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Abstract  

This study compares the performance of Multiple Linear Regression (MLR) and Periodic Models in estimating PM2.5 

and PM10 concentrations in Bangkok using a 60-month dataset (2019–2023). Eight independent variables, including air 

temperature, rainfall, air pressure, wind speed, ozone concentrations, nitrogen dioxide concentrations, the number of vehicles, 

and the number of factories, were analyzed to determine their influence on PM2.5 and PM10 levels. Model accuracy was assessed 

using Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The results revealed that the Periodic Model 

more accurately predicted PM2.5 (MAE = 4.65, MAPE = 12.69), while the MLR model performed better for PM10 (MAE = 

6.93, MAPE = 10.54). These findings highlight the complementary strengths of the two modeling approaches: Periodic Models 

effectively capture seasonal trends, while MLR reveals specific influencing factors. These findings provide valuable insights 

into the strengths and limitations of each model, offering guidance for developing targeted and efficient measures to control 

PM2.5 and PM10 levels in Bangkok, ultimately enhancing public health and urban living conditions. 

 

Keywords: Bangkok; multiple linear regression; periodic model; PM10; PM2.5 

 

 

1.  Introduction 

Particulate matter (PM2.5 and PM10) is a critical 

air pollutant that raises significant public health concerns 

due to its severe impact on human well-being. The 

World Health Organization (WHO) has established 

stringent guidelines for PM2.5 and PM10 to mitigate the 

health risks associated with air pollution (World Health 

Organization, 2021). In Thailand, the Pollution Control 

Department has implemented air quality standards  

to address rising PM2.5 and PM10 concentrations, 

particularly in urban areas such as Bangkok. However, 

despite these measures, PM concentrations in 

Bangkok frequently exceed the recommended levels, 

posing serious health threats to the population 

(Sooktawee et al., 2023). 

As one of Asia’s largest and most densely 

populated cities, Bangkok has experienced persistent 

air quality challenges over the past several decades. 

The primary sources of PM2.5 and PM10 pollution include 

traffic emissions, biomass burning, and industrial 

activities, which collectively contribute to elevated PM 

levels (Tesfaldet, & Chanpiwat, 2023). Prolonged 

exposure to high PM levels has been associated with 

increased risks of cardiovascular and respiratory 

diseases, leading to higher hospital admissions and 

mortality rates, especially among vulnerable populations 

(Pengjan et al., 2019). Seasonal variations further 

exacerbate this issue, with higher PM levels typically 

observed during the dry season (Kanchanasuta et al., 

2020). Recent studies have also highlighted the 
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importance of effective communication tools, such as 

the Air Quality Health Index (AQHI), in conveying 

health risks of PM exposure in Bangkok and supporting 

public health interventions (Kanchanasuta et al., 2024). 

To address the persistent issue of elevated PM 

concentrations, statistical modeling techniques have 

been extensively applied in air pollution research. 

Among these techniques, Multiple Linear Regression 

(MLR) models are commonly used to examine the 

relationship between independent variables and 

particulate matter concentrations, providing valuable 

insights into the factors influencing PM2.5 and PM10 

levels (Sirisumpun et al., 2023). Periodic models, on 

the other hand, are particularly effective in capturing 

seasonal and temporal patterns in PM concentrations, 

making them well-suited for time-series analysis. 

However, both models have limitations: MLR 

assumes linear relationships between variables, 

whereas periodic models lack causal explanations for 

observed patterns. Recent studies have increasingly 

highlighted the potential of advanced modeling 

techniques in air pollution forecasting. For instance, 

video-based spatiotemporal models have demonstrated 

high accuracy in weekly PM2.5 predictions (Minsan et 

al., 2024; Pranonsatit et al., 2025). Furthermore, the 

application of hybrid deep learning architectures has 

been shown to enhance predictive precision in visual 

estimation tasks (Laohakiat et al., 2024). In addition, 

real-time monitoring and forecasting of PM2.5 

concentrations can be effectively implemented through 

AIoT-based systems, offering timely insights for 

public health interventions (An, 2025). 

Although MLR and periodic models have been 

used in previous studies to estimate PM concentrations, 

limited research has directly compared their performance 

in urban contexts such as Bangkok. This study aims to 

address this gap by evaluating the accuracy and 

effectiveness of MLR and Periodic Models in estimating 

PM2.5 and PM10 levels in Bangkok. The findings are 

expected to provide valuable insights into the strengths 

and limitations of these models, thereby offering 

guidance for effective air quality management and 

policy development. 

 

2.  Objectives 

This study aims to compare the performance of 

Multiple Linear Regression and periodic models in 

estimating PM2.5 and PM10 concentrations in Bangkok.  

