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Abstract 
 Parkinson's disease (PD) is a progressive and chronic neurological condition that affects about 1% of the world's 

over-60 population. The COVID-19 pandemic has emphasized the significance of remote healthcare services, such as 

telemedicine, in managing chronic diseases such as PD. This research intends to construct machine learning (ML) models 

to predict PD severity utilizing vocal data derived from the UCI database for motor and total Unified Parkinson's disease 

rating scale (UPDRS) ratings. ML was used to study the association between voice vibration and PD, and PCA and ML 

models were utilized to minimize model complexity and compare the predictive performance of various statistical models 

for PD regression. The dataset included 5,875 medical voice records from 42 patients with early-stage PD who 

participated in a six-month clinical trial. The proposed PCA model simplified the model and achieved a root-mean-square 

error of 1.78 with an R-squared value of 0.95 for predicting the motor UPDRS and 1.78 with an R-squared value of 0.97 

for predicting the total UPDRS. This work can give a framework for developing remote healthcare services for Parkinson's 

disease and other chronic conditions, which can be helpful during pandemics and other situations where access to in-

person care is limited. 
 

Keywords: Parkinson's disease diagnosis; Supervised regression model; machine learning; Principal component 

analysis; complexity reduced model;, Intelligent diagnostic software; Telemedicine. 

 

 

1.  Introduction 

A chronic and progressive neuro-

degenerative disorder, Parkinson's disease (PD) 

affects 1% of people over 60 worldwide (Marino et 

al., 2020). It is characterized by the death of 

dopamine-producing neurons in the substantia nigra 

area of the brain, which causes non-motor 

symptoms like depression, anxiety, cognitive 

decline, and sleep problems (Klockgether, 2004; 

Pfeiffer, 2016) in addition to motor symptoms like 

tremors, rigidity, and bradykinesia. Although the 

precise cause of PD is still unknown, it is widely 

acknowledged that both genetic and environmental 

factors (Warner, & Schapira, 2003) contribute to 

the disease's onset. The loss of dopamine-producing 

neurons in the substantia nigra and the ensuing drop 

in dopamine levels in the brain is the root causes of 

these symptoms (Klockgether, 2004). PD is 
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associated with non-motor symptoms like 

autonomous dysfunction in addition to motor 

symptoms, which can have a big impact on the 

quality of life. 

Recent studies have shown that protein 

misfolding, aggregation, and dysfunction of the 

ubiquitin-proteasome system are critical 

components of the pathophysiology of PD (Dauer, 

& Przedborski, 2003). Other factors, such as 

mitochondrial dysfunction, oxidative stress, and 

inflammation, may also contribute to the 

progression of the disease (Bhat, Acharya, 

Hagiwara, Dadmehr, & Adeli, 2018). 

Despite its relatively low prevalence 

compared to other neurodegenerative disorders, PD 

is the second most common neurodegenerative 

disorder after Alzheimer’s (Jiménez, & 

Vingerhoets, 2012). This disease can significantly 

impact a patient’s quality of life, as well as the 

healthcare system and society as a whole. 

In recent years, the world has been hit by a 

global pandemic caused by the novel coronavirus 

SARS-CoV-2, which has profoundly impacted 

healthcare systems worldwide. The COVID-19 

pandemic has resulted in millions of deaths and has 

disrupted healthcare services across the globe. In 

the context of PD, the COVID-19 pandemic has 

brought new challenges, including difficulties in 

accessing care and concerns about the potential 

impact of the virus on PD patients. 

Non-motor symptoms often occur in the 

preclinical and prodromal stages of PD and can 

precede the onset of motor symptoms by several 

years (Yahr, Duvoisin, Schear, Barrett, & Hoehn, 

1969). These symptoms can be the first signs of PD 

and significantly impact patients' daily lives. 

The COVID-19 pandemic has significantly 

impacted healthcare services worldwide, with many 

hospitals and clinics struggling to provide 

healthcare for patients with chronic diseases such as 

PD. In addition, there is growing concern about the 

potential impact of the virus on PD patients. 

The International Parkinson and Movement 

Disorder Society published the Impact on 

Parkinson's Patients during the Covid-19 pandemic, 

which suggests that COVID-19 could exacerbate 

chronic neurological conditions such as PD due to 

its neurotropic characteristics (Krämer et al., 2019). 

COVID-19 may exacerbate PD through altered 

pharmacodynamics and systemic inflammatory 

responses, worsening motor and non-motor 

symptoms (Lamotte, Holmes, Wu, & Goldstein, 2019). 

Due to age-related comorbidities and 

disease-related conditions, PD patients are more 

debilitated than the general population, making 

them more vulnerable to COVID-19. Advanced PD 

patients have been found to have a higher mortality 

rate associated with older age and prolonged 

disease duration (Simon, Chen, Schwarzschild, & 

Ascherio, 2007). Furthermore, due to COVID-19, 

patients with PD have been quarantined at home, 

making it challenging to access complete treatment 

(Muqtadar, Testai, & Gorelick, 2012). 

PD is a neurodegenerative disorder and a 

systemic disease that can affect other organ 

systems, including the cardiovascular system. 

Cardiovascular failure is a significant non-motor 

sign in the premonitory stages of PD and can 

worsen as the symptoms of PD progress (Camargo 

Maluf, Feder, & Alves de Siqueira Carvalho, 2019). 

Oxidative stress, prolonged inflammatory 

processes, diabetes, obesity, and hypertension are 

major risk factors for both PD and cardiovascular 

diseases (Goldstein, & Sharabi, 2019; Prell, 

Schaller, Perner, Witte, & Grosskreutz, 2020; 

Shibata, Morita, Shimizu, Takahashi, & Suzuki, 

2009). As the population ages, neurodegenerative 

disorders and cardiovascular diseases are becoming 

more prevalent, making it essential to examine their 

relationships and how one condition may affect the 

other (Organization, 2006). 

Changes in the cardiovascular system 

involve sympathetic denervation, physiological and 

structural changes, and molecular changes, which 

can contribute to the progression of PD (Cuenca-

Bermejo et al., 2021). Orthostatic hypotension 

(OH), a common cardiovascular autonomic 

dysfunction in PD, has been related to 

parasympathetic dysfunction and sympathetic 

denervation (Idiaquez, & Roman, 2011). 

The COVID-19 pandemic has highlighted 

the importance of remote healthcare services, 

including telemedicine, in managing chronic 

diseases such as PD. Telemedicine has the potential 

to provide patients with more flexible and 

convenient access to care, especially for those who 

are unable to leave their homes due to quarantine or 

mobility issues (Cruz et al., 2021). 

Telemonitoring devices, which allow for 

remote monitoring of symptoms and vital signs, 

have been used to manage PD (Polverino et al., 

2022). A recent study used a telemonitoring device 

to collect 5,875 medical voice records from 42 

patients with early-stage PD recruited for a six-
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month trial (Tsanas, Little, McSharry, & Ramig, 

2009). It evaluated the progressiveness of the PD 

symptom using (1) motor Unified Parkinson's 

disease rating scale (UPDRS) and (2) total UPDRS. 

These two UPDRS scales have been standard 

approaches to assessing PD conditions (Disease, 

2003). The study used machine learning models to 

increase the of UPDRS predictions and compare the 

performance of different models. The study found 

that the best method for determining between 

patients with and without PD is to use 

unconventional methods in combination with 

traditional harmonic frequency values, which are 

suitable for telemonitoring applications (Tsanas et 

al., 2009). 

A popular tool for assessing the severity of 

Parkinson's disease symptoms is the UPDRS. There 

are four parts, but here we will concentrate on Part 

I and Part III because they are the most important. 

Mentation, Behavior, and Mood, the first section of 

the study, assesses non-motor symptoms of the 

illness, including cognitive function, mood, 

behavior, and daily living activities. In Part III, 

referred to as the Motor Examination, tasks are used 

to assess posture, tremors, rigidity, bradykinesia 

(slowness of movement), and other motor 

functions. 

The severity of the non-motor symptoms is 

indicated in Part I with scores ranging from 0 to 4. 

