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Abstract 

This research presents an innovative real-time method for detecting leg postural abnormalities using deep learning 

techniques and smartphone sensors. The objectives are to: (1) develop a smartphone-based system for real-time classification 

of leg postures using accelerometer and gyroscope data, (2) evaluate the effectiveness of three deep learning models DNN, 

CNN, and CNN-LSTM in identifying spatial and temporal features, and (3) offer a low-cost, objective alternative to traditional 

assessment methods by addressing issues such as observer inconsistency and computational complexity. Accelerometer and 

gyroscope data from smartphones were used to develop a system that classified four leg postures: Pronation, Supination, 

Normal, and Postural Sway. Participants from various age groups carried a smartphone in their left pocket while standing and 

walking for 10, 20, and 30 seconds. This process produced a dataset of 29,823 records, which were verified and labeled by 

medical professionals based on observed postural characteristics. The CNN-LSTM model achieved the highest accuracy 

(96.4%) with strong class differentiation, demonstrating its effectiveness in capturing temporal dependencies. All three models 

were employed for unknown instances, and a majority voting approach was used for final classification. This proposed 

smartphone-based assessment system addresses limitations of traditional methods, such as inconsistencies due to subjective 

visual evaluations. This approach supports applications where leg posture is critical, such as in military, sports assessments, 

and disability certification, by offering an objective and accessible solution. Unlike video-based methods, it leverages widely 

available mobile technology, offering a low-computation, tamper-proof, and nonintrusive real-time surveillance system. 

Designed for automated and transparent evaluation, it has the potential to enhance the integrity of physical disability 

certifications. 

 

Keywords: deep learning; accelerometer; gyroscope; sensor; classification; CNN; LSTM 

 

 

1.  Introduction 

Postural and leg abnormalities are critical 

considerations in physical assessments across various 

sectors, including healthcare, military, sports, and 

security. Postural balance and leg stability are 

essential indicators of physical fitness and functional 

ability in these fields (Rakpongsiri et al., 2023).  

In recent years, fraudulent disability certifications 

have become more prevalent, often exacerbated by 

inconsistencies in subjective medical assessments. 
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Since mobility impairments can influence eligibility 

for specific roles or financial support, there is an 

increasing demand for accessible, objective assessment 

methods. This research proposes a real-time, tamper-

proof, and accurate solution using widely available 

smartphone sensors and deep learning models.  

This study detects and classifies leg postures using 

smartphone accelerometer and gyroscope data. It 

focuses on four posture categories: Postural Sway, 

Pronation, Supination, and Normal Posture. The 

proposed system offers an objective method for 

evaluating postural abnormalities, enhancing fairness 

and transparency in assessments with potentially 

significant outcomes for individuals or institutions. 

To ensure accurate and reliable classification, the 

study employs deep learning models including Dense 

Neural Networks (DNN), Convolutional Neural 

Networks (CNN), and a hybrid CNN-LSTM model. 

By replacing subjective visual assessments with 

precise sensor data and algorithmic analysis, this 

approach offers a transformative advancement in 

posture evaluation (Barrett et al., 2020). Undetected 

postural abnormalities can lead to long-term 

musculoskeletal problems, impairing an individual's 

ability to perform in physically demanding roles or 

daily activities (Calcaterra et al., 2022). In sectors like 

the military and sports, even minor impairments can 

hinder performance and increase safety risks. 

Furthermore, many governments offer financial aid 

and benefits to individuals with disabilities, which has 

unfortunately led to cases of fraud involving 

illegitimate disability certifications. In such scenarios, 

reliance solely on subjective assessments introduces 

risks of inconsistency and bias, potentially leading to 

false positives or negatives in diagnosis and 

certification. In a typical leg examination, doctors 

observe individuals while standing, walking, or 

performing simple movements and then make a 

subjective judgment about their posture. While this 

method can be effective when performed by trained 

professionals, it is still prone to bias and human error 

due to its reliance on visual cues alone. Additionally, 

individuals may deliberately alter their behavior to 

influence the assessment, making it difficult to detect 

subtle abnormalities. This highlights the urgent need 

for objective, scalable, and accurate methods to 

evaluate leg posture free from human bias. 

