
Journal of Current Science and Technology, October-December 2025 Vol. 15 No. 4, Article 146

Copyright ©2018-2025, Rangsit University ISSN 2630-0656 (Online)

Cite this article: Chanbuala, K., Puangpronpitag, D., Puangpronpitag, E., & Puangpronpitag, S. (2025). Security Analysis

and mitigation of ssl stripping, homograph redirection, and keylogging attacks: A case study on Thai web platforms. Journal

of Current Science and Technology, 15(4), Article 146. https://doi.org/10.59796/jcst.V15N4.2025.146

1

Security Analysis and Mitigation of SSL Stripping, Homograph Redirection, and Keylogging

Attacks: A Case Study on Thai Web Platforms

Khathawut Chanbuala1, Darunee Puangpronpitag1, Egachai Puangpronpitag2, and Somnuk Puangpronpitag1,*

1Information Security & Advanced Network (ISAN) Research Group, Mahasarakham University,

Mahasarakham 44150, Thailand.
2Department of Special Investigation (DSI), Ministry of Justice, Bangkok 10210, Thailand.

*Corresponding author; E-mail: somnuk.p@msu.ac.th

Received 30 January 2025; Revised 3 May 2025; Accepted 23 July 2025; Published online 20 August 2025

Abstract

The cybersecurity of critical Thai digital infrastructure is a pressing concern for national security. This research,

conducted in collaboration with Thailand's Department of Special Investigation (DSI), presents a comprehensive security

assessment of 27 specifically selected websites across financial, commercial, and educational sectors. Our investigation

focuses on three critical attacks: SSL stripping, homograph redirection attacks, and keylogger injection. The findings reveal

that 96.3% (26/27) of the examined websites are vulnerable to SSL stripping attacks due to inadequate HTTP Strict Transport

Security (HSTS) implementation. Notably, even the sole website with proper HSTS Preload configuration demonstrated

susceptibility to homograph attacks. Furthermore, all examined websites were susceptible to keylogger injection after

successful Man-in-the-Middle (MITM) attacks, even when password hashing was used. To counter these threats, we propose

an enhanced security framework integrating a Time-based Salted Hash Password (TSHP) mechanism and an On-Screen

Keyboard (OSK) for login interfaces. Experimental evaluation shows that TSHP improves resistance to brute-force and replay

attacks by generating dynamic, time-variant hashes, while OSK input prevented 100% of JavaScript keylogger captures when

used exclusively. These countermeasures offer practical, low-cost solutions to strengthen Thailand’s digital services, enabling

immediate deployment without infrastructure overhaul. Our findings provide actionable recommendations for policymakers

and system administrators to enhance the cybersecurity posture of Thai web platforms, with broader implications for securing

digital economies globally.

Keywords: SSL stripping; keylogging; homograph attack; HSTS implementation; time-based salted-hash password

1. Introduction

Thailand's rapid digitalization of financial,

commercial, and educational services has heightened

concerns about cybersecurity vulnerabilities. Despite

the widespread adoption of HTTPS protocols, many

critical web platforms remain exposed to input-level

threats that exploit weaknesses prior to encryption,

particularly Man-in-the-Middle (MITM) attacks

that leverage Secure Sockets Layer (SSL) stripping,

homograph redirection, and JavaScript-based keylogger

injection. These threats bypass conventional

transmission-layer defenses, posing significant risks to

user privacy and credential security, especially during

authentication.

Several studies have evaluated SSL stripping

attacks. However, most have overlooked the practical

implications of input-level interception under active

MITM conditions. Recent assessments by Thai

government cybersecurity units, such as

Puangpronpitag & Puangpronpitag (2022),

Khachenrum et al. (2023), and Chanbuala et al. (2024),

have revealed persistent weaknesses in HTTPS

https://doi.org/10.59796/jcst.V15N4.2025.1

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

2

deployment and input protection across critical public

and private web services. Although HTTPS is widely

adopted, its effectiveness is compromised when

HTTP Strict Transport Security (HSTS) is improperly

configured. Puangpronpitag & Puangpronpitag (2022),

Khachenrum et al. (2023), and our previous study

(Chanbuala et al., 2024) focused on SSL stripping

in Thai e-banking websites. However, they did

not consider homograph redirection attacks, which

can bypass even preloaded HSTS mechanisms.

Puangpronpitag & Puangpronpitag (2022) and

Khachenrum et al. (2023) also failed to address the

threat of keylogger injection, which renders client-

side password hashing ineffective. Moreover, their

experiments were limited in scope, covering only

a subset of websites. In contrast, the present study

evaluates all 27 high-priority websites (spanning

financial, educational, and commercial sectors)

identified by the Technology and Cyber Crime

Division of Thailand’s Department of Special

Investigation (DSI). The DSI has emphasized the

urgent need for a comprehensive assessment of SSL

stripping, homograph redirection, and keylogger

injection, as well as robust defenses against hashed

password brute-force attacks and input-level

interception.

To address this gap, this study sets out three

main objectives. First, we aim to identify and assess

the prevalence and root cause of input-level attacks,

specifically SSL stripping, homograph redirection,

and JavaScript-based keylogger injection attacks on

27 Thai websites (selected by Thailand DSI’s

Technology and Cyber Crime Division) across

financial, educational, and commercial sectors.

Second, we systematically analyze the effectiveness

of current mitigation techniques, including HSTS

configurations and password hashing, under active

MITM conditions. Third, based on the findings, we

propose and evaluate two practical countermeasures:

(1) a Time-based Salted-Hash Password (TSHP)

mechanism to resist brute-force and replay attacks,

and (2) an On-Screen Keyboard (OSK) to defend

against JavaScript-based keylogging. The following

research questions guide these objectives: Q1) To

what extent are Thai web platforms vulnerable to SSL

stripping and keylogging attacks despite HTTPS

adoption? Q2) How effective are current HSTS and

password protection mechanisms in preventing input-

level credential theft? Q3) Can TSHP and OSK

significantly enhance input-layer security in practical

deployment scenarios? We hypothesize that H1) most

Thai websites lack robust HSTS implementation,

rendering them susceptible to SSL stripping and

homograph attacks, and H2) the proposed TSHP and

OSK mechanisms will significantly reduce the

success rate of credential theft in controlled attack

scenarios.

