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Abstract  

This study proposes new estimators and confidence intervals for the population mean of the Poisson-Xgamma 

distribution, which are useful for overdispersed count data analysis. We prove that the proposed estimators using maximum 

likelihood and method of moments estimation are consistent and establish the variance of the estimators. Moreover, the 

confidence intervals are constructed based on large-sample theory and bootstrap method. The former method utilizes the 

properties of the maximum likelihood and moment estimators, the likelihood ratio, and the asymptotic normality property of 

the log-transformed maximum likelihood estimator. Percentile bootstrap and bias-corrected and accelerated confidence 

intervals are considered. The performance of the estimators is investigated through simulations in terms of bias, mean squared 

error, coverage probability, and length of interval. According to the simulations, the log-transformed maximum likelihood 

estimation-based confidence interval for the mean provides excellent and better coverage rates than the other competitive 

methods. Furthermore, two real data sets are used to demonstrate our estimators and perform a comparison that supports the 

findings obtained from the simulation study. 
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1.  Introduction 

Statistical analysis of count data plays a crucial 

role in many areas of social sciences, biometrics, 

medical sciences, and healthcare service applications. 

More specifically, in the context of count data, they 

consist of discrete, non-negative counts and typically 

a right-skewed distribution. These data indicate the 

number of events within a fixed interval, time period, 

or space (Hilbe, 2017; Tang et al., 2023). Under this 

assumption, the Poisson distribution is a commonly 

used probability model because of its simple form and 

tractable properties. Suppose that X  is a Poisson 

random variable. The probability mass function (pmf) 

of X  is given by 
 

 

xe
P(X x; )

x!

−
=  =  (1) 

 

where x 0,1,...=  are the observed values of X  and 

0   is the average number of occurrences in the 

interval time. The expected value and variance of X  

are E(X) =   and Var(X) =  , respectively. The 

Poisson model assumes equidispersion because the 

mean and variance are equal (Oseni et al., 2023; 

Weems et al., 2023). However, this situation is rarely 

reflected in practical and real data. Hence, the Poisson 

distribution cannot accurately represent data that is 

either overdispersed, where the variance exceeds the 

mean, or underdispersed, where the variance falls 

below the mean (Gschlöbl, & Czado, 2008; Huang, 
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2023). Nevertheless, overdispersion is a common 

situation in count data. Therefore, various mixed-

Poisson distributions have been introduced in the 

statistical literature to deal with this limitation. They 

included Poisson-gamma, Poisson-Lindley, Poisson-

Ishita, Poisson-Shanker, Poisson-Amarendra, Conway-

Maxwell- Poisson, uniform-Poisson, and Poisson Quasi-

XLindley (Alghamdi et al., 2024; Conway, & Maxwell, 

1962; Déniz, 2013; Hilbe, 2011; Imoto et al., 2017; 

Sankaran, 1970; Shanker, 2016; Shanker et al., 2017; 

Shukla, & Shanker, 2019). These are some examples of 

the references. 

Parameter estimation is a statistical inference 

used to estimate the value of an unknown parameter 

in a probability model. It consists of two types: point 

estimation and interval estimation. Point estimation 

uses a single value to estimate an unknown parameter 

based on the sample data, while interval estimation 

calculates a range of plausible values using confidence 

intervals with a given probability (Casella, & Berger, 

2002; Sangnawakij, & Anlamlert, 2023). So, interval 

estimation can be used to reveal the precision of 

parameter estimate. In this paper, we are interested in 

estimating the parameter of the Poisson-Xgamma 

(PX) distribution, which was introduced by Altun et al. 

(2022). The PX model compounds the Poisson and 

Xgamma distributions (Sen et al., 2016) to allow the 

modeling of the overdispersed count data. Moreover, 

it is a flexible and sufficient distribution for modeling 

the overdispersed time series of counts. The pmf of 

the PX variable with unknown parameter   is given as 
 

 P(X=x;θ)=
θ

2[2(1+θ)
2
+θ(x+2)(x+1)]

2(1+θ)
x+4 , (2) 

 

where x = 0,1,... and θ>0. The shapes of PX 

distribution varying by θ are displayed in Figure 1(a). 

When θ is increased, the PX distribution has a long 

tail towards the right side, say a positive-skewed 

distribution. Meanwhile, the distribution tends to 

symmetry when θ is greater. Hence, the PX 

distribution can occur in right-skewed and symmetric 

data sets. Under model (2), the mean and variance of 

X  are given by 
 

 E(X)=
θ+3

θ(1+θ)
 , and 

 Var(X)=
θ

3
+5θ

2
+11θ+3

θ
2
(1+θ)

2 , 

 

respectively. The possible values of mean and variance 

are positive real values. The following evidence 

supports the overdispersion of the PX distribution. We 

generate the PX data to investigate the behaviour of 

E(X)  and Var(X) . Then, we plot the graphs between 

these values for several possible values of θ. They are 

displayed in Figure 1(b). It is clear that the mean and 

variance decrease when θ is increased. The variance is 

greater than the mean for all possible values of θ. If θ is 

small, the difference between the mean and variance 

has an impact. Hence, the PX distribution has utility for 

the overdispersed data. 

In statistical inference, the method of moment 

and maximum likelihood estimators for θ were 

introduced in Altun et al., (2022). They evaluated the 

performance of these estimators in terms of bias and 

mean squared error using simulations. The estimators 

for estimating θ from those two methods performed 

satisfactorily, as they provided a small bias and mean 

squared error. However, θ represents the shape of the 

distribution only. It is rarely used as a stand-alone 

parameter for describing the interesting characteristics 

of a population in applied research, like the mean, total, 

and variance. 

 

               

(a)       (b) 

Figure 1 (a) density plot of Poisson-Xgamma distributions and (b) plot of expected value and variance with varying 

parameter values of θ 
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The key points of this current work are 

highlighted. The measure of central tendency is 

essential to determining the midpoint of the quantitative 

data, including discrete and continuous variables. 

Unfortunately, no research has introduced an estimator 

and a confidence interval for the population mean of  
the PX distribution. In this paper, we propose two 

simple estimators to estimate the population mean. 

These are constructed based on the moment method 

and maximum likelihood estimation. Moreover, the 

mean estimate from nonparametric bootstrap method 

is introduced. The statistical properties of the mean 

estimators are then studied comprehensively. For 

interval estimation, the large-sample approximation, 

asymptotic normal approximation, and bootstrap 

methods are applied to construct the confidence 

intervals for the population mean. We conduct a 

simulation study to evaluate the performance of the 

proposed estimators. Moreover, our methods are 

applied to two overdispersed real data sets on the 

number of chromosome aberrations in human genetic 

disease and the number of victims of unrest events in 

the southern region of Thailand. 

