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Abstract 

Psoriasis is a chronic skin disease with significant global and regional impacts, including in Thailand, where its burden 

is compounded by diagnostic challenges and limited dermatological resources. Psoriasis was selected for this study because it 

develops in distinct phases, requiring ongoing monitoring and treatment. The distribution of skin lesions plays a crucial role 

in disease identification and assessment, making it an essential factor for AI-based analysis. The development of AI-based 

diagnostic tools offers a potential solution. However, there is no publicly available skin disease dataset in Thailand, and image 

annotation is a challenging and time-consuming task for dermatologists. This scarcity of annotated datasets remains a critical 

barrier to AI development. This study utilizes the Dermnet dataset and enhances it through the application of image 

augmentation and style transfer techniques to generate a more diverse and representative dataset, particularly reflecting Thai 

skin tones. It also evaluates how augmentation techniques affect AI performance in psoriasis classification. The results showed 

that augmentation significantly enhanced model performance, with EfficientNetB4 achieving the highest accuracy (93.00%) 

and sensitivity (91.19%). Style transfer emerged as a valuable technique, enabling the creation of skin tone representative 

datasets that improved model generalizability. These findings align with existing literature. They demonstrate that 

augmentation techniques can overcome data limitations and enhance model robustness. This study introduces a novel use of 

style transfer techniques. These are applied to generate augmented datasets that represent Thai skin tones, addressing a critical 

gap in publicly available dermatology data. By enhancing dataset diversity, style transfer significantly improves the 

generalizability and accuracy of AI-based psoriasis classification models. These advancements have important implications 

for clinical practice. They are especially relevant in Thailand and other resource-limited regions, where AI-assisted diagnostics 

can improve dermatological care access and effectiveness. 
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1.  Introduction 

Psoriasis is a chronic, immune-mediated skin 

disease that affects millions of people worldwide 

(Mpofana et al., 2024). It is a global health concern, 

with prevalence rates varying significantly across 

regions. In Western countries, the prevalence is 

reported to be higher, ranging from 2% to 3%, 

whereas Asian countries, including Thailand, 

generally show lower prevalence rates (Agarwal et al., 

2022; Pothisat et al., 2021; Rajatanavin et al., 2022). 
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Characterized by red, scaly patches on the skin, 

psoriasis can significantly impair quality of life. This 

disease has a significant genetic component, with a 

heritability of up to 60-90% (Raharja et al., 2021). 

Psoriasis is also a common skin disease in Thailand. 

It affects approximately of 0.13% of the population in 

Thailand (Chaiyamahapurk, & Warnnissorn, 2021). 

Globally, psoriasis affects approximately 2-3% of the 

population (Agarwal et al., 2022; Mpofana et al., 2024), 

with prevalence varying by region. In Thailand, the 

prevalence is estimated to be lower than the global 

average (Akaraphanth et al., 2013; Prasitpuriprecha et 

al., 2022), yet the disease imposes a significant burden 

on affected individuals due to its visible symptoms, 

stigma, and the costs of long-term management. 

Effective treatment and management of 

psoriasis often require detailed monitoring of lesion 

distribution, as the extent and pattern of lesions can 

provide critical insights into disease progression and 

treatment efficacy (Charoenying et al., 2024; Neema et 

al., 2022). However, in AI-based diagnostic systems, the 

impact of lesion distribution on model performance 

remains relatively underexplored (Smith et al., 2024). 

Accurate and timely diagnosis of psoriasis is 

critical for effective treatment, yet it remains a 

challenge in resource-limited settings. Dermatologists 

rely heavily on clinical evaluation and, in some cases, 

skin biopsies, which can be invasive and time-

consuming (Sharma et al., 2023; Yélamos et al., 2021). 

The advent of artificial intelligence (AI) has the 

potential to revolutionize dermatology by providing 

automated, accurate, and accessible diagnostic tools. 

AI models have demonstrated remarkable success in 

disease image classification. However, the effectiveness 

of these models depends on the availability of large, 

annotated datasets, a resource that is scarce in psoriasis 

research. Deep learning has shown great potential  

in psoriasis diagnosis by enabling automated lesion 

detection and classification with high accuracy, 

thereby reducing reliance on invasive procedures like 

biopsies (Srivastava et al., 2022). Proposed deep learning 

models can assist dermatologists with early detection, 

disease progression monitoring, and personalized treatment 

planning, ultimately improving patient outcomes. 

To address limited data availability, image 

augmentation techniques have been widely used to 

synthetically expand datasets. These techniques generate 

diverse variations of existing images, enabling AI 

models to generalize more effectively with unseen 

data. Previous studies have addressed dataset scarcity 

in medical AI by employing traditional augmentation 

techniques such as rotation, flipping, and color 

adjustments to artificially expand training datasets 

(Esteva et al., 2017; Islam et al., 2024; Tschandl et al., 

2020). Although these methods enhance data 

diversity, they fail to fully capture variations in skin 

tone or lesion characteristics across populations. In 

contrast, this study applies style transfer to generate 

synthetic images simulating Thai skin tones, thereby 

enhancing better representation and improving the 

generalizability of AI models for psoriasis 

classification. Despite the widespread adoption of 

augmentation, the extent to which various techniques 

influence model performance remains underexplored, 

particularly in psoriasis classification. Furthermore, 

interactions between augmentation methods and specific 

AI model architecture warrants further investigation. 

Another challenge in developing AI models for 

skin disease classification is the scarcity of annotated 

datasets, particularly those representing diverse 

populations such as Thai patients. To address this 

issue, the study utilized Roboflow (2024), a platform 

for dataset annotation and management, to delineate 

lesion areas in the original dataset. Additionally, a 

style transfer technique was employed to generate 

synthetic additional images simulating Thai skin tones 

(Nakpan, & Sirinkraporn, 2023; Tanantong et al., 2024b). 

