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Abstract 
Breast cancer (BC) is now identified as a disease with a significant impact on morbidity and mortality that is 

growing and widespread worldwide. This study uses a publicly available clinical dataset of 699 patients from the 

University of Wisconsin with 9 variables: (1) clump thickness, (2) uniformity of cell size, (3) uniformity of cell shape, 

(4) marginal adhesion, (5) single epithelial cell size, (6) bare nuclei, (7) bland chromatin, (8) normal nucleoli, and (9) 

mitoses. This dataset has been used for many studies in the past to pinpoint critical factors in patient diagnosis. Here, we 

use this data to ensure its unbiasedness and accuracy. We then apply principal component analysis and machine learning 

models to identify factors in diagnosing a malignant or benign tumor. We investigate and compare the classification 

accuracy of different machine learning models, including tree, linear discriminant, quadratic discriminant, logistic 

regression, naive Bayes, support vector machine (SVM), K-nearest neighbor (KNN), ensemble, neural network, and 

kernel. The best models that can achieve the highest accuracy are medium Gaussian SVM, coarse Gaussian SVM, and 

cosine KNN, with an accuracy of 96.5%. The principal component analysis method is then performed to identify crucial 

components and build an accurate model with fewer parameters. The medium Gaussian SVM has the highest cross-

validation classification accuracy of 96.98% and requires only three predictors: normal nucleoli, bare nuclei, and cell size 

uniformity. 

 

Keywords: breast cancer classification; classification of malignant and benign cells; machine learning; principal 

component analysis; complexity reduced model; intelligent diagnostic software 

 

 

1.  Introduction 

Breast Cancer (BC) is the most common life-

threatening malignancy in women. Nowadays, 

breast cancer in the early stage can be roughly 80% 

curable due to advancements in treatment strategies 

(Sheikh et al., 2022). However, metastatic breast 

cancer (MBC) or stage IV is the stage in which 

cancer has spread beyond the breast to other areas 

of the body and is mainly considered incurable 

(McGuire et al., 2015). It is imperative to study this 

issue worldwide to maintain the quality of life and 

increase the life expectancy of those coping with 

breast cancer (Shimoi et al., 2020). 

The chance of developing breast cancer in 

their lifetime for women in developing countries is 

approximately 13% or one in every 8 women 

(Yedjou et al., 2019), with an increasing number of 

cases of around 0.5% per year (Siegel et al., 2023). 

Primarily, breast cancer occurs in middle-aged to 

older women. However, the statistics show a 
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significant decline of 43 percent in breast cancer 

mortality rates from 1989 to 2020 due to improved 

treatments and higher awareness (Giaquinto et al., 

2022). 

The invasions and malignancies of BC 

classify various types of BC. Non-invasive BC is 

the presence of atypical cells that do not invade 

other surrounding breast tissues and are confined to 

the ducts, such as ductal carcinoma in situ (DCIS) 

and also lobular carcinoma in situ (LCIS) (Dange et 

al., 2017). On the other hand, invasive breast cancer 

is the presence of spreading and invasive cells that 

break through the duct. Based on the National 

Breast Cancer Foundation Inc, DCIS is the most 

frequent type of non-invasive BC that has not 

spread out of the ducts, while LCIS presents a 

higher risk of developing cancer cells in either 

breast. Other common BC types are invasive, such 

as infiltrating lobular carcinoma (ILC) and 

infiltrating ductal carcinoma (IDC), and they 

usually metastasize to other fatty tissues of the 

breasts (Das et al., 2021). 

Several studies from the Center for Disease 

Control and Prevention (CDC) clearly show that the 

risks or causes of BC come from many distinct 

factors. Female individuals older than 50 are at the 

highest risk of developing breast cancer 

(Richardson et al., 2022). Data from breast cancer 

patients indicate that the cause of BC may be 

attributed to environmental factors, stress level, 

heredity, or even lifestyle factors (Dumalaon-

Canaria et al., 2014). 

Individuals must observe their breasts for 

thickened tissues or lumps, the first symptoms 

usually present. Most breast lumps are not harmful, 

but women should be aware of the potential signs 

of BC and always get checked by specialists 

(Swathi et al., 2019). Changes in the size, shape, 

and appearance of itchy skin and swelling lumps on 

the breasts may also be disease symptoms (Oliveri 

et al., 2019).  