The remaining parts of the paper are organized 

as follows. Section 2 proposes the new estimator and its 

statistical properties. We also derive the confidence 

intervals for the population mean. In Section 3, the 

performance of the proposed methods is investigated 

via the simulation study under several situations. In 

Section 4, the two real data sets are analyzed to 

demonstrate the usefulness of the proposed estimators 

and confidence intervals. Section 5 provides some 

concluding remarks. 

 

2.  Statistical Methodology 

The Poisson distribution is a basic probability 

model in count data analysis. If X follows a Poisson 

random variable with parameter λ, namely Pois(λ), the 

pmf of X  is shown in (1). The dispersion index of 

X  is Var(X)/E(X)= 1. Hence, the Poisson model 

assumes equidispersion. Here, we are interested in the 

Poisson-Xgamma (PX) distribution. A basic idea for 

constructing the model is briefly introduced at the 

beginning of this section. Then, the proposed estimators 

for the mean in the PX distribution are intensively 

discussed. 

The Xgamma distribution is derived by Sen et 

al. (2016). It is a probability model for a continuous 

variable, generated by a special finite mixture of 

exponential and gamma distributions. Let X be a random 

variable from an Xgamma distribution with parameter 

θ. The probability density function can be expressed as 
 

 f(x;θ)=
θ

2

1+θ
(1+

θx2

2
) e-θx, (3) 

 

where x 0  and 0  . Also, we can rewrite it as 

 f(x;θ)=
θ

1+θ
θe-θx+ (1-

θ

1+θ
)

θ
3
x2e-θx

2
 (4) 

 

this is the two-component mixture of the exponential 

distribution with rate parameter  , namely Exp( ),  and 

the gamma distribution with shape parameter 3 and scale 

parameter 1/θ, denoted as Gam(3,1/ ).  Consequently, 

their weights are θ/(1+θ) and 1/(1+θ), respectively. To 

construct the probability model of the PX distribution, 

λ is assumed to be a random variable following the 

Xgamma distribution with an unknown parameter  . 

Therefore, the unconditional probability distribution 

of the Poisson variable given   is defined by 
 

P(X=x;θ)= ∫ P
∞

0
(X=x|λ)f(λ;θ)dλ = ∫

e-λλ
x

x!

∞

0
(

θ
2

1+θ
) (1+

θλ
2

2
) e-θλdλ 

 P(X=x;θ)=
θ

2[2(1+θ)
2
+θ(x+2)(x+1)]

2(1+θ)
x+4 , 

 

where x =0, 1, …. The above equation is the pmf of 

the PX distribution as given in (2). The mean of PX 

variable can be determined from the factorial moment. 

It is established as 
 

 E(X)=
θ+3

θ(1+θ)
=ϕ (5) 

 

this is the parameter of interest to be estimated in this 

paper. In the following subsections, the new point 

estimators for   are derived, and their properties are 

discussed. Moreover, the bootstrap estimates and 

confidence intervals will be introduced. 

 

2.1 Point Estimation for the Population Mean 

Maximum likelihood estimation is a statistical 

method usually used to estimate the unknown parameter 

in a probability distribution. The main concept of this 

method is to find the values of the parameter that 

maximize the likelihood of observed data. 

Here, we assume tha X=(X1,X2,...,Xn)t is a 

random sample of size n  from a PX distribution. It is 

denoted as X~PX(θ). The likelihood function of   

given Xi=xi is given by 
 

 L(θ)=
θ

2n

2n(1+θ)
∑ xi

n
i=1 +4n

∏ [2(1+θ)
2
+θ(xi+2)(xi+1)]n

i=1  (6) 

 

then, we maximize the log-likelihood function, 

specifically logL( ) , with respect to   and set it 
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equal to zero. This gives the normal equation for 

estimating  : 
 

 θ=
2n

1

θ+1
(∑ xi

n
i=1 +4n)- ∑

4(1+θ)+(xi+2)(xi+1)

2(1+θ)
2

+θ(xi+2)(xi+1)

n
i=1

 (7) 

 

since there is no closed-form solution for the ML 

estimator for  , a numerical method is applied. For 

example, the fixed point method based on equation (7) 

can be used to derive the ML estimate. Moreover, the 

optim function in the R package (R Core Team, 2024) 

can be applied. We denote the ML estimate for   as 

θ̂ML. Substituting θ̂ML into its parameter of (5), the ML 

estimator of   is therefore given by 
 

 ϕ̂
ML

=
θ̂ML+3

θ̂ML(1+θ̂ML)
 (8) 

 

next, we consider the mean and variance of θ̂ML (see 

Theorem 1). They are derived using the delta method, 

which is based on the Taylor series expansion 

(Oehlert, 1992). The benefit of this method is that it 

can be used to find the asymptotic mean and variance 

of a complex function, such as a ratio of variables, and 

construct the pivot function, which is useful for 

statistical inference. 

 

Theorem 1. Let X=(X1,X2,...,Xn) be a random sample 

of size n  from a PX distribution. The ML estimator of 

ϕ is ϕ̂
ML

. The expected value and variance of ϕ̂
ML

 are 

approximated by E(ϕ̂
ML

)=ϕ and 
 

 Var(ϕ̂
ML

)= [
θ(1+θ)-(θ+3)(1+2θ)

θ
2
(1+θ)

2 ]
2 1

I(θ)
, 

 

respectively, where I( )  is the observed Fisher 

information of θ. 

 

Proof. According to the property of the ML estimator 

for large n, θ̂ML has an asymptotic normal distribution 

with mean E(θ̂ML)=θ and variance Var(θ̂ML)=1/I(θ). 

The observed Fisher information I( )  is obtained 

from the negative of the second derivative of log L (θ). 

So, we have 
 

 I(θ)=-
∂

2

∂θ
2 log L (θ) 

 I(θ)=
2n

θ
2 -

∑ xi
n
i=1 +4n

(1+θ)
2  -

∑ [4[2(1+θ)
2
+θ(xi+2)(xi+1)]-[4(1+θ)+(xi+2)(xi+1)]2]n

i=1

[2(1+θ)
2
+θ(xi+2)(xi+1)]

2 . 

 

consequently, Var(θ̂ML)=1/I(θ), for n→∞. Suppose 

that Y is a generic random variable, E(Y)=θ and 

Var(Y) exists. Let g(Y) be a function of Y. By the 

delta method, the variance of g(Y) is given as 
 

 Var(g(Y))≈ [
∂

∂Y
g(Y)]

E(Y)=θ

2

Var(Y). 