The impact of our work is threefold: (1) it

provides actionable findings to DSI’s IT Crime

department, supporting targeted remediation across

Thai web infrastructure; (2) it offers system

administrators practical guidelines for deploying

input-level protections and securing HSTS

configurations against downgrade and injection

attacks; and (3) it presents a hybrid authentication

model that integrates time-sensitive hashing and

OSK-based input isolation, offering a viable defense

for password-based authentication.

The remainder of this paper is organized as

follows. Section 2 presents background information

and related work. Section 3 describes the research

method, experimental setup, tools, experimental test-

bed, ethical considerations, attack execution and

validation, and proposed solutions along with

evaluation frameworks. Section 4 presents the results

of our attacking experiments. Sections 5 and 6

elaborate on the design and evaluation of our

proposed solutions (TSHP and OSK). Section 7

discusses implications, limitations, and future work,

followed by conclusions in Section 8.

2. Background & Related Work

2.1 Hypertext Transfer Protocol Secure (HTTPS)

and SSL Stripping Attacks

HTTPS (Rescorla, 2000) is a secure version of

HTTP, utilizing Transport Layer Security (TLS),

formerly known as Secure Sockets Layer (SSL), to

prevent eavesdroppers from accessing sensitive

information. However, there have been several

proposals to intercept HTTPS connections,

particularly through SSL stripping attacks by

Marlinspike (2009). SSL stripping is an MITM attack

that downgrades a secure HTTPS connection to an

unsecured HTTP connection. Together with user

ignorance, even if a "not secure" warning appears, this

attack enables attackers to capture usernames and

passwords in plaintext, gaining unauthorized access to

accounts without alerting the victim.

2.2 HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS)

(Hodges et al., 2012) is a critical web security protocol

that enforces HTTPS connections between browsers

and web servers, effectively preventing connection

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

3

downgrades to insecure HTTP and mitigating SSL

stripping attacks. The mechanism operates by

transmitting a "Strict-Transport-Security" HTTP

header containing a policy duration parameter,

instructing browsers to maintain HTTPS connectivity.

However, the standard HSTS implementation proved

vulnerable to HSTS hijacking attacks (Buffermet,

2024), which could circumvent security enforcement

and facilitate Denial of Service (DoS) attacks on

HSTS-configured websites. These vulnerabilities

led to the deprecation of non-preloaded HSTS

configurations and the subsequent introduction of the

preload mechanism. While preloaded HSTS with

preload lists represents an essential defense against

SSL stripping attacks, its adoption remains limited.

Recent studies have documented that numerous

websites either lack HSTS configuration entirely or

utilize non-preloaded HSTS implementations, leaving

them susceptible to SSL stripping attacks and

unauthorized data interception.

2.3 Homograph Attacks

Phishing websites often use domain names that

closely resemble legitimate websites to deceive

potential victims. These fraudulent sites typically

appear as advertisements (ads) in Google search

results when users cannot remember the full URL of

the website and search for it. Without noticing the

anomalies, users can become victims. There were

several phishing cases of Thai banks via Google ads,

such as Jirawankul (2015), Bangkok Bank (2023).

Although Google has since implemented enhanced

measures to prevent fraudulent advertising, Google

Search remains vulnerable to similar security risks.

Specifically, the Google Search page lacks HSTS

Preload implementation (as shown in the right part of

Figure 1), creating opportunities for SSL stripping

attacks. Additionally, attackers can employ

homograph redirection attack techniques by

modifying the Top-Level Domain (TLD) from '.com'

to '.corn' to redirect users to fraudulent websites, even

when the legitimate sites implement HSTS Preload (as

demonstrated in Figure 1). This attack scheme

represents a persistent threat to user security,

bypassing robust security implementations.

2.4 Keylogger Injection Attacks

Keylogger injection represents a client-side

attack vector wherein malicious JavaScript code is

inserted into webpages to intercept user input before

encryption or hashing. These attacks typically follow

successful MITM compromises, leveraging tools such

as Bettercap's keylogger.js module and associated

caplets (Bettercap, 2024) to execute the attack.

Unlike system-level keyloggers, which operate at the

operating system layer, browser-based keyloggers

function within the client's browser environment. The

attacks can be launched through intercepted network

traffic. They are commonly introduced through

MITM, Cross-Site Scripting (XSS), or compromised

third-party resources. The injected scripts attach event

listeners (e.g., keydown, input) to form fields of

interest, particularly authentication components. This

allows real-time capture of sensitive data, including

credentials. This attack is particularly concerning

because interception occurs before encryption or

hashing processes, rendering properly secured sites

vulnerable. Figure 2 illustrates a JavaScript payload

injected into the Document Object Model (DOM)

designed to capture and exfiltrate user credentials

from a standard login form. This study also

investigates the security implications of this attack.

Figure 1 Exploiting non-HSTS preload vulnerability in Google Search

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

4

Figure 2 JavaScript payload for keystrokes capture on the victim’s login page

Figure 3 Network test-bed setup for MITM and SSL stripping attacks

3. Research Method

3.1 Experimented Websites and Ethical

Considerations

The selection of websites for this study was

based on recommendations from the Technology and

Cyber Crime Division of Thailand’s Department of

Special Investigation (DSI). The DSI identified three

high-risk sectors where vulnerabilities could significantly

impact public trust and national cybersecurity posture:

financial institutions, educational platforms, and

commercial services. Twenty-seven websites were

selected and categorized as follows: 13 e-banking

platforms, 12 university registration systems, and two

e-commerce websites.

All experiments were conducted under the

oversight of the DSI, with written authorization to

simulate attacks as a collaborative research project in

a controlled environment. Only login pages and endpoints

were examined. No server-side modifications or

intrusion attempts were made. The experiments were

conducted under strictly controlled conditions without

engaging in any real attacks on actual users. Although

SSL stripping and traffic interception were employed,

no sensitive information was accessed. The captured

usernames and passwords were simulated data (not

real user data) for testing purposes. All data collected

during testing were limited to browser-side events,

HTTP traffic patterns, and other traffic traces

necessary for evaluating SSL stripping, homograph

deception, and keylogger injection scenarios.

Furthermore, this paper anonymizes the names of

experimented websites using abbreviations and does

not disclose the actual websites.