It focuses on analyzing how eight independent variables 

air temperature, rainfall, air pressure, wind speed, 

ozone concentration, nitrogen dioxide levels, number 

of vehicles, and number of factories, collectively 

influence PM2.5 and PM10 levels. 

 

3.  Materials and Methods 

3.1 Data Collection 

Data on PM2.5, PM10, ozone concentrations, 

and nitrogen dioxide concentrations were collected 

from the Pollution Control Department (2024); air 

temperature and rainfall from the Climate Center, Thai 

Meteorological Department (2024); air pressure and 

wind speed from Meteostat (2024); the number of 

vehicles from the Transport Statistics Group, Planning 

Division, Department of Land Transport (2024); and the 

number of factories from the Department of Industrial 

Works (2024). The dataset, covering 60 months from 

January 2019 to December 2023, was compiled by 

aligning data from all sources using consistent timestamps 

to ensure accuracy and uniformity. Additionally, all units 

were standardized to maintain consistency across 

variables. The collected data, originally recorded as daily 

averages, were aggregated into monthly averages to 

reduce variability and better reflect long-term trends. 

 

3.2 Multiple Linear Regression Analysis (MLR) 

According to Annette (1990), if a dependent 

variable Y depends on multiple independent variables 

X1,X2,…,Xk, the multiple linear regression equation is 

expressed as 
 

Ŷ=a+b1X1+b2X2+b3X3+…+bkXk. 
 

Here, Ŷ represents the mean value of Y at  

a given point defined by X1,X2,…,Xk. This equation 

implies that the coefficient b₁ represents the expected 

change in Y when X₁ increases by one unit, assuming 

that X2,X3,…,Xk remain constant. Similarly, the 

coefficients b2,b3,…,bk represent the partial regression 

coefficients of Y with respect to each corresponding 

variable. 

The least squares method (Wang, & Liu, 2019) 

is used to calculate the constants a,b
1
,b2,…,bk by 

minimizing the sum of squared differences between 

the observed values (𝑌𝑖) and the predicted values (�̂�𝑖). 

The parameters 𝑏 are determined using the equation  
 

b=(XTX)
-1

(XTY),  
 

where X= [
 
1 X11

⋮ ⋮
       

⋯ Xk1

⋮ ⋮
 1 X1n      ⋯ Xkn

] is the design matrix  

 

and 𝑌 is the vector of observed values. 
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Figure 1 Graph of Sine Function with the Equation Y=a+b sin (Ω (t-t0)) 

 

After obtaining the initial regression model, each 

variable is assessed based on its p-value to evaluate its 

significance. Variables with p-values exceeding the 

specified significance level are considered non-

significant and are sequentially removed from the 

model. This iterative process continues until only 

variables with statistically significant effects on the 

dependent variable remain in the final model. 
 

3.3 Periodic Models 

Lippman, & Rasmussen (2022) explained that 

periodic models are mathematical models designed to 

capture recurring patterns over regular time intervals. 

These models are particularly effective for analysing 

data that exhibits cyclical trends. A sine function, 

commonly used in periodic models, represents such 

recurring patterns, as illustrated in Figure 1. 

In Figure 1, the sine function is described by the 

equation Y=a+b sin (Ω (t-t0)). The parameters of the 

equation are defined as follows: 

 a : The mean value of 𝑌, representing the 

midpoint between the maximum and minimum values. 

 b : The amplitude of the graph, defined as half 

the vertical distance between the maximum and 

minimum points. 

 Ω : The angular frequency, measured in radians 

per second, which determines the frequency of the sine 

wave. The period of the wave is the time interval 

between two consecutive peaks and is given by T=
2π

Ω
  . 

 t0 : The phase shift, derived from real-world 

data, which adjusts the starting point of the function to 

align with observed data. 

Alternatively, the equation can be expressed as: 

Y=a+b sin(Ωt+ϕ) where ϕ=-Ωt0 represents the phase 

angle. The frequency, which measures the number of 

cycles per unit time, is inversely proportional to the 

period. 

This model is well-suited for analysing seasonal 

and temporal variations in PM2.5 and PM10 

concentrations, providing insights into cyclical 

patterns and their effects on air quality. 

 

3.4 Comparison of Forecasting Method Performance 

Botchkarev (2019) emphasized that the 

performance of forecasting methods can be effectively 

evaluated using mean absolute error (MAE) and mean 

absolute percentage error (MAPE), which are widely 

adopted due to their simplicity and capacity to quantify 

prediction accuracy. Models with lower MAE and 

MAPE values indicate higher accuracy in capturing 

the observed data. The formulas for calculating MAE 

and MAPE are as follows: 
 

 MAE   = 
1

n
∑ |et|

n
t=1  

 

and 

 MAPE = 
100

n
∑ |

et

Yt
|n

t=1  
 

where et
 = Yt-Ŷt, 𝑌𝑡 is the observed value at time t, Ŷ 

is the predicted value at time t, and n represents the 

total number of observations. 