With a score of 4 denoting severe cognitive or 

behavioral impairment requiring assistance, higher 

scores indicate greater impairment. Ratings for each 

item in Part III range from 0 to 4 or 5, depending on 

the assessment. With a score of 5 denoting complete 

or nearly complete impairment, higher scores 

reflect more severe motor symptoms. 

Healthcare professionals with management 

experience for Parkinson's disease administer the 

UPDRS. To provide an overall evaluation of the 

severity of the symptoms and the progression of the 

disease, the scores from Parts I and III are combined 

with those from the other sections. The objective 

evaluation of motor function in Part III makes it 

especially pertinent for research studies. A 

comprehensive assessment of the overall disease 

burden, including both motor and non-motor 

aspects, is provided by the total UPDRS score, 

which combines scores from all four components 

(Skorvanek et al., 2017). 

In this paper, we utilized the open-source 

dataset (Tsanas et al., 2009) of the 5,875 medical 

voice records of Athanasios Tsanas and Max Little 

of the University of Oxford, downloaded from the 

University of California Irvine (UCI) Machine 

Learning Repository and analyzed the data using 26 

ML models using MATLAB 2022b to increase the 

prediction accuracy and compare the performance 

of different models for predicting motor UPDRS 

and the total UPDRS. It has been well-established 

that different ML models are suitable for analyzing 

a different dataset, and there is no rule of thumb for 

choosing an appropriate model. Therefore, this 

research will discuss and explore all the possible 

ML models available in state-of-the-art data 

analytic software. Although the dataset has been 

utilized in several studies reported in the literature 

(Raundale, Thosar, & Rane, 2021; Sood, & 

Khandnor, 2019), there was no report computed and 

compared all the available models. Grover et al. 

reported the use of deep learning to learn the dataset 
(Grover, Bhartia, Yadav, & Seeja, 2018; Wan, 

Liang, Zhang, & Guizani, 2018). Of course, deep 

learning can provide a higher level of accuracy, 

however, it does require computing power, such as 

a graphic computing unit (GPU). It will be shown 

in the results section later that the ML models can 

perform sufficiently well compared to deep learning 

at a much lower required computing capacity. We 

also reduced the complexity of the model by 

performing the principal component analysis (PCA) 

(Panyamit et al., 2022) using the built-in PCA 

analysis in MATLAB 2022b to identify essential 

predictors and validate the simplified model using a 

dataset that was not used during the model training.  

The result section will explain and discuss 

that the proposed PCA model can reduce the 

complexity and achieve the root-mean-square error 

of 2.38 with an R-squared value of 0.95 and 2.22 

with an R-squared value of 0.94 for predicting the 

motor UPDRS and the total UPSRS, respectively. 

The less demanding model can make it more 

convenient and flexible because it reduces analysis 

time, computing resources, and cost. This work can 

provide a framework for developing remote 

healthcare services for PD and other chronic 

diseases, which can be beneficial during pandemics 

and other situations where access to in-person care 

is limited. 

 

2.  Objectives 

1. Develop ML models to predict 

Parkinson's disease severity using vocal 

information from the UCI database, motor UPDRS, 

and total UPDRS scales. 
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2. Investigate the relationship between 

voice vibration and Parkinson's disease using ML. 

3. Use PCA and ML models to reduce 

model complexity and compare the predictive 

accuracy of different statistical models for 

Parkinson's disease regression. 
 

3.  Materials and methods 

This portion of the paper summarizes the 

methodology used, including the data source, data 

curation, and supervised ML training for regression 

tasks predicting the motor UPDRS and total 

UPDRS. The machine was trained using the UCI 

dataset, tested, underwent supervised regression 

training and PCA computation. 

Figure 1 illustrates the process flow of data 

preparation, data curation, machine learning (ML) 

training, and validation. The initial step involves 

downloading the Parkinson Telemonitoring Data 

Set. Subsequently, the data is curated by 

eliminating rows and columns containing 

unnecessary information, resulting in a refined 

dataset. This refined dataset is then divided into two 

subsets: the training set and the validation set. 

 

 

 
 

Figure 1 Process flow of data preparation, curation, ML training, and validation in this study. 
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The training set serves as the dataset used to 

train the machine learning model, while the 

validation set is employed to assess the model's 

accuracy and validate its performance. Following 

the verification of the model's suitability, the 

complexity of the model is further reduced using 

Principal Component Analysis (PCA) analysis. 

This technique helps to extract the most important 

features from the dataset, thereby enhancing model 

efficiency and interpretability. 

Three model performance parameters are 

computed and analyzed to compare the prediction 

performance of each model. 

- Root Mean Square Error (RMSE) is the 

calculation of the residual which represents the 

differences between the values predicted by a 

model and their true values. It is calculated by 

computing the square root of the mean of the norm 

of the residual for each data point. As the name 

suggests, the lower the error, the better the results.  

- An R-squared value (R2) indicates the 

amount of variation of a dependent variable in a 

regression model is explained by an independent 

variable. As the value approaches 1, the more 

efficient the model can be explained by the 

relationship between the dependent and 

independent variables. 

- Mean absolute Error (MAE) indicates the 

average magnitude of the errors in predicting the 

data set. In short, it measures the accuracy of 

continuous variables. As the value of MAE 

approaches 0, the more efficient the model will be. 

 

3.1 UCI Data 

 This  analyzed Parkinson's Telemonitoring 

Data Set was collected from the open-source  

University of California Irvine (UCI) Machine 

Learning Repository (Tsanas et al., 2009); assessed 

on 9  November 2022  .A range of biomedical voice  

measurements of up to 5 , 875  recordings from 42  

patients with  early-stage PD was automatically 

captured in the telemonitoring device in the  

patient's home. The six-month trial allowed remote 

monitoring of symptom  progression.  The database 

consisted of 19 predictors and 2 UPDRS values, as 

summarized in Table 1. Note that the patient ID 

numbers have been excluded from the database in 

this study.  

3.2 Data Curation 

 The 5,875 data rows covered a linear range 

of the Motor UPDRS and the Total UPDRS, 

providing an acceptable unbiased dataset, although 

there were fewer data rows for the Motor UPDRS 

greater than the score of 37 and the Total UPDRS 

greater than 53, as depicted in Figure 2. The two 

UPDRS curves were then fitted using a linear 

function, and it found that the R2 values were 

0.9925 and 0.9632 for the Motor UPDRS and the 

Total UPDRS, respectively. 

The variables in Table 1 were treated as 19 

predictors and 2 labels for supervised ML training 

for regression tasks. The 19 predictors and the 2 

labels are summarized in Table 2. 

 

3.3 Dataset for training and validation 

The 5,875 rows were then divided into 2 

datasets: the training dataset (5,288 rows) and the 

validation dataset (587 rows) at a ratio of 90% to 

10%. The training and validation datasets were 

sparsely selected, ensuring they covered the same 

range of Motor UPDRS and Total UPDRS data 

distributions, as shown in Figures 3a and b for the 

training and validation datasets, respectively. 

 

3.4 Machine Learning Training 

MATLAB 2022b's Regression Learner 

program was used to train 26 supervised machine 

learning models listed in Table 3 for regression tasks 

using the training dataset. The multiple models were 

trained so that their performance on the given dataset 

could be compared. The performance of regression 

was assessed using a 5-fold cross-validation 

computing procedure. Root-mean-square-error 

(RMSE), R-squared value (R2), and Mean-absolute-

error (MAE) were utilized to determine the difference 

between the predicted UPDRS values by the models 

and their corresponding labels. In regression 

computation, the RMSE and MAE are standard 

evaluation metrics; they evaluate the difference 

between the predicted and actual values, and the R2 is 

an excellent indicator of the model's correlation. All 

the training was done using Acer Nitro 7 laptop 

equipped with a core i7TM CPU, 24 GB RAM, and 

NVIDIA Geforce GTX 1660 Ti.
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Figure 2 shows the distribution of Motor UPDRS in a solid blue curve and Total UPDRS in a dashed red curve. 

  

 
Figure 3 shows the distribution of Motor UPDRS in a solid blue curve and Total UPDRS in a dashed red curve for  

(a) the training dataset containing 5,288 records and (b) the validation dataset containing 578 records. 