By integrating these steps, the study not only 

expanded the dataset but also ensured that the 

generated images reflect the unique characteristics of 

Thai skin tones, thereby contributing to the 

development of AI models that are both accurate and 

generalizable to the Thai population. Localized 

datasets play a crucial role in enhancing the 

performance and generalizability of AI diagnostic 

tools, not only in dermatology but also in other 

medical fields such as radiology, ophthalmology, and 

pathology. By incorporating region-specific data, AI 

models can better account for variations in disease 

presentation across populations, ultimately improving 

diagnostic accuracy and clinical applicability in 

diverse healthcare settings (Willemink et al., 2020).  

Focusing on psoriasis, a condition with 

significant medical and social implications, this 

research addresses the dual challenges of diagnostic 

accuracy and data scarcity in dermatology. Style 

transfer techniques, combined with conventional image 

augmentation, were used to generate synthetic psoriasis 

images representative of Thai skin tones. This 

methodology aims to enhance the performance and 

generalizability of AI models for psoriasis classification. 

By creating a more diverse and localized dataset, the 

study contributes to the development of clinically 

relevant diagnostic tools, particularly in resource-
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limited settings, and underscores the importance of 

population-specific data in medical AI applications. 

 

2.  Objectives 

This study addresses the scarcity of Thai skin 

disease data by focusing on the area assessment of 

psoriasis lesions, using image augmentation techniques 

to enhance AI models for lesion localization and size 

estimation. Due to the limited availability of Thai skin 

images in dermatological datasets, this research 

utilizes standard skin disease datasets and applies both 

traditional and skin tone augmentations to generate 

realistic Thai skin simulations. Four state-of-the-art 

CNN architectures EfficientNetB4, MobileNetV3-

Large, ResNet50, and DenseNet-201 are trained and 

tested on augmented datasets to improve lesion 

boundary detection.  

The study aims to: 

1. Address the lack of Thai skin disease data by 

integrating skin tone variations. 

2. Evaluate the impact of image augmentation 

on AI models for psoriasis lesion localization. 

3. Train and assess four CNN architectures to 

improve segmentation accuracy. 

By incorporating image augmentation and skin 

tone adaptation, this research contributes to the 

development of AI-driven tools tailored for psoriasis 

assessment in Thai populations, supporting improved 

diagnosis and treatment monitoring. 

 

3.  Materials and Methods 

3.1 Data Collection 

The images used in this study were obtained 

from a publicly available dataset hosted on the 

Roboflow (2024) platform, titled “Dermnet Computer 

Vision Project” (version 17) (Roboflow, 2024). Dermnet 

is a publicly accessible dataset focused on skin 

diseases (Dermnet, 2024). The Dermnet dataset 

includes 23 types of skin conditions and contains 

19,500 expert-verified images (Alipour et al., 2024). 

This dataset serves as a valuable resource for 

dermatological image analysis, offering annotated 

images for developing and evaluating computer vision 

models. In this study, the “Dermnet Computer Vision 

Project” dataset was selected because, unlike the 

original Dermnet dataset, it includes expertly 

annotated psoriasis lesions with precise bounding 

boxes. This aligns with the study’s objective of 

identifying lesion locations and measuring their size, 

enabling AI models to detect psoriasis and assess 

disease progression for more accurate monitoring and 

treatment evaluation. 

This study specifically focused on the subset of 

psoriasis images from the original dataset, comprising 

291 images. Each image is accompanied by bounding 

box annotations that indicate the locations of skin 

lesions, totaling 2,442 annotated regions across the 

dataset. Since a single image may contain multiple 

lesions, each image can have several bounding boxes. 

These bounding boxes provide critical information for 

localizing skin lesions, making the dataset suitable for 

both classification and object detection tasks. The 

average image resolution is 290 x 195 pixels, reflecting 

the dimensions of skin lesion images in practical 

dermatological settings. 

 

3.2 Data Preparation 

A major challenge in this study is the lack of 

annotated Thai psoriasis images prepared by 

dermatologists, which limits the availability of high-

quality training data. Additionally, the diversity of 

skin tones among Thai individuals introduces further 

complexity, necessitating the inclusion of representative 

images to ensure robust AI model development. To 

overcome the limited size of this subset and enhance 

the dataset diversity, image augmentation techniques 

were applied. 

 

3.2.1 Augmentation Techniques 

This study employed two traditional augmentation 

techniques: data augmentation with blurs and without 

blurs. These techniques apply various transformations, 

including adjustments to brightness, contrast, and 

color, along with specific blur and noise effects to 

simulate real-world variability in images. The 

augmentation parameters were carefully chosen to 

introduce meaningful diversity while preserving the 

key visual characteristics of psoriasis lesions. 

Brightness and contrast were modified within 

controlled ranges to reflect lighting variations typical 

in clinical environments. These ranges were based on 

prior dermatology AI studies (Tschandl et al., 2020), 

ensuring the augmentations added meaningful 

variability without distorting critical lesion features.  

Data Augmentation with Blurs: This technique 

combines brightness and contrast adjustments with 

multiple blur effects and additional transformations. 

Brightness is randomly adjusted between -0.2 and 0.1, 

while contrast is varied between 0.2 to 0.3. Four types 

of blurs are applied randomly: Motion Blur (simulating 

motion, blur limit = 5), Median Blur (using a median 

filter to reduce noise, blur limit = 5), Gaussian Blur 

(reducing image detail with Gaussian filtering, blur limit 

= 5), and Gaussian Noise (adding random disturbances 
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based on a Gaussian distribution, noise limit = 5 to 

30). Contrast limited adaptive histogram equalization 

(CLAHE) enhances image contrast with a clip limit of 

4.0 and is applied with a 70% probability. Additional 

transformations include adjustments to hue, saturation, 

and value (hue shift limit: -10 to 10; saturation shift 

limit: -20 to 20; value shift limit: -10 to 10, applied 

with a 50% probability). Finally, Coarse Dropout 

randomly blacks out pixels with maximum patch size 

set to 5% of the image dimensions (640 x 640) and 1 

to 8 patches applied at a 70% probability. 