 

1.1 Prior work 

Existing approaches to posture and gait analysis 

typically rely on video-based systems (Stenum et al., 

2024) or wearable sensors (Prasanth et al., 2021). 

While video-based methods can be effective, they 

come with high computational costs and raise privacy 

concerns due to continuous video monitoring (Rezaee 

et al., 2024). These methods often require high-

resolution cameras and controlled environments, 

which limit their scalability. For example, conducting 

such assessments in hospitals may be feasible, but 

they become impractical in remote locations or for 

large-scale evaluations. Another method for capturing 

postural data involves wearable sensors, such as 

accelerometers and gyroscopes, placed on various 

parts of the body (Anikwe et al., 2022). However, 

these systems can be intrusive, requiring users to wear 

multiple devices that may be uncomfortable or 

impractical for long-term use. Additionally, the setup 

and maintenance costs of specialized sensors can be 

prohibitive, especially in low-resource settings or 

scenarios requiring rapid, high-volume assessments. 

While wearable technology has significantly 

advanced postural analysis, its complexity and cost 

underscore the need for a simpler, more affordable 

alternative (Banyam, & Rakpongsiri, 2023). In contrast, 

smartphones are ubiquitous and come equipped with 

powerful built-in sensors. Most modern smartphones 

include accelerometers and gyroscopes capable of 

measuring movement across multiple dimensions, 

providing rich data on body motion and balance 

(Sarmadi et al., 2023). Despite this potential, relatively 

few studies have explored the use of smartphone 

sensors for real-time postural abnormality detection 

using deep learning techniques. Advances in smartphone 

technology and deep learning algorithms offer a 

unique opportunity to develop a real-time, portable, 

and cost-effective system for detecting leg abnormalities 

(Kristanto et al., 2023). Modern smartphones possess 

powerful sensors and processors capable of performing 

complex computations, making them ideal for on-

device data collection and analysis. Furthermore, the 

widespread use of smartphones means that many 

individuals already carry devices capable of recording 

accelerometer and gyroscope data (Grouios et al., 

2022). The large volume of multidimensional data 

generated by smartphone sensors is well-suited for 

analysis using deep learning models, which excel at 

identifying complex patterns in large datasets (Xiao et 

al., 2024). In this study, we utilize deep learning 

architectures DNN, CNN, and CNN-LSTM to detect 

postural abnormalities. DNNs effectively model 

structured data relationships, while CNNs are adept at 

capturing spatial hierarchies. The hybrid CNN-LSTM 

model, which combines convolutional layers with 

long short-term memory units, is particularly well-
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suited for detecting subtle, time-dependent changes  

in posture from time-series data (Sulistianingsih & 

Martono, 2024). In recent years, medical professionals 

have relied on visual assessments or video-based 

analysis to detect gait and posture abnormalities. 

While practitioners can observe individuals walking, 

standing, or performing specific movements to 

identify symptoms such as sway, pronation, or 

supination (Ward, 2024), video-based methods offer 

frame-by-frame analysis for greater detail (Ahmedt-

Aristizabal et al., 2024). Systems like Vicon and 

OptoGait provide precise data on joint angles, foot 

placement, and body symmetry (Trautmann et al., 2021). 

However, these techniques are computationally 

intensive, require controlled environments, and raise 

significant privacy concerns, making them unsuitable 

for real-time or large-scale assessments (Badidi et al., 

2023). Wearable sensors have offered an alternative 

for postural and gait analysis. Strategically placed 

accelerometers and gyroscopes can capture detailed 

movement data, enabling the detection of subtle gait 

irregularities or balance disorders (Guo et al., 2022; 

Siaw, & Han, 2024). While effective, these devices often 

require multiple sensors, making them uncomfortable 

for prolonged use and logistically complex for 

deployment in real-world applications (Chen et al., 

2016; Booth et al., 2019). 