 

3.5 Model complexity reduction approach 

Using the built-in PCA analysis tool in 

MATLAB 2022b, 95% statistical confidence was 

applied to principal component analysis (PCA) to find 

essential predictors contributing to model 

classification accuracy. After identifying crucial 

predictors, a less complex classification model was 

trained to demonstrate that with fewer predictors, the 

classification model may perform comparably to 

models built with all available predictors. In the 

section on outcomes, we will also explain how the 

PCA yields comparable results to other feature section 

approaches, such as the minimum redundancy 

maximum relevance (MRMR) algorithm, the f-test, 

and RreliefF.
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Table 1 Predictors and labels obtained from the UCI Parkinson's Telemonitoring dataset. 

 Predictors Details Values 
Mean 

(𝒙̅) 
S.D. (S) 

1 Age 
Age in years of the subjects 

36-85 years 
64.80 

years 
8.82 years 

2 sex 

Male gender is defined using the number 0. 

Male gender is defined using the number 1. 

The male of 28 

people 

The female of 14 

people 

- - 

3 test time 

Time since being accepted into the experiment. 

The integer component represents the number of 

days since recruiting. 

-4.26 - 215.49 

days 
92.86 

days 
53.45 days 

4 Jitter (%) 

Jitter as a percentage can be calculated by the 

average absolute difference, multiplied by the 

average time, between two successive periods. It 

is used as the measurement of fundamental 

frequency variation. 

8.3010-4-0.10 % 0.0062 % 0.0056 % 

5 
Jitter 

(Abs) 

Absolute jitter in microseconds can be calculated 

by the average absolute difference, multiplied by 

the average time, between two successive periods. 

It is used as the measurement of fundamental 

frequency variation. 

2.2510-6-

4.4610-4 µs 

4.4010-5 

µs 

3.6010-5 

µs 

6 
Jitter: 

RAP 

Relative Amplitude Perturbation can be 

calculated by the average absolute difference, 

divided by the average duration, between a period 

and the average of that period and its two 

neighbors, and it is used to measure fundamental 

frequency variation. 

3.3010-4- 

0.0575 % 
0.0030 % 0.0031% 

7 
Jitter: 

PPQ5 

Five-point Period Perturbation Quotient can be 

calculated by the average absolute difference, 

divided by the average time, between a period and 

the average of its four closest neighbors. It is used 

as the measurement of fundamental frequency 

variation. 

4.30e-04 -0.0696 % 0.0033% 0.0037% 

8 
Jitter: 

DDP 

The term is defined as the average absolute 

difference between successive differences 

between successive periods divided by the 

average period, and it is the measurement of 

fundamental frequency variation. 

9.8010-4-0.1726 0.0090 0.0094 

9 Shimmer 

Local shimmer is the average absolute difference, 

expressed as a percentage, between the average 

amplitudes of successive periods. It is used as a 

measurement for change in amplitude. 

0.0031-0.2686 % 0.0340% 0.0258 % 

10 
Shimmer 

(dB) 

The local shimmer in decibels was expressed as 

the difference between the amplitudes of 

successive periods' average absolute base-10 

logarithm times 20. It is used as a measurement 

for change in amplitude. 

0.0260-2.1070 dB 0.3110 dB 0.2303 dB 

11 
Shimmer: 

APQ3 

Three-point Amplitude Perturbation Quotient can 

be defined as the average absolute difference 

between a period's amplitude and the sum of its 

neighbors' amplitudes, divided by the period's 

average amplitude. It is the measurement of 

change in amplitude. 

0.0016-0.1627 % 0.0172 % 0.0132 % 
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 Predictors Details Values 
Mean 

(𝒙̅) 
S.D. (S) 

12 
Shimmer: 

APQ5 

Five-point Amplitude Perturbation Quotient can 

be calculated by the average absolute difference 

between a period's amplitude and the sum of its 

four nearest neighbors' amplitudes, divided by its 

average amplitude. It is the measurement of 

change in amplitude. 

0.0019-0.1670 % 0.0201 % 0.0167 % 

13 
Shimmer: 

APQ11 

The 11-point Amplitude Perturbation Quotient 

was expressed as the average absolute difference, 

divided by the average amplitude, between the 

amplitude of a period and the average of the 

amplitudes of its ten nearest neighbors. It is the 

measurement of change in amplitude. 

0.0025-0.2755 % 0.0275 % 0.0200 % 

14 
Shimmer: 

DDA 

The term is the average absolute difference 

between successive variations in period 

amplitudes, and it is the measurement for change 

in amplitude. 

0.0048-0.4880 0.0515 0.0397 

15 NHR 

Noise-to-Harmonics Ratio was used as the 

measurement of the voice's noise-tonal 

component ratio 

2.8610-4-0.7483 0.0321 0.0597 

16 HNR 

Harmonics-to-Noise Ratio was used as the 

measurement of the voice's noise-tonal 

component ratio 

1.6590- 37.8750 21.6795 4.2911 

17 RPDE Recurrence Period Density Entropy 0.1510- 0.9661 0.5415 0.1010 

18 DFA Detrended Fluctuation Analysis 0.5140-0.8656 0.6532 0.0709 

19 PPE Pitch period entropy 0.0220-0.7317 0.2196 0.0915 

 Labels 
Details 

Values 
Mean 

(𝒙̅) 
S.D. (S) 

1 
Motor 

UPDRS 

Clinician's motor UPDRS score 
5.0377-39.5110 21.2962 8.1293 

2 
Total 

UPDRS 

Clinician's total UPDRS score 
7- 54.9920 29.0189 10.7003 

 

Table 2 Regression Model Predictors and Labels  

Variables Type Variables Type 

age Predictor Shimmer: APQ3 Predictor 

sex Predictor Shimmer: APQ5 Predictor 

test time Predictor Shimmer: APQ11 Predictor 

Jitter(%) Predictor Shimmer: DDA Predictor 

Jitter(Abs) Predictor NHR Predictor 

Jitter: RAP Predictor HNR Predictor 

Jitter: PPQ5 Predictor RPDE Predictor 

Jitter: DDP Predictor DFA Predictor 

Shimmer Predictor PPE Predictor 

Shimmer(dB) Predictor   

Total UPDRS 
Label for predicting 

total UPDRS 
Motor UPDRS 

Label for predicting 

motor UPDRS 

 

 
 

Table 1 Cont. 
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Table 3 The ML models trained in this study  

Model type Model details 

Linear regression Linear 

Interactions Linear 

Robust Linear 

Stepwise Linear Regression Stepwise Linear 

Tree Fine Tree 

Medium Tree 

Coarse Tree 

Support vector machine (SVM) Linear SVM 

Quadratic SVM 

Cubic SVM 

Fine Gaussian SVM 

Medium Gaussian SVM 

Coarse Gaussian SVM 

Ensemble Boosted Trees 

Bagged Trees 

Gaussian Process Regression (GPR) Squared Exponential GPR 

Matern 5/2 GPR 

Exponential GPR 

Rational Quadratic GPR 

Neural Network Narrow Neural Network 

Medium Neural Network 

Wide Neural Network 

Bi-layered Neural Network 

Tri-layered Neural Network 

Kernel SVM Kernel 

Least Squares Regression Kernel 

 

 
 

Figure 4 (a) Labels compared to the predicted values from the Fine Tree model for predicting the motor UPDRS, (b) 

Residual error, and (c) Predicted values plotted against the training labels. 
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4. Results 

4.1 ML models training using 19 predictors 

The ML models in Table 3 were first trained 

using all 19 predictors with the labels to train 2 

separated AI for predicting (1) motor UPDRS and (2) 

total UPDRS using the training dataset Table 1. The 

regression performance parameters of each model are 

shown in Table 4 and Table 5 for the motor UPDRS 

and the total UPDRS, respectively. 

Table 4 shows that the top performance 

model for predicting the motor UPDRS was the 

Fine Tree model, with an RMSE of 2.55, an R2 of 

0.90, and an MAE of 1.02. Figure 4a shows that 

most of the predicted motor UPDRS agree well with 

their corresponding label; however, there are still 

some discrepancies throughout all the records. The 

errors of each record are shown in Figure 4b. The 

errors are randomly distributed, covering positive 

and negative values. Figure 4c shows the predicted 

values against their label; the excellent performance 

model should give the prediction points along the 

diagonal line of the plot. In this case, most predicted 

values are in the diagonal line indicating a high-

performance model.