 

in our case, θ̂ML is the function of θ̂ML, and its mean 

and variance exist. So, we can find that 
 

 Var(ϕ̂
ML

)=Var (
θ̂ML+3

θ̂ML(1+θ̂ML)
)   

 Var(ϕ̂
ML

)≈ [
∂

∂θ̂ML
(

θ̂ML+3

θ̂ML(1+θ̂ML)
)]

E(θ̂ML)=θ

2

 

Var(θ̂ML) = [
θ(1+θ)-(θ+3)(1+2θ)

θ
2
(1+θ)

2 ]
2 1

I(θ)
. (9) 

 

note that Var(θ̂ML) contains the unknown parameter θ. 

It can be estimated by substituting θ̂ML into θ of the 

above equation. We denote the estimated value of 

Var(θ̂ML) as var(θ̂ML). 

In the following, the method of moment (MM) 

is used to derive the estimator for ϕ. This approach 

uses the information from the r -th moment about the 

origin of a random variable to estimate the parameter 

of interest in the probability model. Under this 

approach, the r -th population moment is assumed to 

be equal to the corresponding sample moment. The 

equation can be written as  
 

 E(Xr)=
1

n
∑ Xi

rn
i=1 .  

 

then, this equation is used to solve for the moment 

estimator. Consider the PX distribution, if r = 1, the 

first population moment is the expected value of X, 

i.e., E(X)=ϕ. The first sample moment is the sample 

mean, i.e., X̄= ∑ Xi
n
i=1 /n. By equating the population 

and sample moments, it follows that ϕ=X̄ and the MM 

estimator for ϕ is denoted by 
 

 ϕ̂
MM

=X̄=
1

n
∑ Xi

n
i=1 . (10) 

 

we can see that ϕ̂
MM

 has an explicit closed-form 

solution. Moreover, it needs only a single stage to 

estimate ϕ. This differs from ML estimation, which 

requires estimating   first to obtain the estimate of  . 

The mean and variance of ϕ̂
MM

 are derived and given 

in Theorem 2. 

 

Theorem 2.  Let X = (X1, X2, …, Xn) be a random 

sample of size n  from a PX distribution. The MM 

estimator of ϕ is ϕ̂
MM

. The expected value and 

variance of ϕ̂
MM

 are E(ϕ̂
MM

)=ϕ and 
 

 Var(ϕ̂
MM

)=
1

n
[

θ
3
+5θ

2
+11θ+3

θ
2
(1+θ)

2 ] , 

 

respectively. 
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Proof. Recall that ϕ=
θ+3

θ(1+θ)
. We can derive that 

E(ϕ̂
MM

)=E(X̄)=ϕ. Therefore, ϕ̂
MM

 is the unbiased 

estimator of ϕ. The variance of ϕ̂
MM

 is directly derived 

by 
 

 Var(ϕ̂
MM

)=Var(X̄) =
1

n
Var(X) 

 Var(ϕ̂
MM

)=
1

n
[

θ
3
+5θ

2
+11θ+3

θ
2
(1+θ)

2 ] 

 

since lim
n→∞

E(ϕ̂
MM

)=ϕ and lim
n→∞

Var(ϕ̂
MM

)=0, then ϕ̂
MM

 

is the consistent estimator.  

 

2.2 Interval Estimation for the Population Mean 

The six confidence intervals for ϕ are 

introduced. These are constructed using the large-

sample approximation with the properties of ML and 

MM estimators derived in the previous section, the 

likelihood ratio method, the log-transformation 

approach, and the two bootstraps based on percentile 

and bias-corrected and accelerated bootstrap approaches. 

The processes for constructing the confidence 

intervals are given as follows. 

 

2.2.1 Asymptotic Confidence Interval using the ML 

Estimator 

The first confidence interval relies on the 

asymptotic normality property of the ML estimator. In 

Theorem 1, we show the variance of ϕ̂
ML

 with the 

approximated variance 
 

 var ( ϕ̂
ML

)= [
θ̂ML(1+θ̂ML)-(θ̂ML+3)(1+2θ̂ML)

θ̂ML
2

(1+θ̂ML)
2

]
2

1

I(θ̂ML)
, 

 

where I(θ̂ML) is the estimator of I(θ). Using the Wald-

type method, (1-α)a  100% confidence interval for ϕ 

is established as 
 

 CIpr1:ϕ̂
ML

±z1-α/2√var ( ϕ̂
ML

), 

 

where z1-α/2 is the (1-α/2) 100% percentile of a 

standard normal distribution, or N(0,1), and α∈(0,1) is 

a significance level. The Wald-type method is simple, 

but it is typically used as a starting point for 

constructing the confidence interval in theory. Also, 

the Wald-type confidence interval is widely applied in 

applications, particularly when the sample size (n) is 

large. 

 

2.2.2 Asymptotic Confidence Interval using the MM 

Estimator 

The second confidence interval is constructed 

using a large- sample approximation based on the 

properties of the MM estimator. As shown in Theorem 

2, ϕ̂
MM

 has the explicit expected value as E(ϕ̂
MM

)=ϕ. 

The estimated variance of 
MM̂  is derived as 

 

 var ( ϕ̂
MM

)=
1

n
[

θ̂MM
3

+5θ̂MM
2

+11θ̂MM+3

θ̂MM
2

(1+θ̂MM)
2

] , 

 

where ϕ̂
MM

 is the MM estimator for θ obtained based 

on the normal equation: 
 

 
θ+3

θ(1+θ)
=X̄ 

 

this equation is obtained from the relationship 

between the population and sample moments. It can 

also be written in quadratic form as 
 

 X̄θ
2
+(X̄-1)θ-3=0 

 

solving this equation for θ>0, we have 
 

 θ̂MM=
-(X̄-1)+√(X̄-1)

2
+12X̄

2X̄
 

 

under the central limit theorem, the sampling distribution 

of the sample mean is normally distributed. The pivotal 

quantity of ϕ given by 
 

 Z1=
ϕ̂MM-ϕ

√var (ϕ̂MM)

=
X̄-ϕ

√var (X̄)
 

 

has an N(0,1), for n→∞. Using the probability 

statement 1-α=P(-z1-α/2≤Z1≤z1-α/2) and solving for ϕ, 

a (1-α) 100% confidence interval for ϕ is established 

as 
 

 CIpr2:ϕ̂
MM

±z1-α/2√var ( ϕ̂
MM

) 

 

2.2.3 Asymptotic LR Confidence Interval 

In this section, we introduce the likelihood 

ratio (LR) confidence interval. Generally, the LR 

statistic (Hudson, 1971) is the ratio of the likelihoods 

of two models, where the parameter estimates are 

obtained from the possible parameter space Ω and the 

restricted subspace ω, or parameter space under the 

null hypothesis (H0). Under model (2), the LR statistic 

for parameter θ is given by 
 

 Λ=
sup
θ∈ω

L(θ)

sup
θ∈Ω

L(θ)
=

L(θ̃)