Smartphones provide a promising solution by 

combining accessibility, cost-effectiveness, and 

convenience. Built-in accelerometers and gyroscopes 

in modern smartphones can capture three-dimensional 

movement and rotation data, enabling accurate tracking 

of balance and leg posture (Salchow-Hömmen et al., 

2022). Prior studies have demonstrated the feasibility 

of using smartphone sensors for assessing postural 

balance and detecting gait abnormalities, especially in 

elderly populations (Ren, & Peng, 2019; Amjad et al., 

2024). However, while these efforts confirm the value 

of smartphone-based sensing, few have integrated 

deep learning techniques for real-time classification 

of postural abnormalities. Deep learning models excel 

at pattern recognition and have demonstrated strong 

performance in human activity recognition using 

sensor data (Sharma et al., 2024). Traditional machine 

learning models such as decision trees, k-nearest 

neighbors (k-NN), and support vector machines (SVM) 

have been applied with moderate success in classifying 

postural data (Di Biase et al., 2024; Casilari-Pérez et 

al., 2019; Tasjid, & Marouf, 2022; Tambe et al, 2025). 

However, these models often fall short when handling 

complex, non-linear temporal patterns in time-series 

data. 

This gap has fueled interest in deep learning 

architectures like convolutional neural networks (CNNs) 

and long short-term memory networks (LSTMs), 

which can capture spatial and temporal dependencies 

respectively. CNNs have been successfully adapted 

for analyzing inertial measurement unit (IMU) data, 

extracting spatial features related to balance and 

movement (Renani, 2023). Yet, postural abnormalities 

often evolve over time, necessitating models capable 

of temporal learning. LSTMs, a type of recurrent 

neural network, are well-suited for this task, as they 

can identify temporal progressions in sequential 

sensor data (Minango et al., 2023; Zhang et al., 2022). 

Hybrid CNN-LSTM models combine the strengths  

of both architectures, making them particularly 

effective for analyzing smartphone sensor data. These 

models have shown superior performance in activity 

classification tasks, including those involving complex 

human movements (Sabah et al., 2024; Lalwani, & 

Ganeshan, 2024). While simpler models like XGBoost 

have been explored for structured data (Liu et al., 

2021) they lack the ability to model the intricate 

temporal and spatial dynamics found in sensor-based 

posture assessments. 

While smartphones have proven effective in 

collecting sensor data, their integration with deep 

learning for real-time leg postural abnormality detection 

remains underexplored. Existing solutions, such as 

video-based systems, often require high computational 

resources and raise privacy concerns. Wearable sensor-

based methods, though accurate, tend to be costly and 

intrusive, limiting their usability in real-world, large-

scale scenarios. This study addresses a clear research 

gap by integrating smartphone-based sensor data with 

deep learning models specifically CNN, LSTM, and 

CNN-LSTM, for real-time classification of leg 

postural abnormalities. The proposed system offers an 

objective, cost-effective, and non-invasive approach 

that eliminates human bias and supports consistent, 

real-time assessments across diverse environments. 

 

2.  Objectives 

This research aims to develop a smartphone-

based system for real-time detection of leg posture 

abnormalities using accelerometer and gyroscope data.  

The system is intended to: 

1. Improve diagnostic accuracy compared to 

traditional, subjective assessment methods. 

2. provide a scalable and accessible solution 

applicable to healthcare, military, and sports domains. 

3. Achieve robust and accurate classification of 

leg postures including unseen instances using deep 
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learning models, namely CNN, LSTM, and CNN-

LSTM. 

 

3.  Materials and Methods 

3.1 System Overview 

The system architecture for real-time detection 

of postural and leg abnormalities is illustrated in 

Figure 1. It incorporates three deep learning models: 

Dense Neural Network (DNN), Convolutional Neural 

Network (CNN), and a hybrid CNN-LSTM model. 

These models analyze sensor data collected from 

smartphones to classify leg postures. 

 

3.1 Data Collection (Smartphone Sensors) 

A custom smartphone application was developed 

to capture sensor data from the built-in accelerometer 

and gyroscope at a sampling rate of 50 Hz. Participants 

placed their smartphone in their left pocket while 

standing or walking for intervals of 10, 20, and 30 

seconds. The collected dataset includes: 

• Accelerometer data: Acc_X, Acc_Y, Acc_Z 

(linear acceleration across axes) 

• Gyroscope data: Gyr_X, Gyr_Y, Gyr_Z 

(rotational movement) 

• Metadata: Postural class (Normal, Postural 

Sway, Pronation, Supination), gender, age, 

activity type, and recording duration 

Medical professionals reviewed the recordings 

and labeled each instance based on observed postural 

characteristics. The final dataset contained 29,823 

labeled records. 