Data Augmentation without Blurs: This 

technique excludes blur effects but retained 

transformations affecting image color and lighting. 

Brightness varies between -0.2 to 0.1, while Gaussian 

Blur is applied with a softer intensity (blur limit = 3 to 

7). Hue, saturation, and value adjustments are 

performed with wider limits (hue shift: -20 to 20; 

saturation shift: -30 to 30; value shift: -20 to 20). 

Additionally, RGB Shift randomly modifies the 

intensities of red, green, and blue channels within a 

range of -20 to 20 for each channel. Additionally, all 

images were resized to a uniform dimension of 640 x 

640 pixels with three color channels (RGB format), 

ensuring compatibility with the input requirements of 

the selected AI models.  

Following the resizing of the original images to 

640 x 640 pixels, grid lines were overlaid onto the 

images to segment them into smaller regions, 64 x 64 

pixels. This process was designed to aid in precise 

lesion localization and provide a structured 

framework for analyzing lesion distribution. This was 

critical for assessing the impact of localization on AI 

model performance. This method enhanced the 

dataset's utility for training models capable of 

understanding lesion patterns in different regions of 

the skin. Figure 1 illustrates the process of image 

patch generation. The left side shows the original 

psoriasis lesion image with a resolution of 640×640 

pixels. The right side displays the image after grid 

lines were applied, dividing it into 100 patches of 64 

× 64 pixels each. This grid-based division enables 

more detailed analysis and annotation. 

 

 
Figure 1 Grid-based segmentation of a psoriasis lesion image 

 

 
Figure 2 Lesion annotation using grid-based labeling 
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During the annotation step, each grid cell was 

examined and labeled if it contained visible skin 

lesions. Each grid cell containing a lesion was marked 

to highlight its location, providing granular detail 

about lesion distribution, as depicted in Figure 2. The 

left side of the figure shows the original psoriasis 

image divided into 64×64 pixels patches, with green 

bounding boxes indicating the ground truth lesion 

areas. The right side presents the result after the re-

labeling process. In this step, each grid cell was 

evaluated based on lesion coverage: cells with more 

than 40% of their area containing lesions were 

classified as lesion cells, while those with less than 

40% coverage were labeled as non-lesional skin. This 

approach enabled precise lesion localization and 

labeling to support AI model training and evaluation. 

 

3.2.2 Style Transfer Techniques 

In addition to traditional augmentation techniques, 

style transfer was employed as a novel approach to 

enhance the dataset. Style transfer involves transforming 

the visual characteristics of images to match the skin 

tone and texture of a target population, in this case, 

generating Thai skin images from non-Thai skin 

images present in the original dataset. 

This study employs the Fitzpatrick skin type 

classification to guide skin tone adjustments through 

style transfer (Nakpan, & Sirinkraporn, 2023). This 

system classifies skin tones into six types based on 

UV sensitivity: pale white, white, light brown, 

medium brown, dark brown, and black (Nakpan, & 

Sirinkraporn, 2023). Most of the Thai population falls 

into the light brown and medium brown categories 

(Nakpan, & Sirinkraporn, 2023). Therefore, the study 

focuses on Thai-relevant skin tones including pale 

white, white, light brown, and medium brown, while 

excluding dark brown and black skin tones, which are 

rare in Thailand. Although widely used, the Fitzpatrick 

classification mainly represents lighter to medium 

skin tones, limiting diversity in AI training (Gupta, & 

Sharma, 2019). Excluding darker skin tones may 

reduce model generalizability, affecting accuracy for 

more pigmented skin. Figure 3 depicts the common 

Thai skin tones used in the style transfer process, as 

referenced in (Nakpan, & Sirinkraporn, 2023). These 

skin tones were selected based on data from a study 

that analyzed skin color variations across Thailand’s 

four main regions (north, northeast, central, and 

south) using a sample of 400 participants per region. 

To ensure broader representativeness, levels 2, 3, 4, 

and 5 were selected for the style transfer process, as 

these shades reflect the most common Thai skin tones. 

This selection ensures that the synthesized images are 

realistic and inclusive of regional skin tone variations. 

The style transfer method used is fast neural 

style transfer, inspired by a study that applied style 

transfer to diversify skin tones in melanoma datasets 

(Rezk et al., 2022). In this study, four style transfer 

models were created, each corresponding to one of the 

targeted skin tone categories. The models were trained 

using style images resized to 640 x 640 pixels and 

content images resized to 224 x 224 pixels, with a 

content loss weight of 107 and a style loss weight of 

1010. Each model was trained over 1,000 epochs for 

each skin tone style. By applying these models to 601 

psoriasis images from the dataset, the style transfer 

process generated 601 additional images for each of 

the four skin tone styles, resulting in 2,404 augmented 

images. These augmented images were incorporated 

into the experimental dataset to improve diversity and 

enhance the robustness of the AI model. 

 

             
Figure 3 Fitzpatrick skin types representative of the Thai population used in style transfer 
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Figure 4 Workflow of dataset preparation. The process includes style transfer application, traditional augmentation (with 

and without blur), and grid-based segmentation to produce 12 unique training datasets 

 

3.2.3 Augmented Datasets 

The data preparation process resulted in a total 

of 12 datasets. First, the original images underwent a 

style transfer process to simulate four different skin 

tones, creating four distinct datasets including, Type 

1, Type 2, Type 3, Type 4 (Style Transfer Data). Next, 

each of these skin tone datasets was further processed 

with “Augmentation technique 1,” generating four 

additional datasets. Similarly, “Augmentation technique 

2” was applied to each skin tone dataset, resulting in 

another four datasets. Finally, the four original skin 

tone datasets without any additional augmentation 

were included, completing the collection of 12 diverse 

datasets (4 sets of style transfer, 4 sets of style transfer 

+ Augmentation technique 1, 4 sets of style transfer + 

Augmentation technique 2). Figure 4 depicted the data 

preparation process. 