3.2 Tools and Test-bed

Figure 3 illustrates our experimental test-bed,

which consists of a simple LAN connected to the

internet, with special controls in place to enable ARP

poisoning of both the gateway and the victim for

MITM testing. The victim machine (running Windows

10) uses Chrome to access university registration, e-

banking, and e-commerce websites via a gateway

switch. The attacker, connected to the same network

switch, uses Bettercap v.33 (Bettercap, 2024) on Kali

Linux v.2024.3 (Offensive Security, 2024) to perform

MITM attacks, including SSL stripping, homograph

redirection, keylogger injection, and data sniffing.

Wireshark v.4.4.0-1 (Wireshark Foundation, 2023) is

employed for packet inspection. Figure 4 demonstrates a

compromised login scenario. After SSL stripping is

executed, the victim’s browser displays a “Not

secure” warning, an alert frequently ignored by users.

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

5

Figure 4 Browser security warnings triggered during SSL stripping attack

3.3 Attack Execution and Validation Criteria

Each selected website was simulated with three

attack scenarios: SSL stripping, homograph redirection,

and JavaScript-based keylogger injection. SSL

stripping was considered successful if the HTTPS

upgrade could be downgraded to HTTP. We assumed

users might ignore the browser’s “Not Secure”

warning, as documented in several real-world cases

and studies. Before each test, the victim's browser

history was cleared to simulate first-time access,

replicating real-world attack scenarios where malware

reset session states to bypass HTTPS protections.

Homograph redirection was validated by replacing a

legitimate domain with a visually similar one (e.g.,

“.com” to “.corn”) and observing whether users were

redirected to the impersonated domain via modified

search results. Keylogger injection was confirmed

when the attacker’s machine captured keystrokes

from input fields in plaintext before submission.

All attacks were carried out using customized

Bettercap caplets, modified to optimize SSL

downgrading, enable keylogger JavaScript payload

injection, and facilitate real-time DNS response

redirection. Each test was repeated 10 times per

website to ensure consistency. The success criteria for

each attack were binary (Success/Fail), and results

were documented in tabular form for analysis. Browser

behaviors (e.g., security warnings, redirections) were

logged using screen capture tools and HTTP packet

inspection via Wireshark.

3.4 Our Proposed Solutions and Evaluation

Frameworks

To address the weaknesses found from our

attacking experiments, we propose two mechanisms:

1. Time-based Salted Hash Password (TSHP):
A method that combines time-based one-time

password (TOTP) with salted hashing on the client

side, preventing credential reuse and reducing

susceptibility to replay and brute-force attacks.

2. On-Screen Keyboard (OSK): A browser-

based virtual keyboard that mitigates keylogger

injection attacks by bypassing traditional input event

capture via JavaScript.
Sections 5 (TSHP) and 6 (OSK) thoroughly

present the details of the mechanisms and their

evaluations. An evaluation framework was designed

to assess the effectiveness of the proposed solutions

(TSHP and OSK), focusing on three key aspects:

attack resistance, performance, and usability. They

can be explained as follows.

Attack Resistance: In MITM scenarios, TSHP

was evaluated against replay, brute-force, and

rainbow-table attacks. Similarly, OSK was tested by

attempting JavaScript-based keylogger injections,

with success criteria for preventing plaintext

keystroke leakage during interactions with the DOM.

Performance: Each experiment was run 30

times, and the results were averaged with a 95%

confidence interval. The average login latency was

used to evaluate computational impact, including

client-side hashing and Time-based One Time

Password (TOTP) (M’Raihi et al., 2011) generation.

For OSK, the typing delay and total submission time

were recorded.

Usability: Small-scale tests were conducted

with 30 participants to observe input accuracy and

interaction comfort. Both secured and unsecured login

forms were tested for comparison.

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

6

Table 1 SSL stripping and password sniffing results

Site ID HSTS Config SSL Stripping Success Password Sniffing

Reg1  Yes Cleartext

Reg2  Yes Cleartext

Reg3 Non-preloaded Yes Cleartext

Reg4  Yes Cleartext

Reg5 Non-preloaded Yes Cleartext

Reg6 Non-preloaded Yes Cleartext

Reg7  Yes Cleartext

Reg8  Yes Cleartext

Reg9  Yes Cleartext

Reg10 Non-preloaded Yes Cleartext

Reg11  Yes Cleartext

Reg12  Yes Cleartext

Ebank1 Non-preloaded Yes Cleartext

Ebank2 Non-preloaded Yes Cleartext

Ebank3 Non-preloaded Yes Cleartext

Ebank4 Non-preloaded Yes Hashed

Ebank5 Non-preloaded Yes Cleartext

Ebank6 Non-preloaded Yes Hashed

Ebank7 Non-preloaded Yes Cleartext

Ebank8  Yes Hashed

Ebank9 Non-preloaded Yes Cleartext

Ebank10 Non-preloaded Yes Cleartext

Ebank11  Yes Cleartext

Ebank12 Non-preloaded Yes Cleartext

Ebank13 ✓ (preloaded) No -

Ecommerce1 Non-preloaded Yes Cleartext

Ecommerce2  Yes Hashed

4. Results

4.1 Results of Experiment 1: SSL Stripping

The first set of experiments focused on SSL

stripping attacks and password sniffing on the login

pages of 27 targeted websites. The experimental

results, as presented in Table 1, indicated that 26

websites were vulnerable to SSL stripping attacks,

with 22 of these 26 websites having their passwords

exposed in cleartext. Four websites (ebank4, ebank6,

ebank8, ecommerce2) employed password hashing to

protect against attackers. Only one website (ebank13)

successfully withstood both SSL stripping and

password sniffing attacks. A significant observation is

that 11 compromised sites lacked HSTS implementation.

The remaining 15 websites implemented HSTS with

a non-preloaded configuration, which was obsolete

and no longer functional. Only one website (ebank13)

utilized the secure preloaded HSTS configuration.

4.2 Results of Experiment 2: Homograph

Redirection

This second set of experiments aimed to

evaluate the impact of homograph redirection attacks.

We selected an e-banking website from

Table 1 that effectively prevents SSL stripping

attacks through HSTS Preload implementation.

Before initiating the attack, the attacker configured

the hstshijack.cap file, located in Bettercap's caplets

folder. The configuration parameters included:

hstshijack.targets: specifying attack targets

hstshijack.replacements: defining website

content modifications

dns.spoof.domains: specifying domains to be

spoofed

To execute the attack, the attacker added

relevant domains, including Google's domain and the

target website's domain, modifying their TLD from

'.com' to '.corn'. These configurations enabled the

attacker to bypass HSTS Preload restrictions and

conduct effective attacks. The detailed configuration

file example is shown in Figure 5.