Obesity, physical inactivity, and radiation 

exposure are more likely to be the primary risk 

factors for developing breast cancer among women. 

Nevertheless, breast cancer can also develop due to 

many other things, including starting menstruation 

early, late, or no pregnancy (Yau et al., 2022). 

Moreover, the consumption of alcohol and hormone 

replacement therapy can also escalate the risks of 

getting breast cancer (Liu et al., 2015). 

Based on screening and doctor’s 

recommendation, there are several treatments for 

BC patients with different diagnosed results and 

stages. The five standard treatments are surgery, 

radiotherapy, chemotherapy, targeted therapy, and 

hormone therapy. Patients with BC should strictly 

follow their doctors’ guidance on medication, 

treatment(s), or a combination. Certain medicines 

such as Tamoxifen, Raloxifene, and Aromatase 

Inhibitors (Cornell et al., 2022) could be used to 

lessen the risk of breast cancer with a doctor’s 

recommendation according to the individual’s 

health risks and symptoms. 

These days, the world has been developing 

with the breakthrough in computer science and 

many other things. There have been predicted 

statements by Artificial Intelligence (AI) about the 

scheme and achievement of screening and diagnosis 

of breast cancer in laboratories (Dileep & Gyani, 

2022). Breast cancer claimed more than 600,000 

lives globally in 2018. Health organizations 

worldwide suggest screening mammography for the 

early detection of malignant growth sites because it 

effectively lowers mortality from bosom disease by 

20–40% (Iqbal et al., 2022). 

AI has recently made massive progress in 

screening methods for breast cancer (Saelee et al., 

2022), which is emerging and becoming helpful to 

the treatment in detecting breast cancer in the very 

early stage and more precise prognosis (Nassif et 

al., 2022; Shah et al., 2022). Advancement in digital 

pathology also helps create high-quality images of 

tissues specimen using computerized technology 

(Gupta et al., 2022). The AI lies in detecting 

variations of conditions in different stages to 

evaluate the disease’s progress (Dileep & Gyani, 

2022). 

Numerous optimization algorithms exist, 

such as the Binary Crocodiles Hunting Strategy, the 

proximal gradient method, and Dykstra’s algorithm 

(Perrin & Roncalli, 2020). However, the Principal 

Component Analysis (PCA) approach is one of the 

simplest methods as it reduces the complexity of 

ML models by lessening the dimensions of models 

(Lever et al., 2017). Compared to other model 

reduction approaches, the indicated method results 

in a satisfactorily high speed and low computing 

demands.  

Software screening plays a significant role in 

aiding doctors to diagnose patients, allowing them 

to prophesy and spot a clearer view of BC 

indications. With precise integration, AI helps 

reduce the healthcare staff’s workload, 

computational burden, and resources (Gill et al., 
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2022). Furthermore, pathologists are rare in the 

medical field. According to the Thai Institute of 

Pathology, the Ministry of Public 

Thailand’s healthcare system has 18 surgical 

pathologists and approximately 102,000 worldwide 

(Colangelo et al., 2022). Moreover, the ratio of the 

number of pathologists to physicians in the world is 

1 to 125. These statistics present a shortage of 

pathologists, leading to misdiagnoses of diseases, 

especially cancer (Troxel, 2006). 

Dr. WIlliam H. Wolberg, University of 

Wisconsin Hospitals, Madison, Wisconsin, USA, 

has donated a dataset of 699 patients collected from 

January 1989 to November 1991 with benign and 

malignant cells as an open-source database, which 

can be downloaded from the University of 

California Irvin (UCI) machine learning repository 

website. Here, we have employed the dataset 

(Mangasarian & Wolberg, 1990; Wolberg & 

Mangasarian, 1990; Wolberg, Mangasarian & 

Setiono, 1989). The dataset is a biased dataset 

containing 458 patients having benign cells (B) and 

241 patients having malignant cells (M). Here, the 

dataset was curated by randomly removing 217 

patients from the B group, so the B and the G groups 

have the same size becoming an unbiased dataset. 