These manipulations aimed to maximize the 

dataset’s utility for training AI models, allowing for 

more accurate and reliable classification of psoriasis. 

The augmentation techniques were carefully selected 

to preserve the integrity of the original images while 

introducing meaningful variability to improve model 

generalization. 

 

3.3 Deep Learning Models 

In this study, four AI models were selected 

based on prior research (Tanantong et al., 2024a), which 

demonstrated their effectiveness classifying skin 

lesions using 64 × 64 pixel images. EfficientNetB4 

and DenseNet-201 were chosen for their strong 

performance in image classification tasks, particularly 

in medical imaging. EfficientNetB4 is known for its 

optimized scaling of depth, width, and resolution, 

achieving high accuracy with fewer parameters, making 

it suitable for handling complex dermatological 

patterns (Tan, & Le, 2019). DenseNet-201, with its dense 

connectivity, enhances feature propagation and reuse, 

reducing redundant parameters while maintaining 

robust learning, which is particularly beneficial for 

distinguishing intricate psoriasis lesions (Huang et al., 

2017). The selected models are as follows: 

EfficientNet Model, introduced in 2019, was 

designed specifically for image classification tasks 

(Tan, & Le, 2019). Subsequent research (Rafay, & Hussain, 

2023) applied EfficientNet models, EfficientNetB0 to 

EfficientNetB6, to classify skin diseases using the Atlas 

Dermatology and ISIC datasets. The study reported 

classification accuracy exceeding 80% across these 

models, highlighting their efficacy for skin disease 

identification. 

MobileNetV3 Model, with advancements in 

mobile technology and the need to implement deep 

learning on mobile devices under resource constraints, 

Howard et al., (2019) developed MobileNetV3 as an 

enhancement of MobileNetV2. MobileNetV3 includes 

two variants, MobileNetV3-Small and MobileNetV3-

Large, differentiated by their resource utilization, 

making them well-suited for mobile deployment 

(Howard et al., 2019). 

ResNet50 Model was first introduced in 2016, 

featuring a unique “Residual Learning” architecture. 

This approach enables deeper network structures while 

minimizing training errors. ResNet50 has become 

widely recognized for its robust performance in a 

variety of image classification tasks (He et al., 2016). 

DenseNet Model was developed to address 

challenges in deep learning networks, such as vanishing 

gradients and redundant parameters. DenseNet employs 

“dense connectivity,” in which each layer connects 

directly to all previous layers through concatenation. 

This structure enhances gradient flow and feature reuse, 

reducing the number of parameters while improving 

memory efficiency and training performance (Huang et 

al., 2017). 

 



TANANTONG ET AL. 

JCST Vol. 15 No. 3, July-September 2025, Article 119 
 

7 

3.4 Experiment Setting 

The datasets were divided into 80% for 

training, 10% for validation, and 10% for testing, 

using only images containing psoriasis lesions. The 

generated datasets are collectively referred to as “Style 

Transfer data,” while the original dataset is referred to 

as “Original data.” Next, the Style Transfer data 

underwent augmentation using two techniques: one 

with blur and the other without blur. These augmented 

datasets are referred to as “Style Transfer data with 

Augmentation technique 1” (with blur) and “Style 

Transfer data with Augmentation technique 2” (without 

blur). Subsequently, all images, including the original 

data and the augmented Style Transfer data, were 

divided into smaller patches of size 64 x 64 pixels 

using an image patch generation process. Each patch 

was labeled to indicate whether it contained a lesion 

or a non-lesion area. Finally, the datasets were used to 

train deep learning models. The models were 

configured with a batch size of 32 and enhanced with 

additional layers including global average pooling 2D 

layer and followed by dense layer with softmax 

activation function. The Adam optimizer was used 

with a learning rate of 0.0001, and the models were 

trained for 30 epochs. 

The experiments in this study were conducted 

on a high-performance computing system with the 

following specifications: an Intel Gen14th Core i5-

14500 processor (24 MB cache, 14 cores), an 

NVIDIA RTX 4000 Ada Generation GPU with 20GB 

GDDR6 memory, and 32GB of DDR5 UDIMM RAM. 

This configuration provided computational power for 

model training and evaluation. 
 

3.5 Evaluation Metrics 

The evaluation metrics employed in this study 

include accuracy, sensitivity, and specificity, as 

outlined in prior research by Tanantong et al., (2015). 

Accuracy measures the proportion of correct 

predictions out of the total predictions, providing a 

general assessment of model performance. Sensitivity 

indicates the model’s ability to correctly identify 

positive results (true positives), reflecting how well it 

detects lesion areas. Specificity, on the other hand, 

evaluates the model's capability to identify true 

negative results, demonstrating how effectively it 

distinguishes non-lesion areas. These metrics were 

calculated based on the testing datasets. 

 

4.  Results 

The training and evaluation of the AI models 

followed a systematic process to ensure robust 

performance assessment across varying datasets. 

Initially, the models were trained using combinations 

of original, style-transferred, and augmented images, 

designed to enhance the diversity and representation 

of training data. The datasets were divided into 

training and testing sets, with the testing set held 

constantly to evaluate the models' ability to 

generalize. Performance metrics such as accuracy, 

sensitivity, and specificity were calculated for each 

experiment. Additionally, models were tested using 

both original and style-transferred datasets to examine 

their adaptability to data variations. A comprehensive 

evaluation allowed for the comparison of model 

performance across different augmentation scenarios 

and dataset types. Figure 5 depicts different datasets 

used for training, testing, and evaluating the models.

 

 
Figure 5 Dataset partitioning strategy for model training and evaluation 
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The experimental results are summarized 

across four AI models including EfficientNetB4, 

MobileNetV3-Large, ResNet50, and DenseNet-201, 

evaluating their performance under varying training 

and testing conditions. The evaluation metrics include 

accuracy, sensitivity, and specificity. The experiments 

are categorized as follows: 

Experiment 1.1: Training and testing on the 

original dataset (48,000 training images, 6,000 testing 

images). 