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

7

The experimental results (illustrated in Figure

6) demonstrated that websites implementing HSTS

Preload effectively mitigate SSL Stripping attacks but

remain vulnerable to homograph redirection attacks.

When users are successfully deceived and access the

fraudulent website, attackers can capture sensitive

information, including passwords.

To address these issues, we suggest that

domain names be easy to remember and that users be

encouraged to access websites directly to reduce the

risks associated with searching through Google.

Additionally, Google should enforce HSTS Preload

on all its services and monitor for fake advertisements

and domains. Browsers should detect unusual TLDs,

such as '.corn', and display warnings to users.

4.3 Results of Experiment 3: Keylogger Injection

This experiment assessed the injection of

JavaScript-based keyloggers through MITM

manipulation of unsecured HTTP traffic.

Table 2 summarizes the outcome of keylogger

injection tests. All 27 websites, including 13 financial

platforms, 12 university registration systems, and two

e-commerce portals, were found to be vulnerable. The

script keylogger.js successfully captured login

credentials before submission in every case, including

those with hashed password implementation and

HSTS configuration. No platform demonstrated any

form of input-level protection.

Figure 5 Bettercap HSTS hijack configuration for combined SSL stripping and homograph attack

Figure 6 Homograph attack results on HSTS-preloaded website

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

8

Table 2 Keylogger injection results

Site ID HSTS Preload Password Hashed Keylogger Success Note

Reg1 No No Yes Plaintext credential captured

Reg2 No No Yes Plaintext credential captured

Reg3 No No Yes Plaintext credential captured

Reg4 No No Yes Plaintext credential captured

Reg5 No No Yes Plaintext credential captured

Reg6 No No Yes Plaintext credential captured

Reg7 No No Yes Plaintext credential captured

Reg8 No No Yes Plaintext credential captured

Reg9 No No Yes Plaintext credential captured

Reg10 No No Yes Plaintext credential captured

Reg11 No No Yes Plaintext credential captured

Reg12 No No Yes Plaintext credential captured

Ebanking1 No No Yes Plaintext credential captured

Ebanking2 No No Yes Plaintext credential captured

Ebanking3 No No Yes Plaintext credential captured

Ebanking4 No Yes Yes Plaintext credential captured

Ebanking5 No No Yes Plaintext credential captured

Ebanking6 No Yes Yes Plaintext credential captured

Ebanking7 No No Yes Plaintext credential captured

Ebanking8 No Yes Yes Plaintext credential captured

Ebanking9 No No Yes Plaintext credential captured

Ebanking10 No No Yes Plaintext credential captured

Ebanking11 No No Yes Plaintext credential captured

Ebanking12 No No Yes Plaintext credential captured

Ebanking13 Yes No Yes Redirected via homograph

Ecommerce1 No No Yes Plaintext credential captured

Ecommerce2 No Yes Yes Plaintext credential captured

Figure 7 Salted Hash Password authentication with mobile OTP as a dynamic salt

RJAS

ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

9

Using Bettercap, we injected a keylogger.js

script into intercepted login pages. This script

captured input events from the username and

password fields. It transmitted the data to a local

logging server before form submission, allowing us to

acquire credentials in plaintext in every case.

Notably, websites (ebank4, ebank6, ebank8,

ecommerce2) utilizing password hashing mechanisms

provided no adequate defense, as the keylogger

intercepted data before client-side hashing occurred.

This demonstrates that hashing alone cannot protect

against input compromise when JavaScript injection

is possible.

Additionally, even websites with proper HSTS

Preload (ebank13) were still vulnerable due to

homograph redirection attacks that led users to

spoofed domains outside the preload scope. Thus,

they were ultimately vulnerable to MITM and

keylogger injection.

5. Time-based Salted Hash Password (TSHP)

Mechanism

5.1 Concept and Motivation

From the first set of experiments (in Section 4),

it is clear that hashing the password can be helpful as

a second layer of prevention against data sniffing,

particularly when SSL is stripped. Furthermore, the

Salted Hash Password (SHP) effectively enhances

system security by incorporating salt into the

password hashing process. This technique protects

against rainbow-table attacks, which utilize

precomputed tables to crack hashes from all possible

passwords. SHP generally makes rainbow-table

attacks more challenging, as using unique salts results

in different hash values even for the same password.

However, while salt usage can mitigate the risk of

such attacks, certain limitations may still allow

successful attacks in specific scenarios: (1) Fixed Salt:

If the salt is fixed or non-random, rainbow-table

attacks can become easier. Precomputed rainbow

tables that incorporate the fixed salt can be created in

advance and utilized effectively. (2) Predictable Salt:

If the salt is predictable, such as using user-specific

data like usernames or system-defined constants,

rainbow-table attacks may be feasible. (3) Weak Salt:

If the salt is not complex or lengthy enough, such as

using short or non-random salts, it can simplify hash

cracking through pre-computation or the use of

rainbow tables.

We propose a TSHP mechanism that integrates

dynamic, time-sensitive values into the hashing

process to address these issues. Instead of using a

fixed salt, our method leverages a TOTP generated on

the client side as a dynamic salt. This results in a

unique hash each time the user logs in, even with the

same password. Furthermore, since the TOTP value

changes every 30 seconds and is never transmitted

directly, this approach mitigates the risks posed by

keyloggers and credential replay. The server validates

the submitted hash by regenerating the same TOTP

within a permissible time window.

5.2 Implementation Design

The TSHP mechanism enhances traditional

password authentication by combining a static user

password with a dynamic salt generated via TOTP.

Figure 7 illustrates the login flow using TSHP. The

following steps outline the client–server interaction:

TOTP Generation (Client-Side): The TOTP

value is generated based on a shared secret key and

the current time, following the TOTP algorithm (RFC

6238). The TOTP can be generated using a mobile

authenticator app (e.g., Google Authenticator or

FreeOTP), synchronized with the user’s account. The

app displays a six-digit code that refreshes every 30

seconds, which is then programmatically accessed or

scanned (via QR or API) by the client interface.

Hashing Process: The client-side application

concatenates the user’s password with the TOTP

value (used as a dynamic salt) and computes a secure

hash (e.g., SHA3-512). This results in a time-variant

hash even if the password remains unchanged.

Data Transmission: Only the computed hash

is transmitted to the server. The TOTP value is not

sent, minimizing the risk of interception and replay.