The curated dataset was then analyzed using built-

in Machine Learning (ML) models under Matlab 

2022b to see whether trained models correctly 

classified the cell type. We have also performed 

principal component analysis (PCA) (Panyamit et 

al., 2022) to reduce the model’s size and identify 

crucial parameters to classify the type of breast cell. 

 

2. Objectives 

1. This research uses statistical machine learning 

models to determine the clinical variables that 

are most significant for clinicians to consider 

when diagnosing breast tumors. The study will 

evaluate the accuracy of the models in 

classifying breast tumors as malignant or 

benign and identify factors that affect 

prediction accuracy in breast cancer patients. 

The machine learning models will be trained 

using a dataset that includes clinical variables 

and tumor characteristics of breast cancer 

patients. The researchers will employ a 5-fold 

cross-validation method to assess the 

performance of the models, and they will 

calculate accuracy, recall, precision, and F1 

score for both the training dataset and the 

validation dataset. 

2. Use machine learning (ML) to predict the 

accuracy rates of breast cancer diagnosis 

affected by each factor and compare them to 

the rates reported in the literature. 

3. Apply PCA and ML models, comparing 

different statistical models’ BC classification 

and predictive accuracy of different machine 

learning models: Tree, Linear Discriminant, 

Quadratic Discriminant, Logistic Regression, 

Naïve Bayes, Support Vector Machine (SVM), 

K-Nearest Neighbor (KNN), Ensemble, 

Neural Network, and Kernel. 

 

3. Materials and methods  

This section explains a detailed 

methodology, including data source, data curation, 

training dataset and testing dataset preparation, 

supervised classification training, and PCA 

computation. There is no universally accepted 

criterion or standard rule of thumb to ascertain that 

a particular model is more effective than another 

model by looking at the dataset in machine learning. 

The number of samples that we need is also 

incalculable. Even though regression usually 

necessitates a greater number of samples than 

classification does. From the theorem of no free 

lunch, a theoretical discovery proposes that every 

optimization algorithm performs equally well on 

average across all conceivable objective functions; 

it indicates no effortless solution in machine 

learning. As a result, these general guidelines are 

often more inaccurate than accurate. This is the 

reason why we have included all possible models 

that are available in MATLAB. The process flow of 

this research is depicted in Figure 1 and provided in 

the subsections below. 
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Figure 1 Process flow of the ML analysis in this study. 

 

3.1 Dataset 

The BC dataset analyzed here was obtained 

from the open-source UCI Machine Learning 

Repository (Mangasarian & Wolberg, 1990) 

(assessed January 12, 2023). It contains data from 

699 patients’ breast biopsied tissue to identify 

cytological characteristics of being or malignant 

using the Fine-Needle Aspirates (FNAs) method 

(Frable, 1983; Mouriquand & Pasquier, 1980), 

including the following 10 features based on a 1 to 
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10 scale graded at the time when the samples were 

collected. Note that 1 is closest to benign, whereas 

10 is most relative to the anaplastic case (Wolberg 

& Mangasarian, 1990). It is crucial to point out that 

the original paper from Wolberg & Mangasarain 

(1990) did not elaborate on how these values were 

determined and evaluated (Ohno-Machado & 

Bialek, 1998). The nine features with the 

corresponding diagnosis are shown in Table 1 

below. There are only nine features since the first 

column in the dataset is the sample numbers, which 

are used instead of patients’ names for anonymity. 

This feature has been excluded from this study. 

 

Table 1 Predictors and labels obtained from the UCI breast cancer dataset. 

Predictors Details Values Mean (�̅�) 
Standard 

deviation (S) 

Clump Thickness If the cell is grouped, forming monolayers, 

it is likely to be benign cells since 

cancerous cells tend to be grouped in 

multilayers. 

1-10 4.42 2.82 

Uniformity of 

Cell Size 

Cancer cells tend to vary in size, which is 

used to estimate the consistency in the cell 

size. 

1-10 3.13 3.05 

Uniformity of 

Cell Shape 

Cell uniformity is used to verify the shape 

of the types of cells (cancer and non-

cancer) because cancer cells tend to vary in 

shape. 

1-10 3.21 2.97 

Marginal 

Adhesion 

Cancer cells tend to lose the ability of cells 

sticking together, so this method can be 

used to identify carcinogenic and non-

carcinogenic cells. 