Experiment 1.2: Training on the original 

dataset (48,000 training images) and testing on the 

style transfer images (6,000 testing images) 

Experiment 2.1: Training on the original 

dataset augmented with style transfer images 

(240,000 training images) and testing on the original 

dataset (6,000 images). 

Experiment 2.2: Training on the original 

dataset augmented with style transfer images 

(240,000 training images) and testing on the style 

transfer images (24,000 images). 

Experiment 3.1: Training on the dataset 

augmented with style transfer and the first 

augmentation method (432,000 training images) and 

testing on the original dataset (24,000 images). 

Experiment 3.2: Training on the dataset 

augmented with style transfer and the first 

augmentation method (432,000 training images) and 

testing on the style transfer images (24,000 images). 

Experiment 4.1: Training on the dataset 

augmented with style transfer and the second 

augmentation method (432,000 training images) and 

testing on the original dataset (6,000 images). 

Experiment 4.2: Training on the dataset 

augmented with style transfer and the second 

augmentation method (432,000 training images) and 

testing on the style transfer images (24,000 images). 

The experiments evaluated the performance of 

four AI models, EfficientNetB4, MobileNetV3-Large, 

ResNet50, and DenseNet-201, under varying data 

augmentation setups and testing scenarios. Across all 

models, augmentation techniques involving style transfer 

and additional methods (Augmentation technique1 

and Augmentation technique2) improved overall 

performance metrics. EfficientNetB4 consistently 

achieved the highest accuracy (93.00%) and specificity 

(93.80%) in Experiment 1.1, which used only original 

data for training and testing. When style transfer was 

added, the model maintained strong accuracy (92.00%). 

DenseNet-201 showed competitive performance with 

up to 93.00% accuracy in Experiment 4.2, where all 

augmentation techniques were applied. MobileNetV3-

Large and ResNet50 exhibited moderate performance 

gains, with MobileNetV3-Large showing improved 

specificity under augmented datasets. Style transfer 

and augmentation techniques had a notable impact  

on enhancing model performance, particularly in 

experiments involving larger augmented datasets, as 

shown in Table 1. The results reveal that EfficientNetB4 

consistently outperformed other models in terms of 

accuracy and sensitivity, while DenseNet-201 exhibited 

competitive specificity.  

As shown in Table 1, the experimental results 

demonstrate that models trained on augmented 

datasets maintained comparable performance when 

tested on the original dataset. Accuracy, sensitivity, 

and specificity remained consistently high across all 

models, indicating that the use of augmentation and 

style transfer techniques did not degrade model 

performance. This suggests that the augmented data 

did not introduce significant distribution shifts and 

can be effectively used to enrich training without 

compromising generalizability to real-world data. The 

experimental results reveal that when the models were 

trained using a combination of the original dataset and 

the style transferred datasets (representing Thai skin 

tones), and subsequently tested on the style transferred 

dataset, they maintained a consistent level of accuracy 

across different skin tones, as shown in Table 2. This 

finding highlights the robustness of the models in 

handling diverse skin tones, which is critical for practical 

applications in dermatology. The ability of the models 

to generalize well to style transferred datasets 

demonstrates their potential for broader applicability, 

particularly in scenarios where annotated datasets for 

various skin tones are limited. These results underline 

the effectiveness of integrating style transfer 

techniques in data augmentation to enhance model 

robustness and performance.
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Table 1 Performance of AI models tested on the same original dataset after training on different combinations of original, 

augmented, and style-transferred data 

Experiment Performance (%) EfficientNet B4 MobileNetV3-Large ResNet 50 DenseNet-201 

Experiment 1.1 Accuracy 93.00 92.00 91.00 92.00 

Sensitivity 91.19 83.56 87.38 86.29 

Specificity 93.80 95.49 92.92 94.47 

Experiment 2.1 Accuracy 92.00 90.00 90.00 92.00 

Sensitivity 90.30 84.82 86.71 89.58 

Specificity 93.08 92.59 90.98 92.82 

Experiment 3.1 Accuracy 92.00 91.00 89.00 92.00 

Sensitivity 91.00 90.33 87.92 88.47 

Specificity 91.66 92.22 89.15 93.37 

Experiment 4.1 Accuracy 92.00 91.00 87.00 92.00 

Sensitivity 88.62 86.98 83.59 86.65 

Specificity 92.83 92.72 88.22 93.66 

 

Table 2 Model performance on style-transferred datasets representing Thai skin tones. 

Experiment Performance (%) EfficientNet B4 MobileNetV3-Large ResNet 50 DenseNet-201 

Experiment 1.2 Accuracy 85.00 87.00 82.00 85.00 

Sensitivity 93.64 88.86 93.45 94.18 

Specificity 83.42 86.55 80.60 83.57 

Experiment 2.2 Accuracy 92.00 92.00 91.00 92.00 

Sensitivity 91.55 88.13 90.26 91.55 

Specificity 92.74 93.12 90.59 92.36 

Experiment 3.2 Accuracy 92.00 92.00 89.00 92.00 

Sensitivity 90.74 88.38 89.53 91.32 

Specificity 92.27 91.54 89.25 92.14 

Experiment 4.2 Accuracy 92.00 92.00 89.00 93.00 

Sensitivity 88.87 89.42 87.33 90.17 

Specificity 93.45 92.69 89.39 93.76 

 

According to Table 2, the results from 

Experiment 1.2 clearly indicate that when models 

were trained using the original dataset, which did not 

include Thai skin tones, and tested on the style 

transferred dataset (representing Thai skin tones),  

the model performance was the lowest compared to 

other experiments. Specifically, the accuracy for 

EfficientNetB4, MobileNetV3-Large, ResNet 50, and 

DenseNet-201 were 85.00%, 87.00%, 82.00%, and 

85.00%, respectively. Sensitivity and specificity also 

showed relatively lower values when compared to 

experiments where the datasets included a combination 

of original data and style transferred data with Thai 

skin tones. 