L(θ̂ML)
, (11) 

 

where Ω={θ:θ>0} is the parameter space of θ, 

ω={θ:θ=θ0} is the parameter space under H0:θ=θ0, 

and θ0 is a specific value of θ. According to the 

likelihood function for θ given in (6), we have that 
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L(θ̂ML)=
θ̂ML

2n

2n(1+θ̂ML)
∑ xi

n
i=1 +4n

∏[2(1+θ̂ML)
2
+θ̂ML(xi+2)(xi+1)]

n

i=1

 

 

is the likelihood under   and 
 

L(θ̃)=
θ0

2n

2n(1+θ0)
∑ xi

n
i=1 +4n

∏[2(1+θ0)
2
+θ0(xi+2)(xi+1)]

n

i=1

 

 

is the likelihood under H0. Therefore, the approximate 

LR statistic is of the form 
 

 Λa=-2 log (
L(θ̃)

L(θ̂ML)
) =-2[log L (θ̃)- log L (θ̂ML)]. (12) 

 

Λa is distributed as an asymptotically chi-squared 

random variable with one degree of freedom (df) for 

the large sample size. The LR confidence interval for 

θ consists of all parameter values that would not be 

rejected at the α significance level (Doganaksoy, 

2021; Sangnawakij, 2024). Consequently, the 

asymptotic confidence interval for θ contains the 

lower and upper limits that satisfy 
 

 log L (θ̂ML)-κ=
1

2
χ

1-α,df=1
2 , (13) 

 

where κ is a constant once data are observed and 

χ
1-α,df=1
2  is the (1-α)100% percentile of a chi-square 

distribution with df = 1. 

In practice, numerical computing with software 

will be used to find the bounds of a two-sided 

confidence interval for  . For instance, the gosolnp 

function within the R software (Ghalanos, & Theussl, 

2015) can be applied. The lower and upper limits that 

satisfy (13) are then obtained. They are denoted as Lθ 

and Uθ. To estimate the population mean of the PX 

distribution, a (1-α) 100% asymptotic LR confidence 

interval for ϕ can be computed by 
 

 CIpr3: (
Lθ+3

Uθ(1+Uθ)
,

Uθ+3

Lθ(1+Lθ)
) 

 

2.2.4 Asymptotic Confidence Interval using Log-

transformation of Estimator 

According to model (2), the support of θ is a 

positive real value; consequently, ϕ>0. However, the 

lower bound of confidence intervals given in previous 

methods may sometimes provide a negative value 

(Gangopadhyay et al., 2024). To deal with this 

problem, it is often set to zero, which is the default 

lower bound of the parameter. A question arises 

whether setting a lower limit equal to zero is 

appropriate. This is because the estimation is 

unrealistic. Therefore, in this work, we address this 

problem by using the log-transformed estimation 

(Meeker et al., 2022). Next, the asymptotic confidence 

interval using the log-transformation of the MM 

estimator is constructed. This uses the mean and 

variance of logθ̂ML and logϕ̂
ML

 given in Theorem 3. 

 

Theorem 3. Let θ̂ML and ϕ̂
ML

 be the ML estimators of 

  and ϕ of the PX distribution, respectively. The mean 

and variance of logθ̂ML are logθ̂ML= log θ and 

Var(logθ̂ML)=1/θ
2
I(θ). Hence, E(logϕ̂

ML
)=log ϕ 

E(logϕ̂
ML

)= log ϕ and 
 

 Var(logϕ̂
ML

)= [
θ(1+θ)

θ+3
]

2

[
θ(1+θ)-(θ+3)(1+2θ)

θ
2
(1+θ)

2 ]
2 1

I(θ)
 

 

Proof. Using the delta method and assuming that n  is 

large enough, the mean of logθ̂ML is estimated by 

E(logθ̂ML)= log θ and the mean of logθ̂ML is 

E(logϕ̂
ML

)= log ϕ. The variance of logθ̂ML can be 

approximated by 
 

 Var(logθ̂ML)≈ [
∂

∂θ̂ML

(logθ̂ML)]
E(θ̂ML)=θ

2

Var(θ̂ML)=
1

θ
2
I(θ)

, 

 

where I( )  is the observed Fisher information of   

and Var(logθ̂ML) is the estimated variance given in 

Theorem 1. For the large sample size, it follows that 

logθ̂ML~N(log θ ,1/θ
2
I(θ)). Then, we show the 

variance of logθ̂ML Again, it is based on the delta 

method. Since Var(ϕ̂
ML

) is proved in Theorem 1, we 

yield 
 

Var(logϕ̂
ML

)=Var (log
θ̂ML+3

θ̂ML(1+θ̂ML)
)  ≈ [

∂

∂θ̂ML

(log
θ̂ML+3

θ̂ML(1+θ̂ML)
)]

E(θ̂ML)=θ

2

Var(θ̂ML)  

 

Var(ϕ̂
ML

)= [
θ̂ML(1+θ̂ML)

θ̂ML+3
]

2

[
θ̂ML(1+θ̂ML)-(θ̂ML+3)[θ̂ML+(1+θ̂ML)]

θ̂ML

2
(1+θ̂ML)

2
]

E(θ̂ML)=θ

2
1

I(θ)
 

 

Var(ϕ̂
ML

)= [
θ(1+θ)

θ+3
]

2

[
θ(1+θ)-(θ+3)(1+2θ)

θ
2
(1+θ)

2 ]
2 1

I(θ)
 = [

θ(1+θ)

θ+3
]

2

Var(ϕ̂
ML

) (14) 
 

the estimated variance for Var(logϕ̂
ML

) is obtained by 

substituting ϕ̂
ML

 into θ of equation (14). The proof 

ends here.  

The information given in Theorem 3 is used to 

find the pivotal quantity for log ϕ. It is given by the 

following function: 
 

 Z2=
logϕ̂ML- log ϕ

√var (logϕ̂ML)

 

 

and follows an N(0,1) . Therefore, a (1 – α) 100% 

confidence interval for ϕ is derived as 
 

 CIpr4: exp {log ϕ̂
ML

±z1-α/2√var ( log ϕ̂
ML

)} , 
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where Var(logϕ̂
ML

) is the estimated variance for 

Var(logϕ̂
ML

). Note that the basic exponential function 

is always positive. This method can address the problem 

of the negative lower bound of the confidence interval 

for the parameter truncated at zero. 