 

Table 4 Regression performance parameters for ML models trained for predicting the motor UPDRS using all 19 
predictors. 

Model type Model details 

5-fold cross-

validation RMSE 

calculated from the 

training dataset 

5-fold cross-

validation R2 

calculated from the 

training dataset 

5-fold cross-

validation MAE 

calculated from the 

training dataset 

Linear regression Linear 7.51 0.15 6.34 

Interactions Linear 8.57 -0.11 5.83 

Robust Linear 7.61 0.12 6.31 

Stepwise Linear 

Regression 
Stepwise Linear 7.25 0.20 5.80 

Tree Fine Tree 2.55* 0.90* 1.02* 

Medium Tree 2.92 0.87 1.49 

Coarse Tree 3.59 0.81 2.28 

Support vector 

machine (SVM) 
Linear SVM 7.68 0.11 6.22 

Quadratic SVM 7.40 0.17 5.54 

Cubic SVM 22.70 -6.80 5.28 

Fine Gaussian SVM 4.65 0.67 3.29 

Medium Gaussian 

SVM 
5.69 0.51 4.32 

Coarse Gaussian SVM 7.43 0.16 6.03 

Ensemble Boosted Trees 4.64 0.67 3.77 

Bagged Trees 3.35 0.83 2.54 

Gaussian Process 

Regression (GPR) 

Squared Exponential 

GPR 
4.48 0.70 3.20 

Matern 5/2 GPR 4.32 0.72 3.01 

Exponential GPR 4.30 0.72 2.99 

Rational Quadratic 

GPR 
4.30 0.72 2.97 
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Table 4 Cont. 

Model type Model details 

5-fold cross-

validation RMSE 

calculated from the 

training dataset 

5-fold cross-

validation R2 

calculated from the 

training dataset 

5-fold cross-

validation MAE 

calculated from the 

training dataset 

Neural Network Narrow Neural 

Network 
5.39 0.56 4.11 

Medium Neural 

Network 
4.52 0.69 3.27 

Wide Neural Network 4.32 0.72 2.94 

Bi-layered Neural 

Network 
4.11 0.74 2.99 

Tri-layered Neural 

Network 
4.21 0.73 2.84 

Kernel SVM Kernel 7.37 0.18 5.90 

Least Squares 

Regression Kernel 
7.02 0.25 5.81 

 

Table 5 demonstrates that the model with the 

best performance for predicting the total UPDRS 

was the Fine Tree model, with an RMSE value of 

2.65, an R2 value of 0.94, and an MAE value of 

0.92. Figure 5a demonstrates that the predicted total 

UPDRS correspond well with their respective 

labels; however, there is still a slight difference 

between the labels and the predicted total UPDRS 

throughout all the records. Each record's error is 

displayed in Figure 5b, and the errors are dispersed 

randomly across both positive and negative values. 

Figure 5c depicts the expected values with their 

respective labels. Like in the motor UPDRS case, 

most predicted values lie along the diagonal line, 

indicating a model with excellent performance.

 
Table 5 Regression performance parameters for ML models trained for predicting the total UPDRS using all 19 
predictors. 

Model type Model details 

5-fold cross-

validation RMSE 

calculated from the 

training dataset 

5-fold cross-

validation R2 

calculated from the 

training dataset 

5-fold cross-

validation MAE 

calculated from the 

training dataset 

Linear regression 

Linear 9.76 0.17 8.07 

Interactions Linear 9.81 0.16 7.52 

Robust Linear 9.79 0.16 8.01 

Stepwise Linear 

Regression 
Stepwise Linear 9.38 0.23 7.53 

Tree 

Fine Tree 2.65* 0.94* 0.92* 

Medium Tree 3.19 0.91 1.49 

Coarse Tree 4.18 0.85 2.49 

Support vector 

machine (SVM) 

Linear SVM 9.93 0.14 7.90 

Quadratic SVM 9.56 0.20 7.16 

Cubic SVM 27.71 -5.71 7.08 

Fine Gaussian SVM 6.30 0.65 4.27 

Medium Gaussian 

SVM 
7.85 0.46 5.74 

Coarse Gaussian SVM 9.79 0.16 7.70 

Ensemble 
Boosted Trees 5.68 0.72 4.54 

Bagged Trees 4.51 0.82 3.32 
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Table 5 Cont. 

Model type Model details 

5-fold cross-

validation RMSE 

calculated from the 

training dataset 

5-fold cross-

validation R2 

calculated from the 

training dataset 

5-fold cross-

validation MAE 

calculated from the 

training dataset 

Gaussian Process 

Regression (GPR) 

Squared Exponential 

GPR 
6.10 0.67 4.17 

Matern 5/2 GPR 5.96 0.69 4.03 

Exponential GPR 5.91 0.69 4.00 

Rational Quadratic 

GPR 
5.89 0.70 3.94 

Neural Network 

Narrow Neural 

Network 
8.04 0.44 5.71 

Medium Neural 

Network 
6.24 0.66 4.26 

Wide Neural Network 5.80 0.71 3.76 

Bi-layered Neural 

Network 
6.06 0.68 4.29 

Tri-layered Neural 

Network 
5.77 0.71 4.19 

Kernel 

SVM Kernel 9.79 0.16 7.69 

Least Squares 

Regression Kernel 
9.15 0.27 7.43 

 

 

 

 
 

Figure 5 (a) Labels compared to the predicted values from the Fine Tree model for predicting the total UPDRS, (b) 

Residual error, and (c) Predicted values plotted against the training labels 

 

The top three ML models for predicting 

both the motor and the total UPDRS were the same, 

which were the Fine tree was ranked in the top first 

with RMSE values of 2.55 to 2.65 for two UPRDRS 

predictions, the medium tree was ranked second 

with RMSE values of 2.92 to 3.19 for two UPRDRS 

predictions, and Coarse tree was ranked in the third 

with 3.59 to 4.18 for two UPRDRS predictions. The 

list of good performance models for predicting the 

two UPRDS values is similar, indicating that the 

two UPDRS data have a similar relationship or 

trend.  

 

4.2 Validation of the trained models using the 

validation dataset 

 The separated validation dataset was then 

employed to predict the regression outputs from the 

two Fine tree models for predicting the motor 

UPDRS and the total UPDRS and compared to their 

known labels for the 587 validation records. For the 

motor UPDRS validation, the trained Fine Tree 
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model had an RMSE of 2.84, an R2 of 0.87, and an 

MAE of 0.95. Figure 6a shows the residual error of 

the predicted motor UPDRS compared to the 

validation dataset's labels. Figure 6b shows 

predicted values plotted against the validation 

dataset's labels. The RMSE, R2, MAE, and the plots 

in Figure 6 show slightly worse performance than 

the training dataset, indicating that the trained 

model is generalized to predict unseen data. 

 

 

Figure 6 Performance of the trained Fine Tree model for predicting the motor UPDRS when validated using the 

validation dataset, (a) Residual error, and (b) Predicted values plotted against the training labels 

 

 

Figure 7 Performance of the trained Fine Tree model for predicting the total UPDRS when validated using the 

validation dataset, (a) Residual error, and (b) Predicted values plotted against the training labels 

 

For the total UPDRS, the trained Fine Tree 

model exhibited an RMSE of 2.32, an R2 of 0.95, 

and an MAE of 0.73 for total UPDRS validation. 

Figure 7a depicts the residual error of the predicted 

motor UPDRS compared to the labels in the 

validation dataset. Figure 7b depicts regression 

values displayed against labels from the validation 

dataset. The RMSE, R2, MAE, and plots in Figure 

7 indicate that the trained model is extended to 

predict unknown data.  