The variation in model performance suggests 

that model selection should align with specific clinical 

needs. EfficientNetB4’s high accuracy makes it 

suitable for general psoriasis classification, ensuring 

reliable overall predictions. In contrast, DenseNet-

201’s higher specificity is beneficial in reducing false 

positives, making it more suitable for applications 

requiring precise lesion differentiation. The choice of 

model should consider the balance between sensitivity 

and specificity based on the intended use case. In 

addition, EfficientNetB4, which is often cited as the 

most effective model in prior studies, performed less 

well in Experiment 2.1. This is likely due to the use of 

small 64×64 image patches for training, which were 

specifically designed to locate lesion areas rather than 

provide full-context skin images. The reduced image 

resolution may have limited EfficientNetB4’s ability 

to leverage its complex feature extraction capabilities, 

affecting its performance in this experiment. 

The high accuracy of each model can be 

attributed to its unique architectural advantages. 

EfficientNetB4 benefits from compound scaling, 

optimizing depth, width, and resolution, allowing it to 

extract fine-grained features effectively. DenseNet-

201 leverages dense connectivity, improving gradient 

flow and feature reuse, enhancing learning efficiency. 

MobileNetV3-Large is designed for optimized 

efficiency with depthwise separable convolutions, 
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making it effective despite its lightweight architecture. 

ResNet50, with its residual learning framework, 

mitigates vanishing gradient issues, enabling stable 

learning in deep networks. These design strengths 

contribute to their high classification accuracy in 

psoriasis lesion detection. 

The results of this study align with recent research 

(Li et al., 2024; Xing et al., 2024), demonstrating the 

effectiveness of deep learning for psoriasis classification. 

Prior studies have shown that EfficientNet and DenseNet 

architectures achieve high accuracy in dermatological 

image analysis, consistent with our findings. However, 

this study extends previous work by incorporating 

style transfer for skin tone adaptation, addressing dataset 

limitations, and improving model generalizability for 

diverse populations. These findings underscore the 

importance of incorporating diverse skin tones during 

the training process to enhance the adaptability and 

robustness of the models for real-world scenarios. The 

results highlight the limitations of using datasets that 

lack representation of diverse skin tones, which can 

significantly impact the model's performance in 

applications requiring generalization, such as 

dermatological diagnostics for individuals with varied 

skin tones. 

In summary, the results presented in Table 2 

emphasize the effectiveness of incorporating style 

transferred datasets into the training process for psoriasis 

classification. Models trained on a combination of 

original images and style transferred images, specifically 

those adapted to represent Thai skin tones, consistently 

achieved higher accuracy, sensitivity, and specificity 

compared to models trained exclusively on the original 

dataset. This improvement in performance highlights 

the benefit of enhancing dataset diversity, particularly 

for populations that are often underrepresented in 

existing dermatological image datasets. The use of 

style transfer techniques helps simulate realistic skin 

tone variations, enabling the models to generalize 

more effectively when applied to real-world clinical 

scenarios. Furthermore, the reduction in performance 

disparity across skin tones suggests that style transfer can 

serve as a practical and scalable method for mitigating 

skin tone bias in AI systems. These findings reinforce the 

critical importance of developing inclusive datasets in 

medical AI and suggest that integrating population-

specific features during training is essential for creating 

equitable, accurate, and widely applicable diagnostic 

tools in dermatology. 

As depicted in Table 3, the training and testing 

times varied significantly across models and 

experiments due to the increasing size of training 

datasets. EfficientNetB4 and DenseNet-201, while 

offering high performance, demonstrated the longest 

training durations for the largest dataset (432,000 

images). EfficientNet B4 required approximately 9 

hours and 12 minutes in Experiment 4.1, while 

DenseNet-201 took 11 hours and 14 minutes. 

Comparatively, MobileNetV3-Large, and ResNet50 

exhibited shorter training times, with MobileNetV3-

Large completing Experiment 4.1 in 4 hours and 47 

minutes and ResNet50 in 5 hours and 20 minutes. 

Testing times across all models were relatively 

brief and stable regardless of dataset size. EfficientNet 

B4 and DenseNet-201 exhibited slightly longer 

testing times, with DenseNet-201 taking up to 15 

seconds for style-transferred test data. MobileNetV3-

Large and ResNet50 showed faster testing times, 

often completing within 9 seconds for style-

transferred datasets. These results underscore the 

balance between computational demands and 

accuracy, highlighting the suitability of certain 

models for rapid deployment scenarios. 

 

Table 3 Training and testing durations (in hours, minutes, and seconds) for each AI model across different experimental setups. 

Experiment Time (HH:MM:SS) EfficientNet B4 MobileNetV3-Large ResNet 50 DenseNet-201 

Experiment 1.1 Training 0:54:44 0:39:06 0:32:29 1:16:16 

Testing (original) 0:00:03 0:00:02 0:00:02 0:00:04 

Testing (style transfer) 0:00:12 0:00:08 0:00:08 0:00:15 

Experiment 2.1 Training 4:41:42 2:35:58 2:58:17 6:18:08 

Testing (original) 0:00:03 0:00:02 0:00:02 0:00:04 

Testing (style transfer) 0:00:11 0:00:09 0:00:09 0:00:15 

Experiment 3.1 Training 9:00:25 4:08:21 4:35:31 11:12:11 

Testing (original) 0:00:03 0:00:02 0:00:02 0:00:04 

Testing (style transfer) 0:00:12 0:00:09 0:00:08 0:00:14 

Experiment 4.1 Training 9:12:49 4:47:01 5:20:55 11:14:49 

Testing (original) 0:00:12 0:00:08 0:00:02 0:00:04 

Testing (style transfer) 0:00:03 0:00:02 0:00:08 0:00:15 
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Complex models with longer training times 

generally perform better with high-quality, large 

datasets, but require more computing resources. 