1-10 2.81 2.86 

Single Epithelial 

Cell Size 

Most cancer usually occurs inside 

epithelial tissues, which is a tissue 

covering the internal and external surfaces 

of our body. 

1-10 3.22 2.21 

Bare Nuclei This feature is for nuclei in a cytologic 

preparation not in or surrounded by 

cytoplasm. 

1-10 3.46 3.64 

Bland Chromatin   It describes a uniform texture of the 

nucleus. 

1-10 3.44 2.44 

Normal Nucleoli It is a term for the largest structure in the 

nucleus, where they synthesize and 

assemble the cell’s ribosomes. 

1-10 2.87 3.05 

Mitoses This type of cell division is where 

replicated or daughter cells have the same 

kind and number of chromosomes as their 

original or parent cells. 

1-10 1.59 1.72 

Label Details Values Number in each class 

Class: There are two class types: benign and 

malignant 

2 = benign  

4 = malignant  

458 cases (65.52%) 

241 cases (34.48%) 

 

Table 2 Classification Model Predictors and Labels 

Variables Type Variables Type 

Clump Thickness Predictor Bare Nuclei Predictor 

Uniformity of Cell Size Predictor Bland Chromatin Predictor 

Uniformity of Cell Shape Predictor Normal Nucleoli Predictor 

Marginal Adhesion Predictor Mitoses Predictor 

Single Epithelial Cell Size Predictor Malignant/Benign Label 
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3.2 Data curation 

The biased 699 data rows were then reduced 

to 683 rows by removing 16 rows that contained 

missing information. The 683 rows were 444 for the 

B cases and 239 for the M cases; this dataset was 

biased toward the B case, which is inappropriate for 

ML training. The dataset size was further reduced 

to 478 rows containing 239 for B and 239 for M, 

respectively. This curation ensured that the dataset 

was unbiased by randomly removing 205 rows from 

the B cases. The 10 variables were first treated as 

predictors and labels for supervised ML training 

and classification tasks. The 10 predictor variables 

are summarized in Table 2. 

 

3.3 Dataset for training and validation 

The 478 rows were then divided into 2 

datasets: the training dataset (430 rows) and the 

validation dataset (48 rows) at a ratio of 90% to 

10%. The training and validation datasets were 

selected randomly by ensuring that both datasets 

contained the same number of B cases and M cases, 

in other words, unbiased training dataset and 

unbiased validation dataset.  

 

3.4 Machine Learning Training 

We then used a built-in Classification 

Learner application in MATLAB 2022b to train the 

supervised ML models listed in Table 3 using the 

training dataset. The numerous models were trained 

to compare their performance for the given dataset. 

Classification performance was evaluated 

using a 5-fold cross-validation accuracy, precision, 

recall, and F1 score, as shown in Equation (1)-(4). 

Accuracy= 
Tp+Tn

Tp+Tn+Fp+Fn
   (1) 

Precision= 
Tp

Tp+Fp
    (2) 

Recall= 
Tp

Tp+Fn
    (3) 

F1= 2
Precision×Recall

Precision+Recall
   (4) 

Where  Tp and Tn are defined as true positive and 

true negative cases, respectively. Fp  and Fn  are 

defined as false positive and false negative cases, 

respectively. 

The trained models were then validated 

using the separate validation dataset to determine 

whether the trained models were generalized and 

could provide a correct response for the unseen 

dataset. The same performance parameters, 

including the 5-fold cross-validation accuracy, 

precision, recall, and F1 score for the validation 

dataset, were also calculated to validate the model 

performance against the training dataset. 

 

3.5 Principal component analysis 

A PCA model (Vidal et al., 2016) with a 

statistical confidence of 95% was then applied to 

identify essential predictors contributing to the 

model classification accuracy using the built-in 

PCA analysis tool in MATLAB 2022b. After 

identifying critical predictors, a less complex 

classification model was trained to show that with 

fewer predictors, the classification model can still 

perform similarly to the models trained using all the 

available predictors. We will also discuss in the 

result section that the PCA provides similar results 

to other feature section methods, including 

probability density functions of χ2-test (Chi-

square), ANOVA, and the p-value of the Kruskal-

Wallis method (Ostertagova et al., 2014). 