MAE and MAPE have distinct advantages and 

limitations. MAE provides an absolute measure of 

average prediction error in the same units as the 

dependent variable, making it straightforward to 

interpret. MAPE expresses errors as a percentage of 

observed values, allowing for standardized comparisons 

across datasets with different scales. However, MAE 

does not account for the magnitude of values, which 
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may underestimate errors in datasets with high 

variability. MAPE, however, can be disproportionately 

affected by very small observed values, resulting in 

inflated percentage errors. Despite these limitations, 

MAE and MAPE remain practical and commonly 

used metrics for assessing model performance. 
 

4.  Results  

In this study, at time 𝑖, the variables were 

defined as follows: 

X1i represented air temperature (°C), 

X2i represented rainfall (mm), 

X3i represented air pressure (mbar), 

X4i represented wind speed (km/h), 

X5i represented ozone concentrations (ppb), 

X6i represented nitrogen dioxide concentrations 

(ppb), 

X7i represented the number of vehicles, 

X8i represented the number of factories, 

Y1i represented PM2.5 concentrations (µg/m³), 

Y2i represented PM10 concentrations (µg/m³), 

Ŷ1im represented the predicted PM2.5 

concentration using the multiple linear regression model, 

Ŷ2im represented the predicted PM10 

concentration using the multiple linear regression model, 

Ŷ1ip represented the predicted PM2.5 

concentration using the periodic model, and     

Ŷ2ip represented the predicted PM10 

concentration using the periodic model. 
 

4.1 Multiple Linear Regression 

The general form of the multiple linear 

regression (MLR) model is given by: 
 

Ŷi = b0+b1X1i+b2X2i+b3X3i+b4X4i+b5X5i+b6X6i+b7X7i+b8X8i. 
 

The final MLR model for PM2.5 was derived by 

initially considering all eight independent variables 

(X1i, X2i, X3i,…, X8i). Using the least squares method, 

the initial model coefficients were calculated, resulting 

in the equation:  
 

Ŷ1i = -1322.4313-0.0835X1i-0.0126X2i+1.2403X3i-2.9579X4i+ 

0.6950X5i+0.1946X6i+0.0002X7i+0.0049X8i 
 

To refine the model, each variable's significance 

was assessed using p-values, with a threshold of α=0.05. 

Variables with p-values exceeding this threshold were 

removed step-by-step, starting with the least significant 

variable. In Step 1, air temperature (X1i) was excluded 

due to p
1i

=0.9426. In Step 2, the number of factories 

(X8i) was removed with p
8i

=0.8214. In Step 3, nitrogen 

dioxide concentrations were excluded due to p
6i

=0.2439, 

and in Step 4, rainfall (X2i) was removed with p
2i

=0.2084. 

After these iterations, only statistically significant 

variables (p < 0.05) were retained in the final model, as 

shown in Table 1, resulting in the following equation: 
 

Ŷ1i=-1973.0527+1.9629X3i-3.2490X4i+0.7432X5i+0.0002X7i. 
 

The retained variables (air pressure 

(p
3i

= 0.0004), wind speed (p
4i

= 0.0492), ozone 

concentrations (p
5i

= 0.0000), and the number of vehicles 

(p
7i

= 0.0057)) demonstrated statistical significance in 

predicting PM2.5 concentrations. This model indicates 

that the PM2.5 concentrations are significantly influenced 

by X3i, X4i, X5i and X7i. 
Similarly, the final MLR model for PM10 was 

developed by initially including all eight independent 

variables (X1i, X2i, X3i,…, X8i). Using the least squares 

method, the initial model coefficients were computed, 

resulting in the equation: 
 

Ŷ2i= -2715.8217-0.4720X1i-0.0251X2i+2.6375X3i-3.9840X4i+ 

0.4017X5i+0.4798X6i+0.0002X7i+0.0069X8i 
 

Each variable’s statistical significance was then 

assessed using p-values, with a threshold of 𝛼 = 0.05. 

Variables with p-values exceeding this threshold were 

removed in a stepwise manner, starting with the least 

significant variable. In Step 1, the number of factories 

(X8i) was excluded due to P8i=0.8259. In Step 2, air 

temperature (X1i) was removed with P1i=0.7399. In 

Step 3, the number of vehicles (X7i) was excluded due to 

P7i=0.1332. In Step 4, wind speed (X4i) was removed 

with P4i=0.2211, followed by ozone concentrations (X5i) 

in Step 5, with P5i=0.2573. Finally, in Step 6, rainfall 

(X2i) was excluded with 𝑃2𝑖 = 0.0160. After these 

iterations, only statistically significant variables (p < 

0.05) were retained in the final model, as shown in Table 

2, resulting in the following equation: 
 

Ŷ2i = -3162.5008-0.0262X2i+3.1898X3i+0.6986X6i. 
 