Server Verification: Upon receiving the hash,

the server regenerates the TOTP using the known

secret and current time, and verifies it against the

received hash using a ± 30-second window. If a match

is found, authentication is successful.
This design supports a hybrid approach, where

mobile apps generate the TOTP externally while the

browser or web client uses it as a local salt for hashing.

It enables strong, time-based authentication without

sending OTPs over the network.

5.3 Security Analysis

The TSHP mechanism significantly enhances

input-level security compared to traditional password

hashing. The inclusion of a time-based dynamic salt

mitigates several critical attacks:

Replay Attack Mitigation: Each login attempt

produces a different hash due to the changing TOTP

salt. Even if an attacker captures the hash, it cannot be

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

10

reused in future sessions because the corresponding

TOTP will have expired.

Brute-Force and Rainbow Table Resistance:
The dynamic salt makes precomputed hash tables

infeasible. Using TOTP-based dynamic salts reduces

the effectiveness of brute-force and dictionary attacks

by limiting the valid hash window. A detailed

evaluation is provided in Section 5.5.

Keylogger Bypass (Partial): While TSHP

does not prevent keylogging, it ensures that the

captured password alone is insufficient. Without

access to a valid TOTP at the time of login, an attacker

cannot recreate the correct hash for reuse.

Backward Compatibility: The scheme can be

implemented on top of existing authentication systems,

requiring only a minor change in how the server

verifies incoming hashes.

However, some limitations exist. The

mechanism relies on client-side scripting, which can

be compromised if the site is hacked. It also requires

time synchronization between client and server,

which may cause false negatives in hash validation if

the clocks drift significantly.

5.4 Performance and Compatibility

To evaluate TSHP, we measured its impact on

login performance and compatibility with standard

web platforms. The results are as follows:

Login Latency: Client-side hashing with a

dynamic TOTP salt introduces negligible delay. In our

prototype implementation using SHA3-512, the

average login time increased by only 16-22

milliseconds compared to standard password

submission. This overhead is acceptable for most web

applications and remains imperceptible to end-users.

Device and Browser Support: TSHP is fully

compatible with major web browsers and operating

systems.

Infrastructure Requirements: Server-side

deployment requires minimal changes. It requires

only the ability to regenerate TOTP values and

validate incoming hashes within a time window. Only

an OTP initial secret key for each user must be stored.

Deployment Results: We deployed TSHP on

a secure login prototype and tested it across different

browser–device combinations. All logins were

successful within the expected time window. Results

are summarized in Table 3, which reports successful

login rate, hash validation time, and compatibility by

device class.

These findings confirm that TSHP can be

deployed in real-world systems without degrading

performance or requiring extensive infrastructure

upgrades. All tests were conducted using the default

browser configurations, without requiring any additional

plugins or browser extensions. TOTP values were

generated using standard mobile applications (e.g.,

Google Authenticator), and time synchronization was

verified across all devices to ensure consistent hash

validation. Security performance under brute-force

conditions is evaluated in Section 5.5.

Table 3 TSHP authentication deployment results across multiple devices

Device Type Browser Avg. Hash Validation Time (ms) Login Success Rate

Windows Laptop Chrome (v120) 19.7 100%

Android Smartphone Chrome Mobile 21.2 100%

iPhone Safari (v16) 20.5 100%

macOS Firefox 18.9 100%

Linux Workstation Edge (Linux) 22.0 100%

Table 4 Estimated time to crack SHA3-512 password hashes with dynamic MOTP-based salt using RTX 4090

Password Type Character Set Total Hashes to Compute Time to Crack (seconds)

?d?d?d?d?d?d Digits (6 characters) 106 × 106 = 1012 197.54

?d?d?d?d?d?d?d?d Digits (8 characters) 108 × 106 = 1014 19,800

?l?l?l?l?l?l?l?l Lowercase letters (8 characters) 268 × 106 = 2.0882706×1017 41,296,287.09

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

11

5.5 Brute-force Evaluation

To evaluate the proposed TSHP mechanism's

brute-force resistance, we conducted offline hash-

cracking simulations using SHA3-512 and dynamic

salts generated from Mobile OTP (MOTP), refreshed

every 30 seconds based on the TOTP standard. The

experiment was performed using Hashcat (mode

17600) on an NVIDIA GeForce RTX 4090, with a

measured cracking speed of 5056.8 million hashes per

second (MH/s) (Croley, 2022). The estimated time to

crack each hash was calculated using:

Time to Crack=
Total Hashes to Compute

GPU Speed (MH/s)

Three password types were tested. The time-to-

crack estimates presented in Table 4 highlight the

robustness of the TSHP mechanism against brute-

force attacks, particularly when combined with

SHA3-512 and dynamic salts refreshed via Mobile

OTP (MOTP). They also illustrate how password

complexity influences resistance. For example, a

weak 6-digit numeric password such as “123456” can

be cracked in under 4 minutes (197.54 seconds). In

real password policies, these very weak ones (or even

the weaker ones) are still allowed in some systems,

e.g., some tested university registration systems and

some tested e-banking systems. The 30-second

refresh cycle can prevent cracking for this sample.

However, the real password can be weaker than this

and may be cracked within 30 seconds. This finding

highlights the vulnerability of systems, even when

TSHP is implemented, and underscores the

importance of robust password practices.

However, several organizations, including

Thai financial and educational platforms, have

enforced password policies that require a minimum of

8 characters with a mix of alphanumeric and special

characters, following NIST SP 800-63B guidelines.

Such policies align with the "complex" password type

tested, which includes 95 possible characters

(lowercase, uppercase, digits, and special characters).

For an 8-character password, Table 4 estimates a

cracking time of approximately 1.3 years. Hence,

MOTP's 30-second refresh cycle ensures that even if

a hash is compromised, its validity is short-lived,

adding a critical layer of protection against offline

attacks. While traditional salted hash mechanisms

(e.g., fixed or predictable salts) remain susceptible to

precomputed attacks (such as rainbow-table attacks),

using time-variant salts from MOTP significantly

reduces this risk.

These findings emphasize the importance of

aligning password policies with the cryptographic

strengths of TSHP. Organizations should enforce

complex passwords with at least eight characters and

consider integrating TSHP with user education to

promote stronger credential creation. Additionally,

the negligible performance overhead of TSHP (as

shown in Table 3) makes it feasible for widespread

adoption without compromising user experience,

thereby enhancing security against brute-force threats

in real-world deployments.