 

4. Results 

4.1 ML Classification accuracy based on all 9 

Predictors. 
The ML models in Table 3 were first trained 

using all 9 predictors and malignant/benign labels, 

as listed in Table 1. The classification accuracy of 

each model is shown in Table 4. The top three ML 

models were the Medium Gaussian SVM (SVM), 

Coarse Gaussian SVM (SVM), and Cosine KNN 

(KNN), with the same classification accuracy of 

96.5%.  

Table 4 also shows that the top 3 highest F1 

performance models are the Medium Gaussian 

SVM model with the F1 score of 96.57%, followed 

by the Coarse Gaussian SVM model and the Cosine 

KNN model with the same F1 score of 96.52%. The 

confusion matrices and the receiver operating 

characteristic (ROC) plots for these three models 

are shown in Figure 2 and Figure 3, respectively. 
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Table 3 The ML models employed in this study.  

Model Details 

Tree Fine Tree 

Medium Tree 

Coarse Tree 

Linear Discriminant Linear Discriminant 

Quadratic Discriminant Quadratic Discriminant 

Logistic Regression Logistic Regression 

Naïve Bayes Gaussian Naïve Bayes 

Kernel Naïve Bayes 

SVM Linear SVM 

Quadratic SVM 

Cubic SVM 

Fine Gaussian SVM 

Medium Gaussian SVM 

Coarse Gaussian SVM 

Kernel SVM Kernel 

Logistic Regression Kernel 

Fine KNN 

Medium KNN 

K-Nearest Neighbor (KNN) Coarse KNN 

Cosine KNN 

Cubic KNN 

Weighted KNN 

Ensemble Boosted Trees 

Bagged Trees 

Subspace Discriminant 

Subspace KNN 

RUSBoosted Trees 

Neural Network Narrow Neural Network 

Medium Neural Network 

Wide Neural Network 

Bilayered Neural Network 

Trilayered Neural Network 

 

Figures 2 and 3 show that although the 

Medium Gaussian SVM model has the highest F1 

score, it does have higher false positive cases. The 

other two models provide similar false positive 

performance and are better than the Medium 

Gaussian SVM model. The promising candidate 

model for malignant screening is the Medium 

Gaussian SVM model since having higher false 

positive cases is better than having higher false 

negative cases. 

4.2 Validation of the trained model using the 

validation dataset 

The separated validation dataset was then 

employed to predict the classification output 

compared to their known label. For the 48 validation 

cases, the trained Medium Gaussian SVM model 

can predict 23 true positive results, 22 true positive 

results, and only 1 false negative result and 2 false 

positive results, respectively, as shown in Figure 4.  

  



PECHPRASARN ET AL. 

JCST Vol. 13 No. 3, Sep.-Dec. 2023, 642-656 

649 

Table 4 Classification Accuracy of ML Models Trained with all 9 Predictors. 