The retained variables (rainfall (p
2i

= 0.0160), air 

pressure (p
3i

= 0.0005), and nitrogen dioxide concentrations 

(p
6i

= 0.0007) demonstrated statistical significance in 

predicting PM10 concentrations. This model highlights 

that PM10 concentrations are significantly influenced by 

X2i, X3i and X6i . The predicted values based on this 

final model are presented in Table 3. 
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Table 1 Stepwise Regression Results for PM2.5 Using Multiple Linear Regression Method 

Models Maximum p-value 

Ŷ1i=-1322.4313-0.0835X1i-0.0126X2i+1.2403X3i-2.9579X4i+0.6950X5i+0.1946X6i+0.0002X7i+0.0049X8i 

(p
1i
= 0.9426, p

2i
= 0.2133, p

3i
= 0.1118, p

4i
= 0.1153, p

5i
= 0.0008, p

6i
= 0.2814, p

7i
= 0.0219,  p

8i
= 0.8318) 

p
1i

=0.9426 

Ŷ1i=-1355.8255-0.0123X2i+1.2673X3i-2.9841X4i+0.6083X5i+0.1985X6i+0.0002X7i+0.0051X8i 

 (p
2i

= 0.1626, p
3i

= 0.0612, p
4i

= 0.1021, p
5i

= 0.0007, p
6i

= 0.2453, p
7i

= 0.0205, p
8i

= 0.8214) 

p
8i

=0.8214 

Ŷ1i=-1297.3994-0.0123X2i+1.2951X3i-3.0485X4i+0.6092X5i+0.1854X6i+0.0002X7i 

 (p
2i

= 0.1583, p
3i

= 0.0498, p
4i

= 0.0881, p
5i

= 0.0006, p
6i

= 0.2439, p
7i

= 0.0114) 

p
6i

=0.2439 

Ŷ1i=-1645.2975-0.0109X2i+1.6418X3i-3.7551X4i+0.6886X5i+0.0002X7i 

(p
2i

= 0.2084, p
3i

= 0.0062, p
4i

= 0.0273, p
5i

= 0.0000, p
7i

= 0.0050) 

p
2i

=0.2084 

 

Ŷ1i=-1973.0527+1.9629X3i+3.2490X4i+0.7432X5i+0.0002X7i 

(p
3i

= 0.0004, p
4i

= 0.0492, p
5i

= 0.0000p
7i

= 0.0057,) 

p
4i

=0.0492* 

Note: * significant at p<0.05 

 

Table 2 Stepwise Regression Results for PM10 Using Multiple Linear Regression Method 

Models Maximum p-value 

Ŷ2i=-2715.8217-0.4720X1i-0.0251X2i+2.6375X3i-3.9840X4i +0.4017X5i+0.4798X6i+0.0002X7i+0.0069X8i 

(p
1i
= 0. 7659, p

2i
= 0. 0725, p

3i
= 0. 0149, p

4i
= 0.1200, p

5i
= 0.0909, p

6i
= 0.0547, p

7i
= 0.1803, p

8i
= 0.8259) 

p
8i

=0.8259 

Ŷ2i=-2620.0072-0.5170X1i-0.0253X2i+2.6599X3i-4.0558X4i+0.4036X5i+0.4603X6i+0.0002X7i 

(p
1i
= 0. 7399, p

2i
= 0. 0669, p

3i
= 0.0128, p

4i
= 0.1074, p

5i
= 0.0862, p

6i
= 0.0462, p

7i
= 0.1324) 

p
1i

=0.7399 

Ŷ2i=-2811.5904-0.0231X2i+2.8347X3i-4.2343X4i+0.3965X5i+0.4808X6i+0.0002X7i 

(p
2i

= 0. 0541, p
3i

= 0. 0022, p
4i

= 0.0831, p
5i

= 0.0877, p
6i

= 0.0295,  p
7i

= 0.1332) 

p
7i

=0.1332 

Ŷ2i=-2808.2067-0.0232X2i+2.8395X3i-2.7420X4i+0.3574X5i+0.5498X6i 

(p
2i

= 0. 0564, p
3i

= 0. 0024, p
4i

= 0.2211, p
5i

= 0.1248, p
6i

= 0.0125) 

p
4i

=0.2211 

Ŷ2i=-3083.1920-0.0203X2i+3.1064X3i+0.2400X5i+0.6253X6i             

(p
2i

= 0. 0883, p
3i

= 0. 0007, p
5i

= 0.2573, p
6i

= 0.0035) 

p
5i

=0.2573 

Ŷ2i=-3162.5008-0.0262X2i+3.1898X3i+0.6986X6i        

(p
2i

= 0. 0160, p
3i

= 0. 0005, p
6i

= 0.0007) 

p
2i

=0.0160* 

Note: * significant at p<0.05 

 