 

3.2 Data Processing and Model Training 

A low-pass filter was applied to reduce high-

frequency noise from sensor readings caused by 

vibrations or external disturbances. The data were 

normalized to account for variability in sensor 

placement, standardizing input features across 

participants. These preprocessing steps ensured that 

the data were consistent, clean, and well-suited for 

training deep learning models. 

Dense Neural Networks (DNNs) are fully 

connected to neural architectures that process each 

input feature independently (Pradeepa & Jeyakumar, 

2022). In the context of detecting leg posture 

abnormalities, the DNN operates as follows: 

 

 
Figure 1 System architecture 
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Input Layer: Sensor features collected from the 

smartphone including accelerometer (Acc_X, Acc_Y, 

Acc_Z), gyroscope (Gyr_X, Gyr_Y, Gyr_Z), and 

user-specific data like gender, age, activity type, and 

recording duration are fed into the DNN. These inputs 

contain essential information about leg movement and 

posture. 

Hidden Layers: The hidden layers consist of 

multiple neurons that apply weights and biases to the 

inputs, enabling the model to learn complex patterns. 

These layers help identify motion patterns associated 

with various leg posture abnormalities. 

Output Layer: The output layer predicts the 

class Normal posture, Postural sway, Pronation, or 

Supination by computing probabilities for each and 

selecting the highest. 

Through this architecture, the DNN processes 

sensor data and, via backpropagation and optimization, 

learns to recognize patterns that correspond to specific 

postural conditions. Convolutional Neural Networks 

(CNNs) process time-series sensor data by applying 

filters to capture localized spatial patterns across  
the X, Y, and Z axes of acceleration and rotation. 

Convolutional Neural Networks (CNNs) are well-

suited for analyzing data with spatial or sequential 

structures, such as time-series signals from motion 

sensors. In the context of detecting leg posture 

abnormalities, CNNs process smartphone sensor data 

as follows: Input Layer: The model receives input 

features including accelerometer (Acc_X, Acc_Y, 

Acc_Z) and gyroscope (Gyr_X, Gyr_Y, Gyr_Z) 

readings, along with contextual information such as 

gender, age, activity type, and recording duration. 

These features capture movement, orientation, and 

individual-specific factors relevant to posture analysis. 

Convolutional Layers: Convolutional filters 

scan the data to detect local patterns. For example, 

specific sequences in accelerometer values might 

indicate postural sway. These layers extract spatial 

and temporal features that may not be visible in raw 

data. 

Pooling Layers: Pooling layers reduce 

dimensionality by summarizing key information, 

helping to simplify computation and improve 

generalization by retaining the most important 

features. 

Fully Connected Layer (Dense Layer): The 

output from the final pooling layer is flattened and 

passed to a dense layer, where extracted features are 

combined for high-level interpretation and classification. 

Output Layer: The model predicts one of four 

posture classes: Normal Posture, Postural Sway, 

Pronation, or Supination, based on the learned 

patterns. The CNN-LSTM hybrid model combines the 

spatial pattern recognition of CNNs with the temporal 

sequence modeling of LSTMs. This approach is 

particularly well-suited for analyzing time-series 

sensor data, such as accelerometer and gyroscope 

readings from smartphones, to detect leg posture 

abnormalities. 

 

3.3 Model Output 

After training the three models (DNN, CNN, 

and CNN-LSTM) respectively, each model produces 

a .h5 produced file, named DNN.h5, CNN.h5  
and Hybrid.h5 respectively). These trained models 

can be used for real-time classification or batch 

processing. 

When dealing with sensor data from 

accelerometers and gyroscopes with dependent x, y 

and z axes, performance greatly depends on the choice 

of model, DNNs, CNNs, or CNN-LSTM since each 

handle dependencies and sequential data differently. 