6. On-Screen Keyboard

6.1 Concept and Motivation

While TSHP can protect credentials during

transmission, it cannot prevent input-level attacks,

such as keylogging, before the data reaches the TSHP

process. JavaScript-based keyloggers, like those

included in Bettercap, intercept user input at the client

side and capture passwords in cleartext, even when

password hashing is employed. Our experiments

(aforementioned in Section 4.3) confirmed that all

tested websites, including those with client-side

hashing, were vulnerable to such keylogger injection

after SSL stripping and MITM attacks. This highlights

a critical gap in input-level protection that TSHP

alone cannot address. To mitigate this risk, we

introduce an On-Screen Keyboard (OSK) as an

additional defense layer. The OSK allows users to

enter passwords via mouse clicks, avoiding physical

keystrokes that keyloggers rely on. When combined

with SHP, the OSK ensures that passwords are neither

intercepted during entry nor reused after transmission,

providing end-to-end input protection.

6.2 Testing the Effectiveness of OSK in Preventing

Keylogger Attacks

We tested the OSK against JavaScript-based

keylogger scripts by entering the password

“Password2024” using four different input methods.

First, using the keyboard only failed to prevent

attacks, consistent with results from previous

experiments. Second, using the OSK alone

successfully prevented keystroke capture. Third,

combining OSK and keyboard input revealed that if

the keyboard is used at the end, keyloggers can

capture previously entered OSK data, indicating that

ending with keyboard input is insecure. Finally, when

the OSK was used for the final input after the

keyboard, it successfully prevented the sniffing of

OSK-entered portions of the password. These results

are summarized in Table 5.

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

12

Table 5 Password input methods and keystroke logging results

Password Input Method Keystroke Logging

Keyboard Only (“Password2024”) “Password2024”

OSK Only (“Password2024”) Not Detected

OSK (“Password”)+Keyboard (“2024”) “Password2024”

Keyboard (“Password”)+OSK (“2024”) “Password”

OSK (“Pass”)+Keyboard (“word”)+OSK (“2024”) “Password”

These findings highlighted that OSK was

effective only when used exclusively, without mixing

input from a physical keyboard. Further analysis

of Bettercap’s keylogger scripts revealed three

primary data capture mechanisms: Capture Method 1

(Keystroke Logging), which intercepts individual

characters as they are typed; Capture Method 2

(Keystroke Triggers), which uses keypress events to

extract values from text fields; and Capture Method 3

(Submit Button Triggers), which captures the full

contents of input fields when a form is submitted. The

OSK successfully mitigated Capture Methods 1 and 2

by eliminating keystroke events. However, Capture

Method 3 remained a vulnerability, as submitting a

form using a standard <input type="submit"> element

can still trigger keylogger data extraction. To reduce

this risk, developers could replace the default submit

input with a <button> element and a secure JavaScript

onclick handler (e.g., onclick='submitForm()'), which

may limit keyloggers’ ability to intercept data.

Nonetheless, adaptive keylogger scripts could still

target this method. In summary, while the OSK

significantly reduced the risk of input interception, it

was not a comprehensive solution to the problem. Its

effectiveness is maximized when combined with

dynamic authentication mechanisms (e.g., TSHP) and

robust protection against SSL stripping

6.3 Usability and Compatibility

To evaluate the real-world applicability, the

OSK prototype was tested across major browsers

(Chrome, Firefox, Safari, and Edge) and devices

(Windows, macOS, Android, and iOS). The component

functioned consistently across platforms, requiring no

plugins or browser extensions, and utilized only

standard HTML and JavaScript APIs. A lightweight

JavaScript module integrates the OSK directly into

existing login forms, supporting both desktop and

mobile interfaces while remaining compatible with

Content Security Policies (CSP). Integration is

straightforward, requiring minimal developer effort. A

small-scale usability test with 30 participants showed

that 90% found the OSK intuitive and easy to use, and

80% appreciated layout randomization for added

security, while login time increased by only 4-6

seconds.

7. Recommendation, Discussion, Limitations, and

Future Work

7.1 Recommendation for Different Stakeholders

We provide stakeholder-specific recommendations

to support actionable improvements, categorized into

short-term and long-term measures. For web developers,

the short-term recommendations are: (1) implementing

HSTS with preload across all production domains, (2)

deploying the TSHP mechanism and OSK for user

login interfaces, and (3) hardening form submission

processes to reduce client-side attack vectors. The long-

term recommendations are: (1) transitioning toward

passwordless authentication systems (e.g., FIDO2,

passkeys), and (2) integrating behavioral anomaly

detection to detect phishing or homograph attacks.
For policymakers and regulators, our short-term

recommendations are: (1) issuing national guidelines

for HSTS configuration and basic MITM defenses,
(2) promoting awareness campaigns about domain

spoofing and HTTPS warnings. Also, the long-term

recommendations are: (1) motivating adoption of

modern passwordless authentication standards through

policy or funding, (2) establishing mandatory

cybersecurity baselines for financial and educational

institutions.

7.2 Performance Trade-offs of Our Solutions

The primary security benefit of TSHP was its

resistance to brute-force attacks, with cracking times

for complex passwords exceeding one year (Table 4,

Section 5.5). This robustness came at the cost of minor

computational overhead for hash generation and

validation, which is justified for high-security

applications like financial services. Similarly, the

OSK’s protection against keyloggers addressed a

critical vulnerability in Section 4.3. However, its

usability impact may deter adoption in scenarios

prioritizing speed over security, such as casual e-

commerce platforms. Organizations must balance

these trade-offs based on their risk profiles. For

instance, Thai banks facing frequent phishing and

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

13

MITM attacks may prioritize TSHP and OSK despite

minor performance costs. At the same time,

educational platforms with lower risk may opt for

simpler defenses to preserve user experience.

7.3 Practical Implementation Challenges of

Solutions

Implementing TSHP and OSK in real-world

systems present some challenges. First, TSHP requires

precise time synchronization between clients and servers

to ensure TOTP accuracy. Misconfigurations, common

in distributed systems, could lead to login failures,

particularly in regions with unreliable network

connectivity, such as rural Thailand. Second,

integrating OSK into existing login forms requires

developer effort to adapt front-end interfaces,

especially for legacy systems lacking modern

JavaScript support. This could increase deployment

costs for smaller organizations, such as local

educational institutions.