Table 3 Observed and Predicted Values of PM2.5 and PM10 using multiple linear regression and periodic models (January 2019 

– December 2023) 

Month year X1i X2i X3i X4i X5i X6i X7i X8i Y1i Y2i Ŷ1im Ŷ2im Ŷ1ip Ŷ2ip 

Jan. 2019 28.00 1.10 1013.00 1.50 22.44 39.30 91828 17146 62.00 102.00 47.39 96.17 49.20 91.00 

Feb. 2019 29.50 0.00 1012.30 2.80 21.89 16.56 87966 17142 37.00 61.00 40.54 78.08 50.00 84.80 

Mar. 2019 30.20 9.20 1012.30 2.80 20.89 16.44 96702 17124 38.00 69.00 41.72 77.76 41.20 71.00 

Apr. 2019 31.70 38.80 1008.50 2.50 19.13 14.33 73750 17108 34.00 69.00 28.87 63.39 38.20 68.60 

May. 2019 31.30 89.30 1006.90 2.10 18.67 17.73 91043 17090 35.00 73.00 30.50 59.33 28.40 59.80 

Jun. 2019 30.10 151.30 1006.80 1.80 13.33 14.82 82424 17090 27.00 67.00 25.41 55.35 23.40 52.40 

Jul. 2019 29.50 146.40 1006.80 1.80 12.00 14.09 82376 17091 29.00 70.00 24.41 54.97 23.20 51.40 

Aug. 2019 29.00 97.80 1006.30 2.20 10.71 13.82 86165 17092 28.00 56.00 22.00 54.46 22.80 48.20 

Sep. 2019 28.60 361.40 1009.30 1.50 15.43 22.70 76508 17088 32.00 69.00 31.55 63.33 25.20 53.60 

Oct. 2019 29.50 156.10 1010.10 1.60 20.14 27.30 81317 17072 34.00 73.00 37.35 74.47 30.60 64.80 

Nov. 2019 28.80 6.70 1010.90 1.60 22.43 32.36 72221 17041 34.00 80.00 38.62 84.48 34.40 76.00 

Dec. 2019 27.50 0.00 1012.90 1.80 22.50 33.18 52904 17024 44.00 84.00 37.69 91.61 41.00 85.40 

Jan. 2020 29.10 22.70 1011.70 1.80 25.71 27.45 85815 17014 52.00 92.00 44.97 83.18 49.20 91.00 

Feb. 2020 29.10 37.00 1012.70 2.60 27.57 22.55 82254 17007 50.00 92.00 44.93 82.57 50.00 84.80 

Mar. 2020 30.20 5.00 1009.90 3.20 20.71 13.00 89836 17004 32.00 62.00 34.06 67.81 41.20 71.00 

Apr. 2020 30.70 42.50 1010.10 2.50 27.75 12.50 56200 17000 30.00 61.00 34.55 67.11 38.20 68.60 

May. 2020 31.70 78.90 1007.80 2.70 21.00 12.25 52661 16998 26.00 53.00 23.59 58.65 28.40 59.80 

Jun. 2020 30.10 183.90 1007.10 2.10 16.50 13.38 62481 17001 21.00 46.00 22.98 54.45 23.40 52.40 

Jul. 2020 29.90 243.40 1006.80 1.80 13.00 17.17 64348 16997 21.00 42.00 21.18 54.58 23.20 51.40 

Aug. 2020 29.40 288.20 1006.30 2.10 12.33 14.43 70376 16990 21.00 42.00 20.05 49.90 22.80 48.20 
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Table 3 Cont. 

Month year X1i X2i X3i X4i X5i X6i X7i X8i Y1i Y2i Ŷ1im Ŷ2im Ŷ1ip Ŷ2ip 

Sep. 2020 29.40 342.30 1007.20 1.90 18.33 15.00 67948 16992 22.00 44.00 26.39 51.75 25.20 53.60 

Oct. 2020 27.30 373.70 1007.60 1.70 17.67 25.20 72402 16993 28.00 59.00 28.32 59.33 30.60 64.80 

Nov. 2020 28.70 86.60 1011.20 1.50 21.67 32.75 70028 17005 37.00 72.00 38.48 83.61 34.40 76.00 

Dec. 2020 27.50 0.00 1011.50 1.80 25.88 37.67 60486 17010 47.00 88.00 39.13 90.28 41.00 85.40 

Jan. 2021 26.40 0.00 1012.00 1.80 33.38 37.00 79012 17021 57.00 106.00 49.76 91.41 49.20 91.00 