 

4.3 Model complexity reduction using PCA 

In the previous sections, we have 

demonstrated that regression models can be trained 

using all the available 19 predictors, which are (1) 

Age, (2) Test time, (3) DFA, (4) NHR, (5) RPDE, 

(6) HNR, (7) JitterAbs, (8) PPE, (9) ShimmerdB, 

(10) JitterDDP, (11) JitterDDP, (12) JitterPPQ5, 

(13) sex, (14) ShimmerDDA, (15) Jitter, (16) 

ShimmerAPQ5, (17) Shimmer, (18) JitterRAP, and 

(19) ShimmerAPQ3 to predict severity of PD. Here, 

we perform PCA analysis using the built-in Matlab 

PCA feature, and the coefficients are as shown in 

Table 6, calculated at 95% confidence compared 

with other feature selection methods, including 

MRMR, f-Test, and the RreliFf.  

PCA coefficients for training the Fine Tree 

model for predicting the motor UPDRS and the total 
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UPDRS using 19 predictors at 95% statistical 

confidence are shown in Figures 8a and 8b, 

respectively. The strength of PCA coefficients for 

each column was then ranked for the two types of 

UPDRS and listed in Tables 6 and 7. These PCA 

coefficients are a good indicator for identifying 

principal components

 

 

Figure 8 PCA coefficients for training the Fine Tree models for predicting (a) the motor UPDRS and (b) the total 

UPDRS using 19 predictors at 95% statistical confidence. 

 

There were only 6 predictors that had PCA 

coefficients more than 0.95, as shown in Tables 6 

and 7, which were test time, Jitter (Abs), sex, age, 

HNR, and RPDE. Like the other feature selection 

method, only the first 6 to 7 predictors were 

significant compared to the others. Here, we trained 

Fine Tree models using a different number of 

predictors, from 1 predictor to 7 predictors, to 

determine whether the Fine Tree models trained 

using only 6 predictors can reach the convergence 

of RMSE, R2, and MAE responses, as shown in 
Tables 8 and 9 for the motor UPDRS and total 

UPDRS, respectively. 

The RMSE, R2, and MAE values in Tables 

8 and 9 show that the Tree models required only 5 

variables to reach convergence for predicting the 

two UPDRS values, although each feature selection 

method required slightly different predictors. The 

best method with the lowest RMSE, the lowest 

MAE, and the highest R2 was the PCA, which 

required the following 5 predictors: test time, 

Jitter(Abs), sex, age, and HNR. 

 

4.4 Validation for the trained Fine Tree models 

using 5 predictors 

 In this section, we validated the trained 

PCA models using 5 predictors to see whether they 

can perform similarly to the trained models when 

validated using the separated validation dataset. For 

the motor UPDRS validation, the trained PCA 

model can provide an RMSE of 1.78, an R2 of 0.95, 

and an MAE of 0.59. For the total UPDRS 

validation, the trained PCA model can provide an 

RMSE of 1.78, an R2 of 0.97, and an MAE of 0.55. 

These performance parameters indicate that the 

PCA models can perform similarly to the trained 

PCA models and are slightly better than those 

trained using 19 pred ictors. The possible reasons 

for this are noise in the other predictors, which 

might not have a solid coloration for the two 

UPDRS values. 

Comparing our findings to related 

research, a predictive modeling approach based on 

RNA-Sequence and densely connected deep 

recurrent neural networks in the field. However, 

their study reported an RMSE of 6.0 (Ahmed, 

Komeili, & Park, 2022). Similarly, a deep-learning 

approach for predicting Parkinson's disease 

progression, yielded an RMSE of 1.42, an MAE of 

0.92, and an R2 value of 0.97 (Shahid & Singh, 

2020). It is worth noting that our results are not only 

comparable but also tend to be more precise and 

accurate compared to these prior studies. This can 

be attributed to our utilization of a diverse range of 

26 machine learning models, which allowed for a 

comprehensive exploration of the data and better 

prediction accuracy
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Table 6 PCA coefficients, MRMR, F Test, and the RreliFf of the 19 predictors for predicting the motor 
UPDRS 

Predictors 
MRM

R 
Predictors F TEST Predictors 

RRELIF

F 
Predictors 

PCA 

coefficien

ts 

age 1.4112 Age 730.367 age 0.0392 test time 1 

test_time 0.8501 HNR 73.1519 DFA 0.0047 Jitter(Abs) 1 

DFA 0.0088 PPE 66.2431 JitterAbs 0.0027 sex 0.998 

NHR 0.0085 ShimmerAPQ11 62.4847 sex 0.0015 age 0.9978 

RPDE 0.0078 DFA 47.654 HNR 0.0014 HNR 0.9966 

HNR 0.0062 NHR 44.4732 NHR 0.001 RPDE 0.9725 

JitterAbs 0.0061 ShimmerdB 44.0362 JitterRAP 0.0006 Shimmer(dB) 0.9493 

PPE 0.0055 Shimmer 43.6371 JitterDDP 0.0006 NHR 0.9243 

ShimmerdB 0.0047 RPDE 38.9946 JitterPPQ5 0.0003 Shimmer 0.9008 

JitterDDP 0.0046 Jitter 35.9545 Jitter 0.0003 Shimmer: DDA 0.8502 

ShimmerAPQ1

1 
0.0045 JitterPPQ5 31.0504 test_time -0.0002 

Shimmer: 

APQ5 
0.8215 

JitterPPQ5 0.004 ShimmerDDA 30.132 
ShimmerAPQ

3 
-0.0004 DFA 0.8203 

Sex 0.004 ShimmerAPQ3 30.0617 
ShimmerDD

A 
-0.0004 

Shimmer: 

APQ11 
0.8147 

ShimmerDDA 0.0039 ShimmerAPQ5 29.8136 
ShimmerAPQ

11 
-0.0004 Jitter(%) 0.8028 

Jitter 0.0038 JitterDDP 23.3847 PPE -0.0007 Jitter: PPQ5 0.7815 

ShimmerAPQ5 0.0031 JitterRAP 23.0048 
ShimmerAPQ

5 
-0.0008 Jitter: DDP 0.7744 

Shimmer 0.0027 JitterAbs 21.9053 ShimmerdB -0.0009 PPE 0.7742 

JitterRAP 0.0023 test_time 12.454 Shimmer -0.0012 Jitter: RAP 0.7569 

ShimmerAPQ3 0.0022 Sex 3.3613 RPDE -0.0019 
Shimmer: 

APQ3 
0.7569 

 

5.  Discussion 

In Parkinson's patients, a dividend states 

that if not considered into treatment, it might 

worsen the symptoms and affect other organ 

systems, especially cardiovascular systems. This 

research adds to a backup plan if Parkinson's 

patients cannot travel to appointments because of 

another severe illness going into lockdown. Our 

research is based on an open-source dataset of 19 

predictors and 2 UPDRS values. For the motor 

UPDRS validation (model 1), we have identified 

5 predictor variables: test time, Jitter(Abs), sex, 

age, and HNR by computing PCA analysis which 

contributes most to the severity in Parkinson 

patients. As we developed AI, the RMSE of 1.78, 

an R2 of 0.95, and an MAE of 0.59 made the 

model, Fine tree trained using only 5 predictors, 

sufficient to perform the regression model. For the 

total UPDRS (model 2), we have identified 5 

predictor variables, which are the same as the 

motor UPDRS case, and as we developed AI 

RMSE to 1.78, an R2 to 0.97, and MAE of 0.55, 

making the model, Fine tree, sufficient enough to 

track. We found no significant improvement in 

regression when more than 5 predictor variables  

were used in ML model training.  
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Table 7 PCA coefficients, MRMR, F Test, and the RreliFf of the 19 predictors for predicting the total UPDRS 

Predictors 
MRM

R 
Predictors F TEST Predictors 

RRELIF

F 
Predictors 

PCA 

coefficients 

age 1.3614 age 732.9014 age 0.0377 test time 0.9999 

HNR 0.5825 HNR 118.2253 DFA 0.0037 Jitter(Abs) 0.9999 

DFA 0.5430 Jitter(Abs) 70.7588 Jitter(Abs) 0.0026 sex 0.9980 

sex 0.4170 PPE 70.1715 sex 0.0016 age 0.9978 

RPDE 0.2262 ShimmerAPQ11 70.0505 HNR 0.0009 HNR 0.9965 

ShimmerdB 0.1809 RPDE 66.0790 JitterRAP 0.0005 RPDE 0.9725 

PPE 0.1754 DFA 64.3729 JitterDDP 0.0005 Shimmer(dB) 0.9493 

ShimmerAPQ

11 
0.1263 Jitter 62.3868 NHR 0.0001 NHR 0.9243 

JitterRAP 0.1170 NHR 61.6483 Jitter 0.0000 Shimmer 0.9008 

NHR 0.1104 ShimmerdB 53.9979 JitterPPQ5 0.0000 
Shimmer: 