However, advancements in HPC technology and 

competitive pricing make scaling more accessible. 

Researchers can fine-tune models on local machines 

and utilize cloud services for large-scale training, 

optimizing cost and efficiency. 

In summary, Table 3 highlights the trade-offs 

between model complexity, training duration, and 

computational efficiency. EfficientNet B4 and 

DenseNet-201 required the longest training times, 

especially when handling the largest dataset, reflecting 

their complex architectures. However, these models 

consistently delivered high performance in earlier 

experiments, making them suitable for applications 

where accuracy is a top priority. In contrast, Mobile 
NetV3-Large and ResNet50 demonstrated significantly 

faster training and testing times, indicating their 

potential for rapid deployment and use in resource-

constrained environments.  

 

5.  Discussion 

This study explored the impact of image 

augmentation techniques, including traditional and 

style transfer techniques on the performance of AI 

models for skin disease classification. By training four 

state-of-the-art CNN models, EfficientNetB4, Mobile 

NetV3-Large, ResNet50, and DenseNet-201, on 

progressively augmented datasets, several insights 

were derived. These findings contribute to existing 

knowledge in the domain of skin disease image 

augmentation and AI model development.  An important 

observation is that EfficientNetB 4  consistently delivers 

superior performance due to its advanced architecture, 

which balances network depth, width, and resolution 

for effective feature extraction. However, this 

complexity requires greater computational resources 

and longer training times, indicating that while 

EfficientNetB 4  is well-suited for high-accuracy 

applications, it may be less practical for resource-

limited settings. 

The results of this study provide valuable 

insights into the effectiveness of AI models for 

psoriasis classification, particularly in addressing 

dataset limitations through augmentation and style 

transfer. By demonstrating how lesion distribution, 

image resolution, and model architecture impact 

performance, these findings contribute to the 

development of more accurate and generalizable AI-

driven diagnostic tools. Additionally, the study 

highlights practical considerations for real-world 

applications, such as the importance of dataset 

diversity and model selection, making the results 

relevant for both researchers and clinicians. 

 

5.1 The Role of Augmentation in Addressing Dataset 

Scarcity 

The consistent improvements observed across 

all models, particularly in sensitivity, demonstrate the 

effectiveness of image augmentation in overcoming 

data scarcity. Previous studies have shown that 

augmentation techniques help enhance model 

generalization by introducing variability in the 

training data. This study supports these findings, with 

EfficientNetB4 achieving its highest sensitivity 

(91.00%) when trained on datasets augmented with 

both style transfer and additional augmentation. 

Notably, the use of style transfer to generate images 

reflective of Thai skin tones represents a novel 

approach to enhancing dataset diversity. This aligns 

with research advocating for localized dataset 

adaptation to improve AI model applicability across 

diverse populations. 

Overfitting is a common risk when using 

heavily augmented datasets, as models may learn 

augmented patterns rather than generalizable features. 

To mitigate this, the experimental design outlined in 

Tables 1 and 2 ensures that testing data is completely 

separated from training data from the beginning. This 

approach simulates real-world applications by 

evaluating model performance on unseen data, 

preventing data leakage and ensuring that the models 

generalize well beyond the training set. 

 

5.2 Impact of Augmentation Techniques on Model 

Performance 

The obtained experimental results indicate that 

the use of augmentation techniques, such as style 

transfer with blur, did not significantly improve model 

performance compared to using style transfer alone. 

While accuracy remained stable across most 

experiments, the sensitivity improvements expected 

from the addition of blur were minimal, suggesting 

that the technique provided no substantial benefit for 

detecting positive cases. This finding underscores that 

the effectiveness of augmentation techniques may 

depend more on the quality of the original data and 

model architecture than on the addition of specific 

transformations like blur. However, the impact of blur 

effects remains inconclusive, as this study did not 

include specific visual comparisons or quantitative 

breakdowns dedicated to the blur augmentation alone. 

Future work should incorporate visual illustrations 
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and detailed metric comparisons to clarify the precise 

contribution of blur effects on model performance. 

Consistent with previous research, deeper models 

such as EfficientNetB4 and DenseNet-201 continued 

to outperform others due to their advanced architecture 

and superior feature extraction capabilities, regardless 

of whether blur was included in the augmentation 

process. However, style transfer plays a crucial role in 

reducing bias in AI models trained on limited or non-

representative datasets by generating synthetic images 

that better reflect diverse skin tones. This technique 

enhances model generalizability by ensuring that AI 

systems learn from images that more accurately 

represent underrepresented populations, such as Thai 

skin tones in this study. By incorporating style 

transfer, the dataset becomes more balanced, helping 

to mitigate bias and improve the model’s reliability 

across different demographic groups.  
Compared to similar studies (Shorten, & 

Khoshgoftaar, 2019; Wang, & Perez, 2017), our findings 

suggest that certain augmentation techniques, such as 

blur, had a limited impact on model performance. This 

is likely due to the small image size (64×64), where 

augmentation may not significantly alter image 

resolution or introduce meaningful variations. In such 

cases, the effectiveness of augmentation depends on 

the scale of input features, and smaller images may 

not benefit significantly from transformations that 

primarily affect texture or fine details. In addition, one 

possible explanation for the minimal impact of blur 

augmentation in this study is that psoriasis lesions 

typically exhibit distinct color contrasts and well-defined 

edges, which are not entirely obscured by mild blurring. 

Additionally, the textural patterns of psoriasis, such as 

scaling and redness, remain visible even when blur is 

applied, making this augmentation somewhat 

redundant for feature extraction. This suggests that the 

models primarily rely on broader structural and color 

features rather than fine-grained textures, which blur 

augmentation may not significantly alter to enhance 

learning. As a result, the application of blur does not 

introduce significant variation or additional learning 

value for the models, especially when dealing with 

images of psoriasis lesions. 
 