 

2.2.5 Percentile Bootstrap Confidence Interval 

Bootstrapping is a version of the statistical 

techniques used to estimate statistics about a 

population by resampling a dataset with replacement 

(Efron, & Tibshirani, 1993). It is a computer-intensive 

method for determining the sampling distribution of 

any statistics derived from a random sample. Therefore, 

it proves beneficial for statistical inferences involving 

complex statistics or situations where adequate 

statistical theory is unavailable. As a consequence, the 

approximated variance of the estimate and confidence 

limits for the parameter of interest can be obtained, 

regardless of the underlying distribution of the data 

(Mooney, & Duval, 1993; Wilcox, 2012). 

The percentile bootstrap confidence interval is 

defined as the interval between (α/2) 100% and 

(1-α/2) 100% percentiles of the distribution for the B  

estimates of the interested parameter obtained from 

the sampling. In this paper, the mean parameter ϕ is 

needed to estimate. Since the bootstrap involves 

drawing a series of random samples from the original 

sample with replacement. Repeating the process, a 

large number of times is required to decrease the 

sampling error. We provide the algorithm of the 

percentile bootstrap confidence interval for ϕ. The 

steps are as follows: 

1) Draw a bootstrap sample of size n  with 

replacement from the original data x1, x2,…,xn 

and denote the nonparametric bootstrap 

sample as x1
*,x2

*,...,xn
*. 

2) Estimate a bootstrap statistic for ϕ using ML 

estimation, denoted by ϕ̂
ML

*
. 

3) Repeat steps 1 and 2 B  times to obtain the B  

bootstrap statistics ϕ̂
ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)
. 

4) Calculate the median of ϕ̂
ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)
 to 

get the bootstrap median ϕ̂
BT

. 

5) Calculate the lower and upper limits from 

(α/2)100% and (1-α/2)100% percentiles of 

ϕ̂
ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)
 to obtain the percentile 

bootstrap confidence interval for ϕ, namely 

CIpr5= (L
ϕ̂

ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)(α/2),U
ϕ̂

ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)(1-α/2)) , 

where L( )  and U( )  denote the lower and upper 

bounds of the confidence interval, and   is a 

significance level. 

 In the application and simulation, the bootstrap 

replication B = 1000 is used. Note that the bootstrap 

statistic introduced is based on the ML estimates. In 

fact, we can apply other methods, such as the MM 

estimates. However, we primarily take into account 

the invariant property of the ML estimator, leading us 

to select it here. 

 

2.2.6 BCa Confidence Interval 

An alternative bootstrap method is considered. 

We refer to the bias-corrected and accelerated (BCa) 

percentile interval (Efron, 1987), which is a distribution-

free method used to construct a bootstrap confidence 

interval. It is similar to percentile bootstrapping; 

however, the BCa method introduces corrections for 

bias and skewness in the distribution of bootstrap 

estimates. In estimation, the two parameters, the bias-

correction parameter ( 0z ) and the acceleration 

parameter ( a ) will be estimated. 0z  represents the 

proportion of bootstrap estimates that are less than the 

observed statistics, and a  denotes the adjusted value 

for the skewness of the bootstrap distribution. Then, 

these values are used to adjust the endpoints of the 

percentile confidence interval. See more details of the 

theoretical concept and applications of the BCa 

method in Böhning et al., (2022), Chernick, & 

LaBudde (2011), and Efron, & Narasimhan (2020). 

To estimate ϕ of the PX distribution, we define 

a (1-α)100% two-sided BCa percentile confidence 

interval as 
 

 CIpr6= (ϕ̂
*
(α1),ϕ̂

*
(α2)) , 

 

where α1=Φ (ẑ0+
ẑ0+zα

1-â(ẑ0+zα)
) and α2=Φ (ẑ0+

ẑ0+z1-α

1-â(ẑ0+z1-α)
) 

are the BCa level endpoints obtained from Monte 

Carlo simulations, where ẑ0 is the estimator of z0, â is 

the estimator of a  calculated using a jackknife approach, 

Φ(⋅)is the cumulative distribution function (cdf) of an 

N(0,1), and zα and z1-α are the α×100% and (1-α) 

100% percentiles of an N(0,1), respectively (Efron, & 

Narasimhan, 2020). The bias corrector is given by 
 

 ẑ0=Φ-1 (
#(ϕ̂ML

*(b)
<ϕ̂ML)

B
) , 

 

where Φ-1(⋅)is the inverse cdf of an N(0,1), and 

# (ϕ̂
ML

*(b)
<ϕ̂

ML
) is the number of replications that give 

*(b)

ML̂ , or the mean estimate in the bootstrap sample b , 
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less than ϕ̂
ML

, or the mean estimate from the sample 

data, for b=1,2,...,B. Moreover, the acceleration factor 

is expressed as 
 

 â=
∑ (ϕ̂ML(⋅)-ϕ̂MLi

)
3

n
i=1

6[∑ (ϕ̂ML(⋅)-ϕ̂MLi
)
2n

i=1 ]
3/2 , 

 

where ϕ̂
ML(⋅)

 is the average of jackknife estimates from 

n observations and ϕ̂
MLi

 is the estimate of ϕ having xi 

removed from the dataset. We give the procedure for 

estimating the confidence limits of ϕ in the following 

steps: 

1) Compute the ML estimate for ϕ from the n  

original observations x1,x2,...,xn using ϕ̂
ML

. 

2) Draw a bootstrap sample of size n  with 

replacement from the original data to get the 

nonparametric bootstrap sample  x1
*,x2

*,...,xn
*. 

3) Estimate a bootstrap statistic for ϕ using ML 

estimation, denoted as ϕ̂
ML

*
. 

4) Repeat steps 2 and 3 B  times to obtain the B  

bootstrap statistics ϕ̂
ML

*(1)
,ϕ̂

ML

*(2)
,...,ϕ̂

ML

*(B)
. 

5) Calculate bias correction estimate ẑ0 and 

acceleration value â. 

6) Compute the adjusted-percentile values α1 

and α2 

 Find the lower and upper limits for ϕ from the 

α1 and α2 quantiles of the bootstrap distribution for 

ϕ̂
ML

*(b)
, for b=1,2,…,B, to obtain a BCa bootstrap CIpr6. 

In practice, statistical software is commonly used 

to obtain bootstrap samples and statistics. Statistical 

software packages, including R, S-Plus, and SPSS are 

all capable of doing these calculations to compute 

parameter estimates. In this paper, we use the bca 

function in the coxed package (Kropko, & Harden, 

2020) of R for estimating the BCa bootstrap interval. 

 

3.  Simulation Study 

The aim of this simulation study is to evaluate 

the performance of proposed estimators and confidence 

intervals for the mean parameter of the PX distribution. 

We use the simulation procedure described below. 

The sample sizes are set at n =5, 10, 30, 50, 100, and 

500 to represent small to large sample sizes. The data 

are sampled from a PX distribution with parameters θ 

= 0.35, 0.5, 1, and 1.5. So, the population means are ϕ 

=1.2, 2, 4.67, and 7.09. Note that the values of   are 

varied to provide different data distributions. The shapes 

of PX distributions with various parameters are also 

shown in Figure 1. To generate sample data from the 

PX distribution, a mixture model, we follow these steps: 

1) Set the initial value for θ. 