DDA 
0.8502 

ShimmerAPQ

3 
0.0959 Shimmer 53.4228 

ShimmerAP

Q3 
-0.0007 

Shimmer: 

APQ5 
0.8215 

JitterPPQ5 0.0958 JitterPPQ5 44.3918 
ShimmerDD

A 
-0.0007 DFA 0.8203 

Shimmer 0.0846 ShimmerDDA 43.6145 
ShimmerAP

Q11 
-0.0008 

Shimmer: 

APQ11 
0.8147 

Jitter 0.0828 ShimmerAPQ3 43.3151 ShimmerdB -0.0012 Jitter(%) 0.8028 

ShimmerAPQ

5 
0.0755 ShimmerAPQ5 38.6322 

ShimmerAP

Q5 
-0.0014 Jitter: PPQ5 0.7815 

ShimmerDDA 0.0561 JitterDDP 33.2640 PPE -0.0016 Jitter: DDP 0.7744 

JitterDDP 0.0476 JitterRAP 32.5917 Shimmer -0.0018 PPE 0.7742 

test_time 0.0000 sex 26.4637 RPDE -0.0018 Jitter: RAP 0.7569 

JitterAbs 0.0000 test_time 11.5342 test_time -0.0018 
Shimmer: 

APQ3 
0.7569 

 

This model was trained using 

MATLAB®, and it only took 2 seconds to train and 

2 seconds to make a prediction, saving a significant 

amount of time compared to a doctor's actual 

prediction, which would require days to weeks for 

in-clinic processes and at-home observation, not to 

mention patient's travel time. Consequently, 

diagnosis by doctors can be more accurate and 

delicate. Compared to the deep learning method 

which generally would take hours to days to train 

and an average of 6 months in the data collecting 

period (Grover et al., 2018), the machine learning 

model is a time-saving method, yet as efficient. 

The motor section of the UPDRS is a 

standardized rating scale that assesses various 

motor symptoms, such as tremors, rigidity, 

bradykinesia, and postural instability. The Root 

Mean Squared Error (RMSE) of 1.78 and R-squared 

value of 0.95 0indicate that the model fits the data 

relatively well, while the Mean Absolute Error 

(MAE) of 0.59 indicates that the model is 

performing well in predicting the motor UPDRS 

scores in individuals with Parkinson's disease. 
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Table 8 shows Fine Tree models for predicting the motor UPDRS trained using a different number of predictors, from 1 
predictor to 7 predictors. 

MRMR 

No. Predictors Predictors RMSE R2 MAE 

1 age 4.93 0.63 3.86 

2 age, test_time 2.84 0.88 1.39 

3 age, test_time, DFA 3.45 0.82 1.34 

4 age, test_time, DFA, NHR 3.19 0.85 1.35 

5 age, test_time, DFA, NHR, RPDE 2.96 0.87 1.19 

6 age, test_time, DFA, NHR, RPDE, HNR 2.73 0.89 1.06 

7 age, test_time, DFA, NHR, RPDE, HNR, JitterAbs 2.50 0.91 0.98 

f-test 

No. Predictors Predictors RMSE R2 MAE 

1 age 4.93 0.63 3.86 

2 age, HNR 5.17 0.60 3.54 

3 age, HNR, PPE 5.00 0.62 3.36 

4 age, HNR, PPE, ShimmerAPQ11 4.91 0.63 3.21 

5 age, HNR, PPE, ShimmerAPQ11, DFA 3.88 0.77 2.52 

6 age, HNR, PPE, ShimmerAPQ11, DFA, NHR 3.85 0.78 2.48 

7 age, HNR, PPE, ShimmerAPQ11, DFA, NHR, ShimmerdB 3.85 0.78 2.47 

RreliefF 

No. Predictors Predictors RMSE R2 MAE 

1 age 4.93 0.63 3.86 

2 age, DFA 4.34 0.71 2.91 

3 age, DFA, JitterAbs 4.14 0.74 2.73 

4 age, DFA, JitterAbs, sex 3.06 0.86 2.08 

5 age, DFA, JitterAbs, sex, HNR 3.13 0.85 2.08 

6 age, DFA, JitterAbs, sex, HNR, NHR 3.07 0.86 2.06 

7 age, DFA, JitterAbs, sex, HNR, NHR, JitterRAP 3.18 0.85 2.10 

PCA coefficients 

No. Predictors Predictors RMSE R2 MAE 

1 test time 4.07 0.75 2.55 

2 test time, Jitter(Abs) 7.61 0.12 5.60 

3 test time, Jitter(Abs), sex 7.39 0.17 5.23 

4 test time, Jitter(Abs), sex, age 1.94 0.94 0.77 

5 test time, Jitter(Abs), sex, age, HNR 1.76 0.95 0.66 

6 test time, Jitter(Abs), sex, age, HNR, RPDE 1.89 0.95 0.67 

7 test time, Jitter(Abs), sex, age, HNR, RPDE, Shimmer(dB) 1.90 0.95 0.69 
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Table 9 shows Fine Tree models for predicting the total UPDRS trained using a different number of predictors, from 1 
predictor to 7 predictors. 

MRMR 

No. Predictors Predictors RMSE R2 MAE 

1 age 5.89 0.70 4.68 

2 age, test_time 3.38 0.90 1.69 

3 age, test_time, DFA 4.13 0.85 1.89 

4 age, test_time, DFA, NHR 3.63 0.89 1.53 

5 age, test_time, DFA, NHR, RPDE 3.83 0.87 1.60 

6 age, test_time, DFA, NHR, RPDE, HNR 3.58 0.89 1.45 

7 age, test_time, DFA, NHR, RPDE, HNR, JitterAbs 3.42 0.90 1.36 

f-test 

No. Predictors Predictors RMSE R2 MAE 

1 age 5.89 0.70 4.68 

2 age, HNR 6.12 0.67 4.30 

3 age, HNR, PPE 5.92 0.69 4.01 

4 age, HNR, PPE, ShimmerAPQ11 5.89 0.70 3.95 

5 age, HNR, PPE, ShimmerAPQ11, DFA 3.50 0.89 1.35 

6 age, HNR, PPE, ShimmerAPQ11, DFA, NHR 4.70 0.81 3.13 

7 age, HNR, PPE, ShimmerAPQ11, DFA, NHR, ShimmerdB 4.78 0.80 3.09 

RreliefF 

No. Predictors Predictors RMSE R2 MAE 

1 age 5.89 0.70 4.68 

2 age, DFA 5.35 0.75 3.63 

3 age, DFA, JitterAbs 4.54 0.82 3.08 

4 age, DFA, JitterAbs, sex 3.82 0.87 2.60 

5 age, DFA, JitterAbs, sex, HNR 3.92 0.87 2.60 

6 age, DFA, JitterAbs, sex, HNR, NHR 3.96 0.86 2.63 

7 age, DFA, JitterAbs, sex, HNR, NHR, JitterRAP 3.88 0.87 2.64 

PCA coefficients 

No. Predictors Predictors RMSE R2 MAE 

1 test time 5.19 0.76 3.24 

2 test time, Jitter(Abs) 10.52 0.03 7.95 

3 test time, Jitter(Abs), sex 10.80 -0.02 8.16 

4 test time, Jitter(Abs), sex, age 2.53 0.94 1.02 

5 test time, Jitter(Abs), sex, age, HNR 2.41 0.95 0.86 

6 test time, Jitter(Abs), sex, age, HNR, RPDE 2.54 0.94 0.90 

7 test time, Jitter(Abs), sex, age, HNR, RPDE, Shimmer(dB) 2.59 0.94 0.93 

 

The total UPDRS is a standardized rating 

scale used to assess various aspects of Parkinson's 

disease, including motor symptoms, activities of 

daily living, and cognitive function. It is divided 

into four parts: non-motor symptoms, motor 

symptoms, motor examinations, and complications 

of therapy. The total UPDRS score is the sum of all 

four parts, with a maximum score of 176. The R-

squared value of 0.97 indicates that the model 

explains 95% of the variance in the total UPDRS 
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scores, while the MAE measures how well the 

model fits the data. The MAE is 0.55 points away 

from the actual scores, suggesting that the AI model 

performs well in predicting the total UDPRS scores 

in individuals with Parkinson's disease. However, it 

is crucial to validate the performance of any AI 

model before using it for clinical or diagnostic 

purposes. 