Model Details Accuracy Precision Recall F1 

Tree Fine Tree 93.26% 92.66% 93.95% 93.30% 

Medium Tree 93.3% 92.66% 93.95% 93.30% 

Coarse Tree 92.8% 90.00% 96.28% 93.03% 

Linear Discriminant Linear Discriminant 95.1% 97.55% 92.56% 94.99% 

Quadratic Discriminant Quadratic Discriminant 94.9% 92.14% 98.14% 95.05% 

Logistic Discriminant Logistic Regression 95.8% 96.68% 94.88% 95.77% 

Naïve Bayes 
Gaussian Naïve Bayes 96.3% 94.22% 98.60% 96.36% 

Kernel Naïve Bayes 95.6% 96.23% 94.88% 95.55% 

SVM Linear SVM 96.0% 95.83% 96.28% 96.05% 

Quadratic SVM 96.0% 95.41% 96.74% 96.07% 

Cubic SVM 94.9% 94.88% 94.88% 94.88% 

Fine Gaussian SVM 95.1% 91.10% 100.00% 95.34% 

Medium Gaussian SVM 96.5% 95.05% 98.14% 96.57%* 

Coarse Gaussian SVM 96.5% 96.30% 96.74% 96.52%** 

KNN Fine KNN 94.0% 95.65% 92.09% 93.84% 

Medium KNN 96.0% 92.26% 95.81% 96.03% 

Coarse KNN 93.3% 97.45% 88.84% 92.95% 

Cosine KNN 96.5% 96.30% 96.74% 96.52%** 

Cubic KNN 95.6% 95.79% 95.35% 95.57% 

Weighted KNN 96.0% 96.26% 95.81% 96.03% 

Ensemble  

Boosted Trees 58.8% 93.18% 19.07% 31.66% 

Bagged Trees 94.9% 94.47% 95.35% 94.91% 

Subspace Discriminant 95.1% 97.09% 93.02% 95.01% 

Subspace KNN 95.1% 94.91% 95.35% 95.13% 

RUSBoosted Trees 95.1% 92.05% 37.67% 53.46% 

Neural Network 

Narrow Neural Network 94.0% 93.55% 94.42% 93.98% 

Medium Neural Network 93.5% 93.90% 93.02% 93.46% 

Wide Neural Network 93.5% 93.90% 93.02% 93.46% 

Bilayered Neural Network 93.5% 93.09% 93.95% 93.52% 

Trilayered Neural Network 94.7% 94.04% 95.35% 94.69% 

Kernel 
SVM Kernel 96.3% 94.62% 98.14% 96.35% 

Logistic Regression Kernel 96.3% 95.43% 97.21% 96.31% 

 

These 4 values give the following 

performance parameters: the accuracy of 93.75%, 

the precision of 92.00%, the recall of 95.83%, and 

the F1 score of 93.88%. The performance 

parameters for the validation cases were slightly 

less than the performance parameters of the training 

dataset, with discrepancies within 3%. For the ROC 

performance, the trained Medium Gaussian SVM 

model had a similar performance when validated 

using the validation dataset compared to the ROC 

plots of the training dataset, as shown in Figure 4. 

 

4.3 Number of predictors reduction using PCA 

In the previous sections, we have 

demonstrated that accurate classification models 

can be trained using all the available 9 predictors, 

which are (1) Clump Thickness, (2) Bare Nuclei, (3) 

Uniformity of Cell Size, (4) Bland Chromatin, (5) 

Uniformity of Cell Shape, (6) Normal Nucleoli, (7) 

Marginal Adhesion, (8) Mitoses, and (9) Single 

Epithelial Cell Size to predict whether the given cell 

image is benign or malignant. Here, we perform 

PCA analysis using the built-in Matlab PCA 

feature, and the coefficients are as shown in Table 

5, calculated at 95% confidence.  
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Figure 3 ROC plots of 3 best performance models (a) Medium Gaussian SVM, (b) Coarse Gaussian SVM, and (c) 
Cosine KNN 

 
 

 
 
 

Figure 4 (a) Confusion matrix, and (b) ROC plots for the Medium Gaussian SVM model when validated using the 48 
cases of the validation dataset. 

 

Table 5 shows that the top 3 highest PCA 

coefficients are Normal Nucleoli, Bare Nuclei, and 

Uniformity of Cell Size. We also performed other 

statistical methods to identify the crucial factors 

from these 9 predictors by computing probability 

density functions of χ2- test, ANOVA, and the p-

value of the Kruskal-Wallis method, as shown in 

Table 5. Although the results from the different 

approaches show slightly different predictor 

rankings, the top three highest scores remained the 

same for all the methods. 

The importance of the 3 predictors was then 

justified by training the Medium Gaussian SVM 

models using a different number of predictors from 

1 predictor to 4 predictors based on the PCA 

coefficients in Table 5. The confusion matrices for 

the models trained using a different number of 

predictors are shown in Figure 5, and the 

summarized performance parameters are shown in 

Table 6. The optimum number of predictors is three, 

and it can be seen in Table 5 that if the fourth 

predictor is added to the model, the model’s 

performance is degraded. It is well-established that 

having more information does not always result in a 

better model, for example, if the additional 

information contains more noise than helpful 

information for machine learning. Figure 6 shows 

ROC performance for 4 trained models using a 

different number of predictors. It can be seen that 

the ROC performance does not change or improve 
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much after 2 predictors and provides a similar ROC 

response when trained using all 9 predictors.  

 

4.4 Validation for the trained Medium Gaussian 

SVM models using 3 predictors. 