5.3 Generalizability of AI Models with Augmented 

Datasets 

The enhanced performance metrics observed 

when using augmented datasets suggest that 

augmentation contributes to model generalizability, 

enabling better performance on unseen data. This 

finding is in line with existing literature emphasizing 

the importance of augmentation for building robust 

medical AI systems. However, the slight performance 

decline in specificity for certain models (e.g., ResNet50) 

during experiments with extensive augmentation 

suggests that balancing augmentation techniques is 

critical to avoiding overfitting or data distribution shifts. 

Future studies should explore advanced augmentation 

methods, such as GAN-based approaches, to further 

improve model generalizability without compromising 

specificity. 

The findings of this study have broader 

implications for AI-driven diagnostics in low-resource 

settings and for other diseases beyond psoriasis. In 

regions with limited access to dermatologists or annotated 

medical datasets, style transfer and augmentation 

techniques can help generate more diverse training 

data, improving AI model performance. This 

approach can be extended to other medical imaging 

fields, such as tuberculosis detection in chest X-rays 

or diabetic retinopathy screening, where dataset 

scarcity and demographic variability present similar 

challenges.  
Moreover, these findings highlight practical 

implications for clinical use, where AI models trained 

on diverse, augmented datasets could support 

dermatologists in early detection and monitoring of 

psoriasis, particularly in primary care settings or 

regions with limited specialist access. By improving 

generalizability, such models can assist in triaging 

patients more effectively, reducing diagnostic delays, 

and optimizing resource allocation in clinical 

workflows.  
This study demonstrates that augmentation 

techniques, particularly when tailored to address 

regional and dataset-specific challenges, play a 

pivotal role in enhancing the performance of AI 

models for skin disease classification. The integration 

of regionally relevant transformations, such as style 

transfer for Thai skin images, underscores the 

potential of augmentation to bridge the gap between 

limited datasets and real-world applications. 

Specifically, for deployment in Thai clinical settings, 

such AI models can assist general practitioners and 

healthcare workers in early screening and triaging of 

psoriasis cases, helping to reduce diagnostic delays 

and ensure timely referrals to dermatologists, 

especially in rural areas where specialist access is 

limited. These findings provide a foundation for 

future research on leveraging augmentation to 

develop scalable and inclusive AI solutions in 

dermatology.  
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Several challenges were encountered in this 

study, including dataset limitations, variations in skin 

tone representation, and the potential risk of overfitting 

with augmented data. Additionally, the small image 

size (64×64) may have affected model performance 

for certain augmentation techniques. While these 

challenges were addressed through careful experimental 

design, future research should focus on expanding 

dataset diversity and exploring advanced augmentation 

methods to further enhance model robustness. 

 

6.  Conclusion 

This study proposes an effective strategy to 

address data scarcity in AI-based skin disease 

classification by integrating conventional augmentation 

techniques with style transfer, specifically designed to 

simulate Thai skin tones. Leveraging a public dataset 

of psoriasis and eczema images, we created enriched 

training sets that support the development of robust AI 

models, including EfficientNetB4, MobileNetV3-

Large, ResNet50, and DenseNet-201. Rather than 

focusing solely on performance improvements already 

detailed in the results, this conclusion emphasizes  

the broader contributions of our approach. Importantly, 

style transfer provides a practical method for diversifying 

datasets to better represent underrepresented populations, 

enabling AI models to perform reliably across varied 

demographic groups. Beyond improving model 

accuracy, this process also contributes to reducing bias 

and enhancing fairness in medical AI applications.  
For practical clinical deployment, especially in 

Thailand, these AI models could complement existing 

healthcare systems by assisting non-specialist providers 

in early-stage psoriasis identification and referral. 

Integration into mobile platforms or cloud-based 

systems could further extend diagnostic capabilities to 

remote or underserved areas, empowering healthcare 

workers with decision-support tools that function in 

real-time. Such advancements can help alleviate 

bottlenecks in dermatology services and ensure that 

patients receive timely care. While promising, this 

study acknowledges limitations in dataset size and 

diversity, and the scope of augmentation methods 

employed.  

 

6.1 Limitations of the Study 

Despite its contributions, this study has some 

limitations. First, the dataset used, while enhanced 

through augmentation, remains relatively small 

compared to datasets commonly used for deep 

learning. This may limit the generalizability of the 

findings to larger and more diverse datasets. Second, 

the augmentation techniques employed were limited 

to style transfer and blur. Additionally, the focus on 

psoriasis images means that the results may not 

generalize to other skin conditions without further 

validation. 

 

6.2 Future Research Directions 

Future research should explore more advanced 

augmentation techniques, such as synthetic image 

generation using generative adversarial networks 

(GANs) and context-aware transformations, to further 

improve dataset diversity and model performance. 

Expanding the dataset to include more classes of skin 

diseases and images from different demographic groups 

would enhance the generalizability of the findings. 

Moreover, incorporating explainability techniques into 

model evaluation could provide insights into how AI 

models make decisions, enabling better trust and 

adoption in clinical settings. Finally, evaluating the 

impact of augmentation on multi-task models that 

integrate lesion classification and localization could open 

new avenues for comprehensive diagnostic tools. 

Future studies could integrate generative AI 

techniques, such as GANs, to complement style transfer 

by generating more realistic and diverse synthetic skin 

disease images. GANs can help create high-fidelity 

lesion variations, improving dataset diversity and 

enhancing AI model robustness for psoriasis 

classification. However, implementing GANs requires 

high computational power, as training deep generative 

models involves significant processing and memory 

resources. 

Additionally, future data collection should 

prioritize diversity by incorporating images from various 

ethnicities, skin tones, and geographic regions. 

Collaborations with global dermatology centers will 

be essential for building more representative datasets, 

ultimately enhancing AI model generalizability. 
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