The RMSE of 1.78 is considered a low 

chance of error and is sufficient to be deployed for 

UPDRS predictions. The R-squared of 0.95 and 

0.97 shows that the model fits the data relatively 

well. The MAE of 0.55 and 0.59 also show the 

model has a sufficiently low error. 

Our findings will enable clinicians to pay 

particular attention to these 5 critical predictors 

when assessing Parkinson's patient diagnosis. 

Moreover, the PCA-based framework we have used 

here is not limited to the Parkinson Telemonitoring 

dataset; it is equally applicable to other datasets that 

contain potentially predictive variables. Our 

approach will facilitate the elimination of unknown 

variables, reducing the time and cost required to 

collect patient data. However, the fact that we have 

not collected actual data from Parkinson's patients 

by ourselves contributed to this project's limitation. 

The PCA model shows that Parkinson’s severity 

depends on test time, NHR, Jitter (Abs), sex, and 

age. A relationship between voice vibration and 

level of Parkinson’s severity was found since two 

of the predictor variables are Jitter (Abs) which is 

the voice’s vibration magnitude and HNR 

Harmonics-to-Noise Ratio was used as the 

measurement of the voice's noise-tonal component 

ratio. 

 

6.  Conclusion 

This research aims to construct machine 

learning (ML) models for predicting the severity of 

Parkinson's disease using vocal information and to 

analyze the association between voice vibration and 

Parkinson's disease using ML. Also, we intended to 

employ PCA and ML models to reduce model 

complexity and assess the predicted accuracy of 

various statistical models for Parkinson's disease 

regression. 

We collected 5,875 medical voice records 

from the University of California Irvine Machine 

Learning Repository to achieve our goals. We 

analyzed the data using 26 machine learning (ML) 

models in MATLAB 2022b to increase prediction 

accuracy and compare the performance of different 

models for predicting the motor UPDRS and total 

UPDRS. In addition, we decreased the model's 

complexity by doing PCA analysis to identify 

critical variables and validated the simpler model 

using a dataset not utilized during model training. 

The suggested PCA model may reduce 

complexity and attain an RMSE of 1.78 with an R-

squared value of 0.95 and an RMSE of 1.78 with an 

R-squared value of 0.97 when predicting the motor 

UPDRS and total UPDRS, respectively. The less 

demanding model can make it more practical and 

adaptable, decreasing analysis time, computing 

resources, and expenses. 

This work can give a framework for 

developing remote healthcare services for 

Parkinson's disease and other chronic conditions, 

which can be helpful during pandemics and other 

situations where access to in-person care is limited. 

In addition, our study underlined the significance of 

telemedicine in managing chronic diseases such as 

PD and the possibility of telemonitoring equipment 

to offer patients more flexible and accessible access 

to care. 

In conclusion, this study demonstrates the 

potential of machine learning and principal 

component analysis in predicting the severity of 

Parkinson's disease using voice input and 

minimizing model complexity. These findings 

allow future research to establish remote healthcare 

services and enhance patient care. 

 

7.  Acknowledgements 

We acknowledge the Parkinson tele-

monitoring data obtained from the open-source UCI 

Machine Learning Repository; this study would not 

have been possible without access. Also, we thank 

the Research Institute and the College of 

Biomedical Engineering, Rangsit University, and 

Satriwitthaya School for supporting and funding the 

research. 

 

8.  References  

Ahmed, S., Komeili, M., & Park, J. (2022). 

Predictive modelling of Parkinson’s 

disease progression based on RNA-

Sequence with densely connected deep 

recurrent neural networks. Scientific 

Reports, 12(1), 21469. 

https://doi.org/10.1038/s41598-022-

25454-1 

Bhat, S., Acharya, U. R., Hagiwara, Y., Dadmehr, 

N., & Adeli, H. (2018). Parkinson's 

https://doi.org/10.1038/s41598-022-25454-1
https://doi.org/10.1038/s41598-022-25454-1


PECHPRASARN ET AL 

JCST Vol. 13 No. 2 May-August 2023, pp. 465-485 

484 

disease: Cause factors, measurable 

indicators, and early diagnosis. 

Computers in Biology and Medicine, 102, 

234-241. 

https://doi.org/10.1016/j.compbiomed.20

18.09.008  

Camargo Maluf, F., Feder, D., & Alves de 

Siqueira Carvalho, A. (2019). Analysis of 

the relationship between type II diabetes 

mellitus and Parkinson’s disease: a 

systematic review. Parkinson’s Disease, 

2019. 

https://doi.org/10.1155/2019/4951379  

Cruz, M. J., Nieblas-Bedolla, E., Young, C. C., 

Feroze, A. H., Williams, J. R., 

Ellenbogen, R. G., & Levitt, M. R. 

(2021). United States medicolegal 

progress and innovation in telemedicine 

in the age of COVID-19: a primer for 

neurosurgeons. Neurosurgery. 

https://doi.org/10.1093/neuros/nyab185  

Cuenca-Bermejo, L., Almela, P., Navarro-

Zaragoza, J., Fernández Villalba, E., 

González-Cuello, A.-M., Laorden, M.-L., 

& Herrero, M.-T. (2021). Cardiac 

changes in Parkinson’s disease: Lessons 

from clinical and experimental evidence. 

International Journal of Molecular 

Sciences, 22(24), 13488. 

https://doi.org/10.3390/ijms222413488 

Dauer, W., & Przedborski, S. (2003). Parkinson's 

disease: mechanisms and models. 

Neuron, 39(6), 889-909. 

https://doi.org/10.1016/s0896-

6273(03)00568-3  

Disease, Movement Disorder Society Task Force 

on Rating Scales for Parkinson's Disease 

(2003). The unified Parkinson's disease 

rating scale (UPDRS): status and 

recommendations. Movement Disorders, 

18(7), 738-750. 

https://doi.org/10.1002/mds.10473  

Goldstein, D. S., & Sharabi, Y. (2019). The heart 

of PD: Lewy body diseases as 

neurocardiologic disorders. Brain 

research, 1702, 74-84. 

https://doi.org/10.1016/j.brainres.2017.09

.033  

Grover, S., Bhartia, S., Yadav, A., & Seeja, K. 

(2018). Predicting severity of Parkinson’s 

disease using deep learning. Procedia 

computer science, 132, 1788-1794. 

https://doi.org/10.1016/j.procs.2018.05.15

4  

Idiaquez, J., & Roman, G. C. (2011). Autonomic 

dysfunction in neurodegenerative 

dementias. Journal of the neurological 

sciences, 305(1-2), 22-27. 

https://doi.org/10.1016/j.jns.2011.02.033  

Jiménez, M. C., & Vingerhoets, F. J. (2012). 

Tremor revisited: treatment of PD tremor. 

Parkinsonism & related disorders, 18, 

S93-S95. https://doi.org/10.1016/S1353-

8020(11)70030-X  

Klockgether, T. (2004). Parkinson’s disease: clinical 

aspects. Cell and tissue research, 318, 115-

120. https://doi.org/10.1007/s00441-004-

0975-6  

Krämer, H. H., Lautenschläger, G., de Azevedo, 

M., Doppler, K., Schänzer, A., Best, C., . 

. . Birklein, F. (2019). Reduced central 

sympathetic activity in Parkinson's 

disease. Brain and behavior, 9(12), 

e01463. 

https://doi.org/10.1002/brb3.1463  

Lamotte, G., Holmes, C., Wu, T., & Goldstein, D. 

S. (2019). Long-term trends in 

myocardial sympathetic innervation and 

function in synucleinopathies. 

Parkinsonism & related disorders, 67, 

27-33. 

https://doi.org/10.1016/j.parkreldis.2019.