The trained Medium Gaussian SVM models 

using 3 predictors were validated using the 

validation dataset. The confusion matrix and the 

ROC plots for the validation dataset are shown in 

Figure 7. From the confusion matrix, the 

performance parameters can be computed, and it 

found that the accuracy, precision, recall, and F1 

scores are 93.75%, 95.65%, 91.67%, and 93.62%, 

respectively. The performance of these parameters 

agrees with the model trained using all 9 predictors. 

Therefore, we are confident that the dimension-

reduced model can be employed to classify breast 

cancer cells, reducing the resources and time for 

data collection and analysis. 

 

 

Table 5 PCA coefficients, probability density functions of χ2- test, ANOVA, the p-value of Kruskal-Wallis test of the 
9 predictors 

Predictors 
ANOV

A 
Predictors 

Kruskal-

Wallis 

Predictors χ2- test Predictors PCA 

coefficients 

Normal Nucleoli 
224.16 

Bare Nuclei 
160.57 Uniformity of 

Cell Size 

160.59 Normal 

Nucleoli 

0.43 

Uniformity of 

Cell Size 

219.11 Uniformity of 

Cell Size 

158.51 Bare Nuclei 160.29 Bare Nuclei 0.49 

Bare Nuclei 
213.00 Normal 

Nucleoli 

152.42 Normal Nucleoli 149.45 Uniformity of 
Cell Size 

0.39 

Marginal 

Adhesion 

172.45 Marginal 

Adhesion 

132.32 Marginal 

Adhesion 

129.97 Bland 

Chromatin 

0.38 

Clump Thickness 
147.31 Uniformity of 

Cell Shape 

126.40 Uniformity of 
Cell Shape 

128.85 Mitoses 0.37 

Mitoses 
136.70 Bland 

Chromatin 

122.31 Mitoses 115.84 Marginal 

Adhesion 

0.30 

Bland Chromatin 
136.44 

Mitoses 
120.51 Bland Chromatin 115.31 Clump 

Thickness 

0.29 

Uniformity of 

Cell Shape 

112.78 Clump 

Thickness 

109.14 Clump Thickness 98.53 Uniformity of 

Cell Shape 

0.23 

Single Epithelial 

Cell Size 

36.03 Single 

Epithelial Cell 
Size 

52.78 Single Epithelial 

Cell Size 

48.56 Single 

Epithelial Cell 
Size 

0.13 

 

 

 
 

Figure 5 Confusion matrices for the models trained using a different number of predictors (a) 1 predictor: Normal 

Nucleoli, (b) 2 predictors: Normal Nucleoli & Bare Nuclei, (c) 3 predictors: Normal Nucleoli & Bare Nuclei & 

Uniformity of Cell Size, and (d) 4 predictors: Normal Nucleoli & Bare Nuclei & Uniformity of Cell Size & Bland 

Chromatin 
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Table 6 Accuracy, Precision, Recall, and F1 scores of the Medium Gaussian SVM trained using a different number of 

predictors from 1 predictor to 4 predictors based on the PCA coefficient ranking in Table 5. 

Predictors included in the model training Accuracy Precision Recall F1 

1  predictor:  

 Normal Nucleoli 
90.93% 91.90% 89.77% 90.82% 

2  predictors:  

 Normal Nucleoli & Bare Nuclei 
94.88% 95.31% 94.42% 94.86% 

3  predictors:  

 Normal Nucleoli & Bare Nuclei & Uniformity of Cell Size 
96.98% 95.91% 98.14% 97.01% 

4 predictors:  

 Normal Nucleoli & Bare Nuclei & Uniformity of Cell Size & 

 Bland Chromatin 

96.05% 95.83% 96.28% 96.05% 

 

 

 
 

Figure 6 ROC plots for the models trained using a different number of predictors (a) 1 predictor: Normal Nucleoli, (b) 

2 predictors: Normal Nucleoli & Bare Nuclei, (c) 3 predictors: Normal Nucleoli & Bare Nuclei & Uniformity of Cell 

Size, and (d) 4 predictors: Normal Nucleoli & Bare Nuclei & Uniformity of Cell Size & Bland Chromatin 
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Figure 7 (a) Confusion matrix, and (b) ROC plots for the Medium Gaussian SVM model trained using 3 predictors 
when validated using the 48 cases of the validation dataset. 