2) Sample a variable iu  from a uniform 

distribution between 0 and 1, where i = 1,2,…,n. 

3) If ui<θ/(1+θ), we sample λi~Exp(θ), otherwise 

λi~Gam(3,1/θ), see also equation (4). 

4) Generate the data xi~Pois(λi) to get a PX 

sample of size n. 

 we then estimate ϕ using ϕ̂
ML

, ϕ̂
MM

, and ϕ̂
BT

, and six 

confidence intervals, CIpr1 - CIpr6. Here, the 

confidence level is given as 1 - α = 0.95. Each scenario 

is repeated H = 5000 times using the R statistical 

software (R Core Team, 2024). On average, we compute 

the bias and mean squared error (MSE) of the 

estimator using the following quantities: 
 

 Bias(ϕ̂)=
1

H
∑ ϕ̂

h
H
h=1 -ϕ and MSE(ϕ̂)=

1

H
∑ (ϕ̂

h
-ϕ)

2H
h=1 , 

 

where ϕ̂
h
 is the estimate for parameter   in the h-th 

replication. The average coverage probability and 

expected length of the confidence interval for ϕ are 

approximated by 
 

 CP=
#(Lh≤ϕ≤Uh)

H
 and EL=

1

H
∑ (Uh-Lh)H

h=1 , 
 

respectively, where #(Lh≤ϕ≤Uh) is the number that ϕ 

lies within the lower and upper limits of the confidence 

interval. An estimator with low variation across 

simulation replications and a confidence interval that 

has a close-to-nominal coverage probability of 0.95 

with a short interval length is preferred. 

The performances of the proposed estimators 

and confidence intervals for ϕ are presented in Tables 

1 and 2, respectively. They are also displayed in 

Figure 2. We summarize the major findings of the 

simulation studies as follows: 

1) The results indicate that the biases of ϕ̂
ML

 and 

ϕ̂
MM

 are similar. They approach zero when the 

sample size n  is increased. The efficiency of 

the estimators does not depend on the true 

parameter ϕ.  

2) Biases of ϕ̂
BT

 are large if ϕ ≤ 2 and n<50. 

However, when ϕ ≤ 2, ϕ̂
BT

 is superior to ϕ̂
ML

 

and ϕ̂
MM

 in all cases. Note that a large value of 

ϕ leads to a small value of θ, reflecting less 

skewed data. 

3) The three estimators exhibit small MSEs. 

Moreover, their MSEs tend to decrease if n  is 

increased. When n < 50, the MSEs of ϕ̂
ML

 are 

slightly smaller than those of the comparators. 
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4) CIpr1 and CIpr2 (the confidence intervals using 

ML and MM estimators, respectively) have 

similar coverage probabilities. Their coverage 

rates are much lower than the nominal 

coverage level of 0.95 when n<30, otherwise, 

they have better performance.  

5) The coverage probabilities of CIpr3 (the 

likelihood ratio confidence interval) are much 

greater than 0.95 for all situations in the study. 

It follows that the expected lengths of CIpr3 are 

greater than the other confidence intervals. 

6) Coverage probabilities of CIpr4 (the confidence 

interval using the log-ML estimator) maintain 

the nominal coverage rate in general. The 

performance of this confidence interval does 

not depend on n  and ϕ. Moreover, CIpr4 

provides an acceptable, small, expected 

interval length. 

7) The percentile bootstrap (CIpr5) and BCa 

bootstrap (CIpr6) confidence intervals have the 

coverage probabilities lower than 0.95. They 

cannot cover the true parameter in many cases, 

especially for small sample sizes. The results 

also show that their expected lengths are too 

small. However, the BCa method improves the 

percentile interval in terms of coverage 

probability, comparing with CIpr5. 

In summary, the bias and MSE of the 

estimators proposed in this paper tend to zero for a 

large sample size. These verify that they satisfy the 

property of a consistent estimator. The performance 

of and is similar in terms of bias, but has a better 

MSE. is then recommended for use when However, 

outperforms the MM and ML estimators in terms of 

bias when. It is suggested to estimate the population 

mean in such a case. For interval estimation, is the 

best confidence interval compared to the other 

proposed confidence intervals in terms of coverage 

probability and interval width. It can be used to 

estimate the mean parameter of the PX distribution in 

a wide range of situations, including small, moderate, 

and large sample sizes. 

 

Table 1 Estimated bias and mean squared error (MSE) of the three estimators for the population mean ϕ in the PX distribution 

from simulations 

  n  
Bias  MSE 

ML̂  
MM̂   

BT̂   
ML̂  

MM̂  
BT̂  

1.20  5  0.1043  0.1040  0.3462   0.3947  0.4003  0.3451  

 10  0.0315  0.0300  0.1277   0.2561  0.2569  0.2280  

 30  -0.0072  -0.0076  0.1058   0.0754  0.0755  0.0845  

 50  0.0120  0.0115  0.0573   0.0450  0.0450  0.0479  

 100  0.0011  0.0009  0.0261   0.0241  0.0241  0.0238  

 500  0.0031  0.0030  0.0048   0.0046  0.0046  0.0048  

2.00  5  0.0413  0.0440  0.3597   0.9138  0.9277  0.8301  

 10  -0.0287  -0.0283  0.1863   0.4696  0.4731  0.4935  

 30  0.0063  0.0067  0.0345   0.1623  0.1629  0.1662  

 50  -0.0083  -0.0083  0.0182   0.1017  0.1018  0.1001  

 100  -0.0020  -0.0020  0.0086   0.0518  0.0518  0.0495  

 500  0.0079  0.0079  0.0016   0.0103  0.0103  0.0099   

4.67  5  -0.1551  -0.1332  0.0743   3.3410  3.3932  3.3763  

 10  -0.0652  -0.0549  0.0222   1.7835  1.7932  1.7249  

 30  -0.0240  -0.0190  0.0055   0.5653  0.5671  0.5772  

 50  -0.0112  -0.0091  0.0031   0.3493  0.3518  0.3445  

 100  -0.0230  -0.0221  0.0015   0.1746  0.1744  0.1780  

 500  -0.0120  -0.0119  0.0003   0.0343  0.0344  0.0353  

7.09  5  -0.0006  0.0315  0.0295   5.9799  6.0751  6.7542  

 10  -0.0865  -0.0709  0.0091   3.2744  3.2874  3.3573  

 30  0.0269  0.0348  0.0022   1.1695  1.1784  1.1069  

 50  -0.0152  -0.0091  0.0013   0.7034  0.7092  0.6732  

 100  -0.0222  -0.0173  0.0006   0.3536  0.3539  0.3357  

 500  0.0091  0.0097  0.0001   0.0647  0.0646  0.0669  
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Table 2 Estimated coverage probability and expected length of the six 95% confidence intervals for   of the PX distribution 