09.014  

Marino, B. L., de Souza, L. R., Sousa, K., Ferreira, 

J. V., Padilha, E. C., da Silva, C. H., . . . 

Hage-Melim, L. I. (2020). Parkinson’s 

disease: a review from pathophysiology 

to treatment. Mini reviews in medicinal 

chemistry, 20(9), 754-767. 

https://doi.org/10.2174/13895575196661

91104110908  

Muqtadar, H., Testai, F. D., & Gorelick, P. B. 

(2012). The dementia of cardiac disease. 

Current cardiology reports, 14, 732-740. 

https://doi.org/10.1007/s11886-012-0304-8  

Organization, W. H. (2006). Neurological 

disorders: public health challenges: 

World Health Organization. 

Panyamit, T., Sukvivatn, P., Chanma, P., Kim, Y., 

Premratanachai, P., & Pechprasarn, S. 

(2022). Identification of factors in the 

survival rate of heart failure patients using 

machine learning models and principal 

https://doi.org/10.1016/j.compbiomed.2018.09.008
https://doi.org/10.1016/j.compbiomed.2018.09.008
https://doi.org/10.1155/2019/4951379
https://doi.org/10.1093/neuros/nyab185
https://doi.org/10.3390/ijms222413488
https://doi.org/10.1016/s0896-6273(03)00568-3
https://doi.org/10.1016/s0896-6273(03)00568-3
https://doi.org/10.1002/mds.10473
https://doi.org/10.1016/j.brainres.2017.09.033
https://doi.org/10.1016/j.brainres.2017.09.033
https://doi.org/10.1016/j.procs.2018.05.154
https://doi.org/10.1016/j.procs.2018.05.154
https://doi.org/10.1016/j.jns.2011.02.033
https://doi.org/10.1016/S1353-8020(11)70030-X
https://doi.org/10.1016/S1353-8020(11)70030-X
https://doi.org/10.1007/s00441-004-0975-6
https://doi.org/10.1007/s00441-004-0975-6
https://doi.org/10.1002/brb3.1463
https://doi.org/10.1016/j.parkreldis.2019.09.014
https://doi.org/10.1016/j.parkreldis.2019.09.014
https://doi.org/10.2174/1389557519666191104110908
https://doi.org/10.2174/1389557519666191104110908
https://doi.org/10.1007/s11886-012-0304-8


PECHPRASARN ET AL 

JCST Vol. 13 No. 2 May-August 2023, pp. 465-485 

485 

component analysis. Journal of Current 

Science and Technology, 12(2), 336-348.  

Pfeiffer, R. F. (2016). Non-motor symptoms in 

Parkinson's disease. Parkinsonism & 

related disorders, 22, S119-S122. 

https://doi.org/10.1016/j.parkreldis.2015.

09.004  

Polverino, P., Ajčević, M., Catalan, M., Bertolotti, 

C., Furlanis, G., Marsich, A., . . . 

Manganotti, P. (2022). Comprehensive 

telemedicine solution for remote 

monitoring of Parkinson’s disease 

patients with orthostatic hypotension 

during COVID-19 pandemic. 

Neurological Sciences, 43(6), 3479-3487. 

https://doi.org/10.1007/s10072-022-

05972-6  

Prell, T., Schaller, D., Perner, C., Witte, O. W., & 

Grosskreutz, J. (2020). Sicca symptoms 

in Parkinson’s disease: association with 

other nonmotor symptoms and health-

related quality of life. Parkinson’s 

Disease, 2020. 

https://doi.org/10.1155/2020/2958635  

Raundale, P., Thosar, C., & Rane, S. (2021). 

Prediction of Parkinson’s disease and 

severity of the disease using Machine 

Learning and Deep Learning algorithm. 

Paper presented at the 2021 2nd 

International Conference for Emerging 

Technology (INCET). 

https://doi.org/10.1109/INCET51464.202

1.9456292  

Shahid, A. H., & Singh, M. P. (2020). A deep 

learning approach for prediction of 

Parkinson’s disease progression. 

Biomedical Engineering Letters, 10, 227-

239. https://doi.org/10.1007/s13534-020-

00156-7  

Shibata, M., Morita, Y., Shimizu, T., Takahashi, 

K., & Suzuki, N. (2009). Cardiac 

parasympathetic dysfunction concurrent 

with cardiac sympathetic denervation in 

Parkinson's disease. Journal of the 

neurological sciences, 276(1-2), 79-83. 

https://doi.org/10.1016/j.jns.2008.09.005  

Simon, K. C., Chen, H., Schwarzschild, M., & 

Ascherio, A. (2007). Hypertension, 

hypercholesterolemia, diabetes, and risk 

of Parkinson disease. Neurology, 69(17), 

1688-1695. 

https://doi.org/10.1212/01.wnl.00002718

83.45010.8a  

Skorvanek, M., Martinez‐Martin, P., Kovacs, N., 

Rodriguez‐Violante, M., Corvol, J. C., 

Taba, P., …, Foltynie, T. (2017). 

Differences in MDS‐UPDRS scores 

based on Hoehn and Yahr stage and 

disease duration. Movement disorders 

clinical practice, 4(4), 536-544. 

https://doi.org/10.1002/mdc3.12476  

Sood, T., & Khandnor, P. (2019). Classification of 

parkinson’s disease using various 

machine learning techniques. Paper 

presented at the Advances in Computing 

and Data Sciences: Third International 

Conference, ICACDS 2019, Ghaziabad, 

India, April 12–13, 2019, Revised 

Selected Papers, Part I 3. 

https://doi.org/10.1007/978-981-13-9939-

8_27  

Tsanas, A., Little, M., McSharry, P., & Ramig, L. 

(2009). Accurate telemonitoring of 

Parkinson’s disease progression by non-

invasive speech tests. Nature Precedings, 

1-1. 

https://doi.org/10.1038/npre.2009.3920.1  

Wan, S., Liang, Y., Zhang, Y., & Guizani, M. 

(2018). Deep multi-layer perceptron 

classifier for behavior analysis to estimate 

Parkinson’s disease severity using 

smartphones. IEEE Access, 6, 36825-

36833. 

https://doi.org/10.1109/ACCESS.2018.28

51382  

Warner, T. T., & Schapira, A. H. (2003). Genetic 

and environmental factors in the cause of 

Parkinson's disease. Annals of Neurology: 

Official Journal of the American 

Neurological Association and the Child 

Neurology Society, 53(S3), S16-S25. 

https://doi.org/10.1001/archneur.1969.00

480160015001  

Yahr, M. D., Duvoisin, R. C., Schear, M. J., 

Barrett, R. E., & Hoehn, M. M. (1969). 

Treatment of parkinsonism with 

levodopa. Archives of neurology, 21(4), 

343-354. 

https://doi.org/10.1001/archneur.1969.00

480160015001

 

https://doi.org/10.1016/j.parkreldis.2015.09.004
https://doi.org/10.1016/j.parkreldis.2015.09.004
https://doi.org/10.1007/s10072-022-05972-6
https://doi.org/10.1007/s10072-022-05972-6
https://doi.org/10.1155/2020/2958635
https://doi.org/10.1109/INCET51464.2021.9456292
https://doi.org/10.1109/INCET51464.2021.9456292
https://doi.org/10.1007/s13534-020-00156-7
https://doi.org/10.1007/s13534-020-00156-7
https://doi.org/10.1016/j.jns.2008.09.005
https://doi.org/10.1212/01.wnl.0000271883.45010.8a
https://doi.org/10.1212/01.wnl.0000271883.45010.8a
https://doi.org/10.1002/mdc3.12476
https://doi.org/10.1007/978-981-13-9939-8_27
https://doi.org/10.1007/978-981-13-9939-8_27
https://doi.org/10.1038/npre.2009.3920.1
https://doi.org/10.1109/ACCESS.2018.2851382
https://doi.org/10.1109/ACCESS.2018.2851382
https://doi.org/10.1001/archneur.1969.00480160015001
https://doi.org/10.1001/archneur.1969.00480160015001
https://doi.org/10.1001/archneur.1969.00480160015001
https://doi.org/10.1001/archneur.1969.00480160015001