 

5. Discussion 

Nowadays, as people around the globe are 

suffering an epidemic of breast cancer, techniques, 

and technologies to detect this painful disease still 

require complicated and time-consuming 

procedures such as biopsy images of suspected 

clumped cells (Versaggi & De Leucio, 2020). 

Based on an open-source dataset of 10 variables, we 

identified three predictor variables contributing 

most to diagnosing breast cancer. Alternatively, our 

developed and size-reduced AI can achieve a high 

classification accuracy of 96.97%, and it only 

requires 3 extracted features from FNA biopsied 

breast epithelial cell image. This finding allows 

physicians to focus more on these three predictors 

and reduce the healthcare staff’s workload, 

computational burden, and resources. Furthermore, 

pathologists are rare in the medical field. There are 

3 surgical pathologists in Thailand and 

approximately 102,000 worldwide (Colangelo et 

al., 2022). Moreover, the ratio of the number of 

pathologists to physicians in the world is 1 to 125. 

These statistics clearly show a shortage of 

pathologists, leading to misdiagnoses of diseases, 

especially cancer. 

We have utilized patient information from 

Fine-Needle Aspiration (FNA) pictures to use them 

for different purposes separately; to train and 

validate the models. Those datasets for training 

were put and calculated in MATLAB for 

classification accuracy, precision, recall, and F1, 

while the dataset for validation was calculated in the 

confusion matrix. The tested results from the 

abovementioned dataset were created, collected, 

and given as an open-source database that excluded 

patients’ IDs. 

Previous studies were conducted on using 

machine learning models to diagnose breast cancer, 

such as the research conducted in 2010 by Osareh 

& Shadgar (2010). The results achieved from this 

study were equal to 98.80% and 96.33% by 

applying support vector machines and classifier 

models. Other studies were also implemented using 

machine learning to predict the survival rates of BC 

patients. The research concludes that the Trees 

Random Forest model had the most satisfying 

performance, compared to other techniques due to 

the accuracy, sensitivity, and the area under the 

ROC curve of this approach being 96%, 96%, and 

93%, respectively (Montazeri et al., 2016). 

We are fully aware that there are also some 

other model reduction methods and optimization 

tools, such as Genetic Algorithm (GA), Patricle-

Swarm-Optimization (PSO), and Fast Forward 

Quantum Optimization Algorithm (FFQOA). 

However, this study’s main objective is to reduce 

the model complexity; when the PCA models were 

calculated, it took approximately 2 minutes. 

Therefore, employing more sophisticated 

algorithms (Kaur et al., 2022) to perform the task 

was not essential in our study. 

In this research, our current limitation is that 

the database’s 1-10 scoring system was not clearly 

defined from the database source. For future 

studies, our research team strongly advises referring 

back to the standard scoring system for each 

predictor, such as using the TNM system (Cserni et 

al., 2018), which groups tumors’ clump thickness in 
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millimeters or centimeters. Regarding standard 

scoring systems, we plan to reverse engineer the 

original dataset to traditional medical measurement 

frameworks to convert the 1-10 scale to appropriate 

methods. We would also like to implement an 

automated system to interpret FNA biopsied images 

of suspected breast tumor cells and apply this new 

approach for high-accuracy breast cancer 

classification and screening. 

 

6. Conclusion 

We identified three crucial factors in 

classifying breast tumors, leading to breast cancer 

diagnosis from an open-source dataset in the UCI 

Machine Learning Repository containing 10 

predictor variables in 699 patients. Firstly, we 

curated the data to create an unbiased training 

environment. Next, we trained ML models and 

found that Medium Gaussian SVM is the most 

suitable. We then applied PCA and supervised ML 

models to diagnose breast cancer in MATLAB 

2022b, comparing them by their cross-validation 

accuracy. PCA models were developed using 1-4 

variables, excluding the first predictor and the label. 

The model with 3 predictors is adequate, with an 

accuracy of 96.98%. We found the critical 

predictive variables to be normal nuclei, bare 

nuclei, and uniformity of cell size, which physicians 

should pay special attention to when diagnosing 

breast cancer. 
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