Feb. 2021 28.60 80.70 1011.10 2.40 34.50 28.80 71153 17016 57.00 115.00 45.15 80.69 50.00 84.80 

Mar. 2021 30.00 16.90 1009.70 3.10 27.56 15.17 85774 17028 40.00 77.00 38.19 68.37 41.20 71.00 

Apr. 2021 29.80 191.90 1008.90 2.40 21.78 16.67 64042 17051 32.00 63.00 29.81 62.28 38.20 68.60 

May. 2021 30.60 175.70 1007.40 2.30 24.22 13.50 75618 17071 24.00 53.00 31.55 55.71 28.40 59.80 

Jun. 2021 30.40 94.50 1007.30 2.50 16.78 10.33 73741 17079 23.00 52.00 24.76 55.31 23.40 52.40 

Jul. 2021 29.40 209.90 1006.60 2.10 13.56 9.67 42067 17097 21.00 45.00 15.32 49.58 23.20 51.40 

Aug. 2021 29.50 262.20 1007.60 1.80 14.00 9.33 60584 17106 20.00 44.00 22.66 51.17 22.80 48.20 

Sep. 2021 28.30 346.10 1007.70 1.60 13.50 12.50 63749 17122 24.00 50.00 23.83 51.50 25.20 53.60 

Oct. 2021 28.50 270.40 1008.70 1.50 19.25 14.80 57992 17121 27.00 55.00 29.13 58.28 30.60 64.80 

Nov. 2021 28.60 89.00 1010.20 1.60 23.50 20.00 72217 17121 31.00 69.00 38.04 71.45 34.40 76.00 

Dec. 2021 27.40 0.00 1013.10 2.00 31.63 25.60 63794 17121 41.00 87.00 46.62 86.95 41.00 85.40 

Jan. 2022 28.70 34.40 1011.50 2.30 26.86 22.75 73663 17116 37.00 81.00 41.13 78.95 49.20 91.00 

Feb. 2022 28.50 115.30 1010.50 2.60 22.43 18.75 79063 17114 39.00 78.00 36.09 70.85 50.00 84.80 

Mar. 2022 30.20 74.80 1008.50 3.40 23.67 12.50 93742 17107 34.00 67.00 33.72 61.16 41.20 71.00 

Apr. 2022 30.60 20.50 1008.40 3.00 33.80 16.00 65636 17101 39.00 73.00 36.16 64.71 38.20 68.60 

May. 2022 29.50 182.80 1006.50 3.50 21.20 14.00 85993 17097 25.00 54.00 25.93 53.00 28.40 59.80 

Jun. 2022 30.10 231.30 1006.90 4.40 16.40 11.50 85201 17085 23.00 51.00 20.05 51.26 23.40 52.40 

Jul. 2022 29.30 403.40 1005.60 2.00 13.00 10.50 63348 17077 21.00 48.00 17.95 41.90 23.20 51.40 

Aug. 2022 28.60 304.70 1006.40 2.00 11.50 11.00 81308 17083 23.00 50.00 22.37 47.39 22.80 48.20 

Sep. 2022 27.80 687.00 1007.30 1.80 12.25 13.00 88358 17080 26.00 54.00 26.89 41.63 25.20 53.60 

Oct. 2022 28.20 372.40 1009.80 1.90 24.00 20.00 68966 17080 33.00 67.00 35.93 62.75 30.60 64.80 

Nov. 2022 28.70 117.90 1009.70 1.50 27.00 22.00 75474 17076 36.00 71.00 40.70 70.50 34.40 76.00 

Dec. 2022 27.30 18.30 1011.50 2.10 34.00 24.00 67940 17074 35.00 75.00 45.83 80.25 41.00 85.40 

Jan. 2023 27.20 0.00 1012.20 2.30 39.00 32.00 82002 17070 38.00 74.00 53.37 88.55 49.20 91.00 

Feb. 2023 28.60 45.30 1011.30 3.00 41.00 33.00 91394 17070 67.00 78.00 52.88 85.19 50.00 84.80 

Mar. 2023 29.80 4.70 1010.70 3.20 41.00 30.00 98272 17067 62.00 80.00 52.57 82.25 41.20 71.00 

Apr. 2023 31.50 25.40 1007.50 2.70 40.00 21.00 66128 17067 56.00 77.00 40.09 65.21 38.20 68.60 

May. 2023 32.00 73.80 1007.30 2.80 37.00 23.00 92640 17067 32.00 66.00 42.98 64.70 28.40 59.80 

Jun. 2023 30.70 97.40 1006.60 3.30 28.00 18.00 92260 17067 23.00 46.00 33.21 58.35 23.40 52.40 