Additionally, user adoption posed a challenge.

While enhancing security, the OSK’s randomized

layout may confuse less tech-savvy users, a significant

concern given Thailand’s diverse digital literacy

levels. Training and user education campaigns were

essential to mitigate resistance, particularly for older

demographics accessing financial services.

7.4 Comparing TSHP with Traditional Password-

based and Modern Passwordless Approaches

Table 6 presents a feature-based comparison of

our proposed TSHP mechanism against traditional

password-based and modern passwordless

authentication approaches. Our TSHP approach

demonstrated significant improvements over

conventional systems. It employed time-based dynamic

salting using TOTP, which provided robust replay

protection. The optional integration of an OSK added

partial resistance to keylogger attacks, enhancing

security at the input layer. Particularly, TSHP

supported client-side hashing, reducing exposure of

plaintext passwords during transmission, and incurred

low infrastructure cost, making it suitable for

integration with existing systems. By contrast, the

traditional fixed salt method lacks dynamic salting and

replay protection and offers no defense against

keyloggers. Although it supported client-side hashing

and remains inexpensive to deploy, its static nature

leaves it vulnerable to rainbow-table attacks. The

TOTP + Password model, while offering dynamic

salting and replay protection, does not incorporate

client-side hashing or defenses against keyloggers.

Modern passwordless approaches such as

WebAuthn (Hodges et al., 2021), FIDO2 (Kuchhal et

al., 2023) and Passkeys offer strong protection against

keyloggers, replay attacks, and eliminate the need for

passwords. These approaches relied on asymmetric

cryptography and Public Key Infrastructure (PKI) or

secure hardware elements (e.g., YubiKeys, platform

authenticators). However, they come with a high

infrastructure cost (as shown in Table 6), requiring

hardware tokens, secure enclave integration, or cross-

device credential management.

While these passwordless authentication

approaches are gaining momentum globally, the

adoption within Thailand remains limited due to

legacy infrastructure, inconsistent device support, and

low user readiness. Most financial, commercial, and

educational platforms examined in this study still rely

on traditional password-based systems. As a result,

our proposed TSHP mechanism served as a practical

transitional solution. By incorporating time-based

dynamic salting and optional secure input via OSK, it

mitigates threats such as SSL stripping, password

sniffing, and keylogging without requiring significant

infrastructure changes. This makes it especially

suitable for resource-constrained environments

aiming to enhance security without complete

migration to passwordless systems.

Table 6 Feature-based functional comparison of TSHP, traditional, and modern authentication mechanisms

Method Dynamic Salt
Replay

Protection

Keylogger

Resistant
Passwordless

Client-side

Hashing

Infrastructure

Cost

TSHP (Proposed) Yes (TOTP) Yes
Partial (with

OSK)
No Yes Low

Traditional Fixed Salt No No No No Yes Low

TOTP + Password
(no hashing)

Yes Yes No No No Low

WebAuthn/FIDO2 N/A (PKI) Yes Yes Yes No High

Passkeys
N/A (Device

sync)
Yes Yes Yes No High

RJAS

ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

14

7.5 Other Limitations and Future Work

The 27 selected Thai websites provided valuable

test samples as they aligned with the targets specified

by the Technology and Cyber Crime Division of DSI.

However, the dataset size was limited, and testing on a

broader range of sectors could provide deeper insights.

This could be a future research direction.

This study was confined to web-based login

pages and simulated MITM scenarios. Advanced

threats were outside its scope, such as screen capture

malware and clipboard sniffers. Further investigation

could focus on developing robust client-side security

measures, integrating machine learning for detecting

homograph redirection attacks, and enhancing browser

security features to counter TLD manipulation.

Moreover, this research concentrated exclusively

on input-level threats, including SSL stripping,

homograph redirection, and JavaScript-based keylogger

injection. Other SSL/TLS-related vulnerabilities were

not addressed, including certificate spoofing, TLS

version downgrade attacks, and manipulation of

certificate authority (CA) trust. These attack vectors

required distinct testing methodologies, tools, and

assumptions, making them promising areas for future

exploration.

8. Conclusions

This study examined the security posture of 27

critical Thai websites across the financial, commercial,

and educational sectors, focusing on SSL stripping,

homograph redirection attacks, and keylogger

injections after MITM. The experimental results

demonstrated that 96.3% (26/27) of the examined

websites were vulnerable to SSL stripping attacks,

primarily due to improper HSTS implementation. Only

one website implemented HSTS Preload correctly, yet

it remained susceptible to homograph redirection

attacks through TLD manipulation. Furthermore, all

examined websites, including those implementing

password hashing, proved vulnerable to keylogger

injection following successful MITM attacks. These

vulnerabilities stemmed largely from inadequate HSTS

implementation, reliance on traditional password-based

authentication, and a lack of defenses against client-

side threats. These findings also reflected a critical gap

in security awareness and implementation across Thai

digital platforms. Although HTTPS and hash-based

passwords are widely adopted, critical safeguards, such

as HSTS preloading and input-layer defenses, are

neglected. To address these gaps, Thai government

agencies and financial institutions should adopt

standardized hardening practices and conduct regular

penetration testing to mitigate such risks.

To address the vulnerabilities, we also proposed

and evaluated two practical, low-cost countermeasures:

(1) a Time-based Salted Hash Password (TSHP)

mechanism using dynamic Time-based OTPs as salting

material, and (2) an On-Screen Keyboard (OSK) to

resist JavaScript-based keyloggers. These methods

enhance existing systems without requiring significant

infrastructure changes.

Although our study focused on Thai digital

infrastructure, the vulnerabilities identified, such as

poor HSTS configuration, are prevalent in many

countries. Therefore, the proposed TSHP and OSK

mechanisms offer a globally applicable framework for

strengthening legacy web authentication systems.

While modern standards like WebAuthn, FIDO2, and

passkeys provide more robust protection through public-

key cryptography and hardware-based authenticators,

their widespread adoption remains limited in regions

with infrastructure or budget constraints. Our solutions

served as a transitional step toward adopting these

standards.

9. Acknowledgements

This research was supported and funded by

Thailand Science Research and Innovation (TSRI), the

Department of Special Investigation (DSI) of Thailand,

and Mahasarakham University. We are grateful to

Professor Karim Djemame and other members of the

Distributed Systems and Services Research Group at

the University of Leeds, UK, for their valuable

feedback on the manuscript and their collaboration on

our Newton Grant project.