A comparative evaluation of these models is provided 

below, emphasizing their respective strengths and 

limitations in handling tri-axial sensor data. 

 

3.3.1 Dense Neural Networks (DNNs) 

In DNNs, every neuron in a layer is connected 

to every neuron in the next layer, which defines a fully 

connected architecture. DNNs treat each feature 

(Acc_X, Acc_Y, Acc_Z, Gyro_X, Gyro_Y, Gyro_Z) 

independently and lack mechanisms to recognize 

inter-feature relationships. Moreover, DNNs cannot 

learn sequential information or temporal dependencies. 

They perform well on static data but fail to capture 

patterns over time or interdependencies among 

features. As a result, DNNs are generally less 

effective for accelerometer and gyroscope data, as 

they cannot exploit inherent spatial and temporal 

dependencies. 

 

3.3.2. Convolutional Neural Networks (CNNs) 

CNNs use filters to extract spatial patterns and 

dependencies across neighboring features. CNNs can 

treat the x, y, and z axes as components of a spatial 

structure, enabling recognition of patterns across axes 

(e.g., coordinated 3D movement). This is particularly 

effective when data are structured in fixed windows 

(e.g., 1-second segments). However, CNNs alone do 

not inherently capture temporal sequences or long-

term dependencies across windows. They can detect 

local patterns within each window but don’t capture 

changes over time. CNNs are effective for detecting 
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short, localized patterns in accelerometer and 

gyroscope data. For example, detecting specific 

movements within a single step can work well, but 

CNNs are limited for tasks requiring an understanding 

of longer-term sequences. 

 

3.3.3. CNN-LSTM Hybrid 

CNN-LSTM hybrids combine CNNs’ spatial 

feature extraction with LSTMs’ ability to handle 

temporal sequences. CNN layers extract spatial 

features within each window, while LSTM layers 

model temporal dependencies across these sequences. 

The CNN layers learn spatial patterns across the x, y, 

and z axes, and the LSTM layers capture their 

temporal evolution, providing a comprehensive 

understanding of spatial and temporal dynamics. This 

hybrid model detects inter-axis relationships (via 

CNNs) and tracks their temporal changes (via 

LSTMs), making it ideal for accelerometer and 

gyroscope data. CNN-LSTM models are powerful for 

complex tasks involving both spatial dependencies 

(e.g., 3D movement) and temporal sequences (e.g., 

progression of movement over time). For activities 

such as fall detection, walking analysis, or sport-

specific actions, CNN-LSTM models are often the 

most effective choice. 

 

4.  Results and Discussion 

A Swift-based smartphone application was 

developed to record raw sensor data from participants, 

who placed the device in their left pocket while 

standing and walking for intervals of 10, 20, and 30 

seconds. Participants represented diverse age groups 

and genders. Medical experts labeled each posture 

instance, resulting in a dataset of 29,823 samples. The 

data was used to train three deep learning models 

DNN, CNN, and CNN-LSTM using an 80:20 train-

test split with 10-fold cross-validation. Model 

performance was evaluated using accuracy, precision, 

recall, and F1-score and summarized in Table 1. 

The model achieved an overall classification 

accuracy of 94.1% across all posture classes. 

• F1 Score: 0.941, a weighted average across 

all classes, reflecting the balance between 

precision and recall.  

• Precision: 0.941, indicates that 94.1% of the 

model’s predictions were correct. 

• Recall: 0.941, shows that 94.1% of actual 

instances were correctly identified. 

• Training Accuracy: 0.946, the model 

performed slightly better on training data 

(94.6%), which is typical due to overfitting 

tendencies. 

The corresponding confusion matrix is shown 

in Figure 2. 

A comparative analysis of model performance 

was undertaken. Table 2 presents the CNN model’s 

metrics, highlighting its strengths and limitations. 

• Precision: Reflects the proportion of correct 

positive predictions for each class. A precision of 1.00 

for Normal Posture and Postural Sway indicates 

perfect prediction accuracy for these classes. 

Pronation and Supination show slightly lower 

precision values (0.89 and 0.88), suggesting minor 

misclassifications. 