Jul. 2023 30.20 223.20 1006.80 3.70 20.00 19.00 72881 17065 24.00 52.00 22.09 56.39 23.20 51.40 

Aug. 2023 29.90 198.00 1007.20 3.40 18.00 18.00 85659 17050 22.00 49.00 25.18 57.63 22.80 48.20 

Sep. 2023 29.00 380.10 1007.20 2.70 19.00 26.00 88358 17042 22.00 51.00 28.79 58.44 25.20 53.60 

Oct. 2023 29.00 258.00 1010.30 2.30 24.00 36.00 68966 17039 31.00 70.00 35.62 78.52 30.60 64.80 

Nov. 2023 28.70 92.90 1011.70 2.50 30.00 43.00 75474 17037 34.00 88.00 43.61 92.20 34.40 76.00 

Dec. 2023 28.90 11.90 1012.60 2.90 34.00 24.00 67940 17038 38.00 93.00 45.39 83.93 41.00 85.40 
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Figure 2 Monthly average concentrations of PM2.5 and PM10 in Bangkok from January 2019 to December 2023, 

demonstrating seasonal and cyclical variation 

 

Table 4 Monthly Average Data for PM2.5 and PM10 in Bangkok (aggregated over 2019-2023) 

Month (𝑡) 
Monthly average 

PM2.5 (�̅�) PM10 (�̅�) 

January 49.2 91.0 

February 50.0 84.8 

March 41.2 71.0 

April 38.2 68.6 

May 28.4 59.8 

June 23.4 52.4 

July 23.2 51.4 

August 22.8 48.2 

September 25.2 53.6 

October 30.6 64.8 

November 34.4 76.0 

December 41.0 85.4 

 

Table 5 Forecasting performance (MAE and MAPE) of multiple linear regression and periodic models for PM2.5 and PM10 in 

Bangkok 

PM Models MAE MAPE 

PM2.5 
MLR 4.98 14.17 

Periodic 4.65 12.69 

PM10 
MLR 6.93 10.54 

Periodic 7.18 10.70 

 

Figure 2 shows that the graphs of particulate 

matter exhibit a periodic pattern, supporting the 

application of a periodic model described by the equation: 
 

Y=a+b sin (Ω (t-t0). 
 

Using 60 months of PM2.5 and PM10 data, 

monthly averages were calculatedto obtain �̅� , as 

shown in Table 4. The parameters 𝑎  and 𝑏  were 

calculated as follows: 
 

a = 
Y̅max-Y̅min

2
 

 

and 

 

b = Y̅max-a 
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from T=
2π

Ω
, where 𝑇 is the period (12 months), Ω was 

calculated using the equation: Ω=
2π

T
=

2π

12
. To determine 

t0, the equation t0= sin (Ω(t-t0)) was used. The value of 

�̅� reached its minimum when sin (Ω(t-t0))= sin (-
π

2
). 

Therefore Ω(t-t0)=-
π

2
. Substituting the values of Ω and 

𝑡, where t corresponded to the month with the minimum 

Y̅ (August), t=8 was set. Substituting these values,  
the periodic model for PM2.5 in Bangkok was defined as: 

Ŷ1i= 36.4+13.6 sin ((0.52356)(t-11)). Similarly, the 

periodic model for PM10 in Bangkok was 

Ŷ2i = 69.6+21.4 sin ((0.52356)(t-11)). The predicted 

values based on these models are presented in Table 4. 

Forecasting performance was evaluated using 

MAE and MAPE for both PM2.5 and PM10 models, as 

shown in Table 5. 

The results of the performance comparison of 

the statistical models influencing PM2.5 and PM10 are 

presented in Table 5. The periodic model yielded the 

most accurate predictions for PM2.5 concentrations, 

with MAE = 4.65 and MAPE = 12.69. In contrast, the 

multiple linear regression model provided the most 

accurate predictions for PM10 concentrations, with 

MAE = 6.93 and MAPE = 10.54. 

The periodic models used in this study were 

developed based on the observation that PM2.5 and 

PM10 concentrations exhibited recurring pattern over 

time, as shown in Figure 2. This behaviour, identified 

from 60 months of monthly averages, justified the use 

of a sine-based periodic model to capture the cyclical 

nature of the data. The parameters of the periodic 

model were derived mathematically from the data, to 

ensure alignment with observed trends. Although the 

periodic model does not directly analyze the physical 

or chemical mechanisms underlying the relationship 

between variables, it effectively captures seasonal and 

temporal variations in particulate matter concentrations. 