10. CRediT Statement.

Khathawut Chanbuala: Conceptualization,

methodology, software, validation, writing – original

draft, visualization.

Darunee Puangpronpitag: Writing, review &

editing, supervision, project administration.

Egachai Puangpronpitag: Resources, investigation,

data curation (defined sample group of 13 e-banking

platforms, 2 e-commerce sites, and 12 university

registration systems used in the assessment).

Somnuk Puangpronpitag: Conceptualization,

methodology, writing – review & editing,

supervision, funding acquisition.

CHANBUALA ET AL.

JCST Vol. 15 No. 4, October-December 2025, Article 146

15

11. References

Bangkok Bank. (2023). Customers are advised to be

cautious of fake websites impersonating

Bangkok Bank’s official site. Retrieved from

https://www.bangkokbank.com/en/Personal/Ti

ps-and-Insights/Fake-Web

Bettercap. (2024). bettercap (Version 2.33.0): The

Swiss Army knife for 802.11, BLE, IPv4 and

IPv6 network reconnaissance and MITM

attacks [Computer software].

https://www.bettercap.org/

Buffermet. (2024, September 9). HSTS hijacking

caplets [Code]. GitHub Gist.

https://github.com/bettercap/caplets/blob/m

aster/hstshijack/hstshijack.cap

Chanbuala, K., Puangpronpitag, E., Puangpronpitag,

D., & Puangpronpitag, S. (2024). Evaluating

and mitigating HTTPS interception in Thai E-

banking websites: Challenges and solutions

[Conference presentation]. Proceedings of the

2024 13th International Conference on

Networks, Communication and Computing,

Bangkok, Thailand.

https://doi.org/10.1145/3711650.3711662

Croley, S. (2022). RTX_4090_v6.2.6.Benchmark

[Benchmark results]. GitHub Gist. Retrieved

from

https://gist.github.com/Chick3nman/32e662a5

bb63bc4f51b847bb422222fd

Hodges, J., Jackson, C., & Barth, A. (2012). HTTP

strict transport security (HSTS) (RFC 6797).

Internet Engineering Task Force.

https://doi.org/10.17487/RFC6797

Hodges, J., Jones, J. C., Jones, M. B., Kumar, A., &

Lundberg, E. (2021, April 8). Web

authentication: An API for accessing public

key credentials—Level 2. World Wide Web

Consortium (W3C). Retrieved from

https://www.w3.org/TR/webauthn-2/

Jirawankul, K. (2015). Phishing analysis of kasikorn.ru

[Blog post]. FOH9. Retrieved from

https://foh9.blogspot.com/2015/03/kasikornru.html

Khachenrum, P., Puangpronpitag, D., Puangpronpitag,

S., & Puangpronpitag, E. (2023). Problem

analysis of HSTS malfunction and SSL

stripping attack. The Journal of King

Mongkut’s University of Technology North

Bangkok, 33(2), 626–636.

https://doi.org/10.14416/j.kmutnb.2021.07.007

Kuchhal, D., Saad, M., Oest, A., & Li, F. (2023).

Evaluating the security posture of real-world

fido2 deployments [Conference presentation].

Proceedings of the 2023 ACM SIGSAC

Conference on Computer and

Communications Security, Copenhagen,

Denmark. Retrieved from

https://doi.org/10.1145/3576915.3623063

M’Raihi, D., Machani, S., Pei, M., & Rydell, J.

(2011). TOTP: Time-based one-time password

algorithm (RFC 6238). Internet Engineering

Task Force.

https://doi.org/10.17487/RFC6238

Marlinspike, M. (2009). New tricks for defeating SSL

in practice. Black Hat DC 2009, Washington,

DC, US. Retrieved from

https://blackhat.com/presentations/bh-europe-

09/Marlinspike/blackhat-europe-2009-

marlinspike-sslstrip-slides.pdf

Offensive Security. (2024). Kali Linux 2024.2

release (t64, GNOME 46 & community

packages) [Release notes]. Retrieved from

https://www.kali.org

Puangpronpitag, E., & Puangpronpitag, S. (2022).

Development of guidelines for cyber-crime

investigation towards electronic banking

services and analysis of information

technology techniques to build a security-

enhanced prototype [Research report].

Thailand Science Research and Innovation.

Retrieved from

https://jkb.oja.go.th/home/view/10762

Rescorla, E. (2000). HTTP over TLS (RFC 2818).

Internet Engineering Task Force. Retrieved

from https://doi.org/10.17487/RFC2818

Wireshark Foundation. (2023). Wireshark 4.4.0

release notes. Retrieved from

https://www.wireshark.org/docs/relnotes/wires

hark-4.4.0.html

https://www.bangkokbank.com/en/Personal/Tips-and-Insights/Fake-Web?utm_source=chatgpt.com
https://www.bangkokbank.com/en/Personal/Tips-and-Insights/Fake-Web?utm_source=chatgpt.com
https://www.bettercap.org/?utm_source=chatgpt.com
https://github.com/bettercap/caplets/blob/master/hstshijack/hstshijack.cap?utm_source=chatgpt.com
https://github.com/bettercap/caplets/blob/master/hstshijack/hstshijack.cap?utm_source=chatgpt.com
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd?utm_source=chatgpt.com
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd?utm_source=chatgpt.com
https://doi.org/10.17487/RFC6797?utm_source=chatgpt.com
https://www.w3.org/TR/webauthn-2/?utm_source=chatgpt.com
https://foh9.blogspot.com/2015/03/kasikornru.html?utm_source=chatgpt.com
https://doi.org/10.14416/j.kmutnb.2021.07.007?utm_source=chatgpt.com
https://doi.org/10.17487/RFC6238?utm_source=chatgpt.com
https://blackhat.com/presentations/bh-europe-09/Marlinspike/blackhat-europe-2009-marlinspike-sslstrip-slides.pdf?utm_source=chatgpt.com
https://blackhat.com/presentations/bh-europe-09/Marlinspike/blackhat-europe-2009-marlinspike-sslstrip-slides.pdf?utm_source=chatgpt.com
https://blackhat.com/presentations/bh-europe-09/Marlinspike/blackhat-europe-2009-marlinspike-sslstrip-slides.pdf?utm_source=chatgpt.com
https://www.kali.org/?utm_source=chatgpt.com
https://jkb.oja.go.th/home/view/10762?utm_source=chatgpt.com