• Recall: Measures the proportion of actual 

positive cases correctly identified. Recall is also 1.00 

for Normal Posture and Postural Sway, while 

Pronation and Supination have recall values of 0.88 

and 0.90, respectively. 

• F1 Score: As the harmonic mean of precision 

and recall, the F1 score offers a balanced view of 

performance. Both Normal Posture and Postural 

Sway achieved an F1 score of 1.00, whereas 

Pronation and Supination scored 0.89, indicating 

slightly lower but still strong performance. 

• Overall Accuracy: The CNN model achieved 

a test accuracy of 94.3%, reflecting the proportion of 

correctly classified samples across all classes. 

• Training Accuracy: With a training accuracy 

of 95.1%, the model demonstrates good 

generalization, as the performance on training and test 

data is closely aligned, suggesting minimal 

overfitting. 

The confusion matrix corresponding to these 

results is shown in Figure 3. 
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Figure 2 Confusion Matrix of DNN Model 

 

Table 1 Performance Metrics of Dense Neural Network (DNN) for Postural Classification 

Class Precision Recall F1 Score Support 

Normal Posture 1 1 1 1479 

Postural Sway 1 1 1 1483 

Pronation 0.9 0.86 0.88 1488 

Supination 0.87 0.91 0.89 1515 

Accuracy 0.941    

F1 Score 0.941    

Precision 0.941    

Recall 0.941    

Training Accuracy 0.946    

 

  

Table 2 Performance Metrics of Convolutional Neural Network (CNN) for Postural Classification 

Class Precision Recall F1 Score Support 

Normal Posture 1 1 1 1479 

Postural Sway 1 1 1 1483 

Pronation 0.89 0.88 0.89 1487 

Supination 0.88 0.9 0.89 1516 

Accuracy 0.943    

F1 Score 0.945    

Precision 0.943    

Recall 0.945    

Training Accuracy 0.951    
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Figure 3 Confusion Matrix of CNN Model 

 

  

 

Table 3 Performance Metrics of CNN-LSTM Hybrid Model for Postural Classification 

Class Precision Recall F1 Score Support 

Normal Posture 1 1 1 1479 

Postural Sway 1 1 1 1483 

Pronation 0.95 0.93 0.93 1489 

Supination 0.92 0.92 0.89 1514 

Accuracy 0.964    

F1 Score 0.955    

Precision 0.967    

Recall 0.962    

Training Accuracy 0.949    

 

CNN-LSTM Model Performance Analysis: 

 Table 3 provides a comprehensive analysis of 

the CNN-LSTM model’s classification performance 

across different postural categories. 

• Precision: The model achieved perfect 

precision (1.00) for Normal Posture and Postural 

Sway, indicating all predictions for these classes were 

correct. Precision for Pronation and Supination was 

slightly lower at 0.95 and 0.92, respectively, 

suggesting minor misclassifications. 

• Recall: Recall was also 1.00 for Normal 

Posture and Postural Sway, meaning the model 

correctly identified all actual instances. For Pronation 

and Supination, recall values were 0.93 and 0.92, 

reflecting high but slightly reduced sensitivity. 

• F1 Score: The F1 score, which balances 

precision and recall, was 1.00 for Normal Posture and 

Postural Sway. Pronation and Supination scored 0.93 

and 0.89, respectively, indicating strong but not 

perfect classification. 

• Overall Accuracy: The model achieved an 

accuracy of 96.4%, demonstrating highly reliable 

performance across all classes. 

• Training Accuracy: A training accuracy of 

94.9% indicates strong generalization with no signs of 

overfitting. 

The corresponding confusion matrix is 

presented in Figure 4.
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Figure 4 Confusion Matrix of CNN-LSTM Model 

 

Table 4 Comparative Analysis of DNN, CNN, and CNN-LSTM Models 

 DNN CNN CNN-LSTM 

Accuracy 0.941 0.941 0.964 

F1 Score 0.941 0.941 0.955 

Precision 0.941 0.941 0.967 

Recall 0.941 0.941 0.962 

Training Accuracy 0.946 0.946 0.949 

 

 
Figure 5 Model Performance Comparison 
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A comparison of all model performance 

metrics is presented in Table 4, with a visual 

representation provided in Figure 5. 
The CNN-LSTM model achieved the highest 

overall accuracy at 96.4%, outperforming both DNN 

and CNN, which each recorded 94.1%. Its F1 score of 

95.5% also exceeds that of DNN and CNN (both  
at 94.1%), indicating a superior balance between 

precision and recall. 