from simulations 

  n  pr1CI  
pr2CI  

pr3CI  
pr4CI  

pr5CI  
pr6CI  

Coverage probability 

1.20  5  0.9100  0.9100  0.9822  0.9671  0.8075  0.8350  
 

10  0.9342  0.9412  0.9794  0.9632  0.8877  0.8940  
 

30  0.9294  0.9310  0.9972  0.9602  0.9240  0.9260  
 

50  0.9656  0.9670  0.9986  0.9608  0.9278  0.9286  
 

100  0.9458  0.9428  0.9974  0.9558  0.9394  0.9406  
 

500  0.9492  0.9512  0.9980  0.9482  0.9436  0.9440  

2.00  5  0.9171  0.9172  0.9810  0.9600  0.8300  0.8413  
 

10  0.9252  0.9266  0.9968  0.9662  0.8774  0.8802  
 

30  0.9452  0.9452  0.9940  0.9612  0.9258  0.9270  
 

50  0.9358  0.9358  0.9914  0.9454  0.9344  0.9342  
 

100  0.9366  0.9366  0.9940  0.9400  0.9460  0.9464  
 

500  0.9490  0.9490  0.9904  0.9546  0.9496  0.9482  

4.67  5  0.8834  0.8732  0.9758  0.9464  0.8021  0.7979  
 

10  0.9142  0.9194  0.9890  0.9404  0.8708  0.8746  
 

30  0.9550  0.9538  0.9936  0.9524  0.9286  0.9296  
 

50  0.9532  0.9518  0.9880  0.9456  0.9286  0.9306  
 

100  0.9404  0.9436  0.9866  0.9490  0.9366  0.9366  
 

500  0.9452  0.9464  0.9882  0.9460  0.9404  0.9418  

7.09  5  0.9270  0.9294  0.9908  0.9562  0.8060  0.8203  
 

10  0.9216  0.9206  0.9892  0.9498  0.8772  0.8832  
 

30  0.9468  0.9466  0.9834  0.9594  0.9254  0.9260  
 

50  0.9372  0.9384  0.9746  0.9444  0.9350  0.9366  
 

100  0.9390  0.9416  0.9730  0.9424  0.9404  0.9410  
 

500  0.9578  0.9596  0.9808  0.9562  0.9450  0.9440  

Expected length 

1.20  5  2.8287  2.8399  13.3804  3.4694  1.8285  1.9159  
 

10  1.9372  1.9384  1.4497  2.1544  1.6712  1.7077  
 

30  1.1051  1.1052  1.8344  1.1457  1.0725  1.0813  
 

50  0.8670  0.8672  1.3866  0.8858  0.8369  0.8420  
 

100  0.6100  0.6101  0.9539  0.6167  0.5981  0.6001  
 

500  0.2735  0.2735  0.4192  0.2740  0.2707  0.2710  

2.00  5  3.8942  3.9152  14.7286  4.5532  2.8658  2.9149  
 

10  2.7134  2.7176  9.7741  2.9399  2.3863  2.4206  
 

30  1.5979  1.5991  2.3577  1.6409  1.5249  1.5361  
 

50  1.2329  1.2335  1.7831  1.2528  1.2068  1.2130  
 

100  0.8749  0.8750  1.2446  0.8819  0.8599  0.8619  
 

500  0.3930  0.3930  0.5516  0.3936  0.3893  0.3897   

4.67  5  7.0496  7.1099  19.1812  7.8134  5.5849  5.6089  
 

10  5.0978  5.1200  7.8397  5.3667  4.5530  4.6008  
 

30  2.9772  2.9845  3.8084  3.0288  2.8754  2.8911  
 

50  2.3138  2.3170  2.9227  2.3377  2.2530  2.2611  
 

100  1.6340  1.6357  2.0460  1.6425  1.6152  1.6182  
 

500  0.7325  0.7330  0.9103  0.7333  0.7291  0.7295   

7.09  5  10.0561  10.1384  13.1738  10.9365  7.8698  7.8903  
 

10  7.0728  7.1065  9.0846  7.3802  6.3559  6.4132  
 

30  4.1484  4.1610  5.0208  4.2075  3.9750  3.9927  
 

50  3.2002  3.2088  3.8378  3.2276  3.1328  3.1426  
 

100  2.2621  2.2677  2.6934  2.2718  2.2344  2.2384  
 

500  1.0159  1.0175  1.2015  1.0168  1.0072  1.0076 
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(a) Bias      (b) Mean squared error 

 
(c)  Coverage probability    (d) Expected length 

Figure 2 (a) average bias; (b) mean squared error of the mean estimators; (c) average coverage probability of the confidence 

intervals; (d) length of interval under simulated data with true population mean   and sample size n  

 

4.  Numerical Illustration 

This section uses two real data sets to demonstrate 

the newly proposed estimators for the population mean 

of the PX distribution. The chromosome aberrations in 

genetic applications and the number of victims of unrest 

events in the southern region of Thailand are among the 

data considered. 

 

4.1 Chromosome Aberrations 

The first data set is related to the number of 

chromatid aberrations (0.2 g chinon 1, 24 hours) in 

human leukocytes. It was obtained from Altun et al., 

(2022), discussed previously by Shanker, & Fesshaye 

(2015). The data consist of 400 observations and are 

displayed in Figure 3(a), left panel. We can see that 

they have a right-skewed distribution; most data fall 

to the right; and there is zero inflation. Altun et al., 

(2022) used the Akaike information criterion (AIC) 

and Bayesian information criteria (BIC) to select the 

suitable model. They investigated that the data fitted 

to the PX distribution better than Poisson, Poisson-

Lindley, generalized Poisson-Lindley, and negative 

binomial distributions, as the PX distribution had the 

smallest AIC and BIC compared to the other models. 

Herein, we show the observed and expected frequencies 

for this data set in Figure 3(a), right panel. The chi-

square goodness of fit (GoF) test statistic for the PX 

distribution was 4.86 (df = 3) with a p-value of 0.18. 

As a result, the chromosome aberration data are 

suitable for the PX distribution at the 0.05 level of 

significance, as well as for use in this paper. 

