 

required distinct testing methodologies, tools, and 

assumptions, making them promising areas for future 

exploration. 

 

8.  Conclusions 

This study examined the security posture of 27 

critical Thai websites across the financial, commercial, 

and educational sectors, focusing on SSL stripping, 

homograph redirection attacks, and keylogger 

injections after MITM. The experimental results 

demonstrated that 96.3% (26/27) of the examined 

websites were vulnerable to SSL stripping attacks, 

primarily due to improper HSTS implementation. Only 

one website implemented HSTS Preload correctly, yet 

it remained susceptible to homograph redirection 

attacks through TLD manipulation. Furthermore, all 

examined websites, including those implementing 

password hashing, proved vulnerable to keylogger 

injection following successful MITM attacks. These 

vulnerabilities stemmed largely from inadequate HSTS 

implementation, reliance on traditional password-based 

authentication, and a lack of defenses against client-

side threats. These findings also reflected a critical gap 

in security awareness and implementation across Thai 

digital platforms. Although HTTPS and hash-based 

passwords are widely adopted, critical safeguards, such 

as HSTS preloading and input-layer defenses, are 

neglected. To address these gaps, Thai government 

agencies and financial institutions should adopt 

standardized hardening practices and conduct regular 

penetration testing to mitigate such risks. 

To address the vulnerabilities, we also proposed 

and evaluated two practical, low-cost countermeasures: 

(1) a Time-based Salted Hash Password (TSHP) 

mechanism using dynamic Time-based OTPs as salting 

material, and (2) an On-Screen Keyboard (OSK) to 

resist JavaScript-based keyloggers. These methods 

enhance existing systems without requiring significant 

infrastructure changes. 

Although our study focused on Thai digital 

infrastructure, the vulnerabilities identified, such as 

poor HSTS configuration, are prevalent in many 

countries. Therefore, the proposed TSHP and OSK 

mechanisms offer a globally applicable framework for 

strengthening legacy web authentication systems. 

While modern standards like WebAuthn, FIDO2, and 

passkeys provide more robust protection through public-

key cryptography and hardware-based authenticators, 

their widespread adoption remains limited in regions 

with infrastructure or budget constraints. Our solutions 

served as a transitional step toward adopting these 

standards. 
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