In terms of precision, CNN-LSTM reached 

96.7%, compared to 94.1% for DNN and CNN, 

suggesting fewer false positives. Similarly, its recall 

of 96.2% surpasses the 94.1% achieved by the other 

models, demonstrating better performance in identifying 

true positives across all classes. 

While all models performed well during 

training, CNN-LSTM again led with a training 

accuracy of 94.9%, slightly ahead of DNN and CNN 

at 94.6%. 

This superior performance highlights the 

effectiveness of the hybrid CNN-LSTM architecture, 

which combines the spatial pattern recognition 

capabilities of CNNs with the temporal sequence 

modeling strengths of LSTMs. The CNN component 

captures localized postural shifts, while the LSTM 

component models movement sequences over time 
making this architecture particularly suitable for real-

time leg posture abnormality detection.

 

 

 
Figure 6 Training and Validation Accuracy and Loss of CNN 

 

 
Figure 7 Training and Validation Accuracy and Loss of DNN 
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Figure 8 Training and Validation Accuracy and Loss of CNN-LSTM 

 

Figures 6, 7, and 8 illustrate the training and 

validation accuracy curves for the DNN, CNN, and 

CNN-LSTM models, respectively. 

Figure 6 shows that by Epoch 7, the training 

accuracy reaches 93.98%, while the loss decreases to 

0.1512, indicating rapid learning during the early 

training phase. After Epoch 12, accuracy stabilizes 

between 94% and 94.5%, and the training loss further 

reduces to approximately 0.1447, suggesting that the 

model is converging effectively. 

Figure 7 illustrates that training accuracy starts 

at 70.91% and steadily increases, reaching 94.34% by 

epoch 20. Validation accuracy begins at 92.73% and 

stabilizes around 94.7%–94.8%, indicating strong 

generalization. Training loss decreases significantly 

from 0.7036 to 0.1403, demonstrating effective 

learning. Similarly, validation loss steadily drops 

from 0.1868 and stabilizes near 0.1262–0.1272, 

closely aligning with the training loss. 

Figure 8 shows a consistent upward trend in 

both training and validation accuracies. Training 

accuracy starts at 73.18% and increases to around 

94% by epoch 20, while validation accuracy begins at 

93.25% and stabilizes near 94.7%. The close 

alignment between training and validation accuracies 

indicates strong generalization to unseen data. 

Similarly, both losses steadily decline: training loss 

decreases from 0.6389 to approximately 0.1439, and 

validation loss drops from 0.1827 to around 0.1293 by 

the end of training. 

 

5.  Conclusion 

This study presents a real-time system for 

detecting leg postural abnormalities using smartphone-

based accelerometer and gyroscope data. By classifying 

four posture types Pronation, Supination, Postural 

Sway, and Normal the system provides a low-cost, 

non-invasive alternative to traditional posture 

assessments. Deep learning models, including DNN, 

CNN, and CNN-LSTM, were evaluated, with the 

CNN-LSTM model achieving the highest accuracy of 

96.4%. This confirms its superior ability to capture 

both spatial and temporal patterns in time-series 

sensor data. The proposed system addresses key 

limitations of existing video-based and wearable 

sensor methods by offering an accessible, scalable, 

and tamper-proof solution. It has significant potential 

in healthcare, sports, and disability certification, 

where objective and consistent postural assessment is 

critical. 

Future work will focus on enhancing model 

generalizability by incorporating larger, more diverse 

datasets and integrating contextual and biometric data 

such as surface type, footwear, heart rate, or 

temperature to improve classification accuracy. These 

enhancements will help create a robust, real-world 

solution for automated leg posture evaluation across 

varied environments and populations. 
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