 

4.2 Unrest Events in the Southern Area of Thailand 

For the second dataset, we analyze the number 

of victims affected by unrest events that occurred  

in the southern Thailand in 2023. These data were 

collected and reported by the Southern Border Area 

News Summarizes team, which is part of the Office of 

Academic Resources, Prince of Songkla University, 

Pattani Campus, Thailand (see https://summarise. 

wbns.oas.psu.ac.th/home/). Specifically, the data were 

collected from five provinces: Satun, Songkhla, Pattani, 

Yala, and Narathiwat. They are shown on the map 

given in Figure 4. In this paper, we refer to the victim 

as a person directly harmed by a crime in the study area, 

including physical injury or death. However, we do not 

include the number of insurgents who suffered injuries 

or lost their lives. Figure 3(b) shows the number of 

victims in the study area from January to December 

2023, as well as the fitted frequencies. It can be seen 
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that there were 59 days of unrest. The maximum 

observed frequency was 15 people per day. According 

to the data, there are 23 days without injury or death, 

seven days with one victim, and so on. Using the GoF 

test, the number of victims followed a PX distribution 

at a significance level of 0.05. The GoF statistic and 

corresponding p-value were 4.86 (df = 4) and 0.30, 

respectively. 
 

 

 
a) Chromatid aberrations data 

 
(b) Unrest event in the southern border area of Thailand in 2023 

Figure 3 Observed frequencies with fitted frequencies under the PX distribution for (a) chromatid aberrations data and (b) 

unrest event in the southern border area of Thailand in 2023 

 

  
 

Figure 4 A map of southern Thailand: Highlight the five provinces (Satun, Songkhla, Pattani, Yala, and Narathiwat)  

using red dots 
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4.3 Parameter Estimation using Real Data 

The estimators proposed in the methodology 

section are applied to estimate the mean number of 

chromatid aberrations and the average number of 

victims during unrest events in Thailand in 2023. The 

estimated means computed from the three methods 

using the first data set are 
 

 ϕ̂
ML

= 0.5447, ϕ̂
MM

=0.5475, and ϕ̂
BT

= 0.5424 
 

for the second data set, they are 
 

 ϕ̂
ML

=2.1026, ϕ̂
MM

=2.1017, and ϕ̂
BT

=2.0852 
 

based on the ML estimate of the PX distribution, we 

calculate Ê(X)=ϕ̂
ML

 and V̂ar(X)=
θ̂ML

3
+5θ̂ML

2
+11θ̂ML+3

θ̂ML
2

(1+θ̂ML)
2

 

hence, the dispersion index is approximated by 

V̂ar(X)/Ê(X).  For example, the dispersion for data in 

Thailand is 5.0115 , meaning that the variance of the 

data is around five times greater than the mean.  We 

conclude that the data exhibit overdispersion.  The 

9 5 % confidence intervals from the six methods are 

given in Table 3.  The results clearly show that the 

asymptotic likelihood ratio confidence interval, or 

CIpr3, has the largest interval width.  The results from 

two real data examples match those from the 

simulation study.  Although CIpr3 appears to have a 

large interval length, it works well in computation as 

the confidence interval converges and can be solved 

for the lower and upper limits (see Figure 5). 

 

Table 3 The dispersion estimate, estimated mean, 95% confidence interval for  , and length of interval using the two data examples 

Dataset (Sample size) Dispersion Index Estimate for   95% Confidence interval for   Interval length 

Chromosome aberrations 5.8481 ML̂ =  0.5447 pr1CI =  (0.4550, 0.6344) 0.1794 

( n = 400)  
MM̂ =  0.5475 pr2CI =  (0.4575, 0.6375) 0.1800 

  
BT̂ =  0.5424 pr3CI =  (0.4061, 0.7279) 0.3218 

   
pr4CI =  (0.4620, 0.6422) 0.1802 

   
pr5CI =  (0.4454, 0.6569) 0.2114 

   
pr6CI =  (0.4497, 0.6662) 0.2165 

Victims in Thailand 5.0115 ML̂ =  2.1026 pr1CI =  (1.5083, 2.6969) 1.1886 

( n = 59)  
MM̂ =  2.1017 pr2CI =  (1.5103, 2.6930) 1.1827 

  
BT̂ =  2.0852 pr3CI =  (1.4170, 3.1111) 1.6941 

   
pr4CI =  (1.5849, 2.7894) 1.2045 

   
pr4CI =  (1.4362, 2.8523) 1.4161 

   
pr6CI =  (1.4746, 2.9373) 1.4626 

 

       
(a)            (b) 

 

Figure 5 Log-likelihood plot of 95% likelihood ratio confidence limits for parameter   of the PX distribution using (a) 

chromatid aberrations data (
ML̂ = 2.80) and (b) unrest event in the southern border area of Thailand (

ML̂ = 0.96). Note that 

the red-dash lines indicate the lower and upper limits 
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5.  Conclusions 

This paper introduces estimators and confidence 

intervals for the population mean of the PX 

distribution, which are then applied to count data sets. 

For point estimation, the maximum likelihood, moment, 

and bootstrap methods are used.  The large- sample 

theory and bootstrap approach are applied to derive 

the two-sided confidence intervals.  The performance 

of these estimators is evaluated through simulation 

studies in various situations. The results show that the 

maximum likelihood and moment estimators have 

excellent performance in terms of bias if the data from 

the PX distribution has a long right tail. Otherwise, we 

suggest using the bootstrap for point estimation.  To 

quantify uncertainty in an estimate of the parameter, 

the confidence interval is used in statistical inference. 

Nonparametric bootstrap methods need computer 

software to calculate the confidence limits.  Our 

simulations show that these methods are limited to 

estimate the mean for n  500.  In such a case, the 

percentile bootstrap and BCa confidence intervals are 

not suggested to estimate the population mean of the 

PX distribution.  The highlight of this work is the 

confidence interval based on log-transformed maximum 

likelihood estimation.  It can address the issue of a 

negative lower bound, as the mean parameter of the 

PX distribution is always a positive real value. 

Furthermore, the simulation results indicate that this 

confidence interval performs well and maintains 

coverage probability across all sample sizes in the 

study. The confidence interval using log-transformed 

maximum likelihood estimation is recommended for 

use in applications. The asymptotic confidence intervals 

based on the properties of maximum likelihood and 

moment estimators can be used as alternative methods 

for sample sizes larger than or equal to 50. 

Count data can sometimes contain many zeros, 

as demonstrated in the first application of this paper. 

When there are too many zeros, a zero- inflated 

distribution ( Perumean-Chaney et al. , 2013)  may be 

more appropriate. On the other hand, sometimes zero 

cannot occur.  As in capture- recapture applications, 

some units are detected but some remain hidden, so a 

zero-event count is not reported (Böhning et al., 2018; 

Sangnawakij, & Böhning, 2024) .  A zero- truncated 

probability model could be used instead of the 

untruncated distribution. Future research will focus on 

estimating the mean parameter for the PX distribution 

with zero inflation or truncation.  
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