This approach is particularly useful for highlighting 

cyclical behaviours not readily apparent in traditional 

regression models. As shown in Table 5, the periodic 

model demonstrated superior accuracy (lower MAE and 

MAPE) in predicting PM2.5 concentrations, emphasizing 

its utility in forecasting periodic trends. However, for 

PM10 concentrations, the multiple linear regression 

model was found to be more effective, likely due to 

the stronger influence of the independent variables on 

PM10 levels compared to its periodicity. This 

complementary use of periodic and regression models 

highlights their respective strengths: capturing seasonal 

trends versus analyzing the effects of specific variables. 

It is recognized that the periodic model is designed to 

align with observed cyclical patterns but is limited in 

its ability to establish causal relationships between 

independent and dependent variables. Future research 

could integrate periodic modeling with physical or 

chemical analyses to explore the mechanisms underlying 

PM concentrations, offering a more comprehensive 

understanding of the observed trends. 

 

5.  Discussion 

The analysis of statistical models for identifying 

factors influencing PM2.5 and PM10 concentrations in 

Bangkok highlights the complexity of urban air 

pollution. The coefficients of the final multiple linear 

regression (MLR) models for PM2.5 and PM10 provide 

valuable insights into the significance and magnitude 

of each variable’s effect. For PM2.5, air pressure (𝑋3𝑖 

= 1.9629), wind speed (𝑋4𝑖 = -3.2490), ozone 

concentration (𝑋5𝑖 = 0.7432), and the number of 

vehicles (𝑋7𝑖 = 0.0002) were identified as the most 

influential factors. However, the coefficient for the 

number of vehicles was relatively small, suggesting a 

limited direct influence compared to other variables such 

as wind speed, air pressure, and ozone concentration, 

which demonstrated stronger effects on PM2.5 

concentrations. This underscores the importance of 

considering both statistical and practical significance 

when interpreting model outcomes.  
The retained variables for PM10 include rainfall, 

air pressure, and nitrogen dioxide concentration, 

which demonstrate the multifactorial nature of its 

behavior. The periodic model was more effective for 

PM2.5 due to its cyclical patterns, whereas MLR was 

more suitable for PM10, likely reflecting its sensitivity 

to specific environmental and anthropogenic influences. 

This difference may be attributed to PM10 concentrations 

are affected more strongly by short-term, localized 

events rather than consistent seasonal patterns.  

The study further emphasizes the importance 

of supporting findings with evidence from existing 

literature. Previous research has shown that air 

pressure and wind speed influence particulate matter 

levels by affecting atmospheric stability and dispersion. 

Ozone concentrations contribute to secondary PM 

formation, while vehicle emissions are a primary 

source of particulate matter in urban environments. 

Referencing these mechanisms reinforces the validity 

of the findings and supports their relevance to real-

world air quality management.  

Nevertheless, the limitations of both models must 

be acknowledged. The periodic model effectively 

captures seasonal trends but cannot establish causal 

relationships. In contrast, MLR relies on observed 
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data and assumes linear relationships, which may 

oversimplify complex interactions among variables. 

Future studies could integrate periodic models with 

advanced techniques, such as machine learning or 

hybrid models, to better capture non-linear relationships 

and enhance predictive accuracy. Additionally, 

incorporating physical or chemical analyses could 

provide a more comprehensive understanding of the 

dynamics influencing particulate matter concentrations. 

 

6.  Conclusion 

This study developed and evaluated statistical 

models to investigate factors influencing PM2.5 and 

PM10 concentrations in Bangkok. By applying the 

periodic model to PM2.5 and the multiple linear 

regression model to PM10, the study underscores the 

importance of tailoring modeling techniques to the 

specific characteristics of each pollutant. The results 

revealed that air pressure, wind speed, ozone 

concentration, and the number of vehicles significantly 

influence PM2.5 concentrations, whereas rainfall, air 

pressure, and nitrogen dioxide concentration are the 

primary factors for PM10. These findings highlight the 

multifactorial nature of urban air pollution, driven by 

both anthropogenic and natural factors. The insights 

from this study provide actionable recommendations 

for policymakers, including promoting cleaner 

transportation, regulating industrial emissions, and 

improving urban planning. When combined with 

adaptive air quality management strategies that consider 

seasonal and temporal variations, these measures 

could help reduce pollutant levels and improve public 

health outcomes in Bangkok. While the models 

effectively predict pollutant concentrations, their 

limitations must be recognized. The periodic model 

captures cyclical trends but lacks the ability to establish 

causal relationships, whereas MLR assumes linearity, 

which may oversimplify complex variable interactions. 

Future research should address these limitations by 

incorporating advanced techniques such as hybrid 

models or machine learning and expanding the set of 

variables to include factors like relative humidity to 

improve predictive accuracy. Additionally, integrating 

physical and chemical analyses may offer a more 

comprehensive understanding of the mechanisms 

influencing particulate matter concentrations. Building 

on these findings, future efforts can support the 

development of more effective and adaptive air 

quality management strategies in Bangkok. 
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