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Abstract  

Road traffic accidents (RTAs) pose a significant global challenge, particularly in Thailand. This study investigates the 

impact of resampling techniques on machine learning (ML) models for classifying road accident severity in Thailand, utilizing 

data from 31,817 road traffic accidents collected between January 1, 2021, and December 31, 2022. The primary challenge 

addressed is class imbalance, where fatal accidents represent a small fraction of the dataset. Three popular ML models, 

including Random Forest (RF), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGB), were evaluated with 

four resampling techniques: Imbalanced (IB), Under-sampling (US), Over-sampling (OS), and Combined Sampling (CS). 

These resampling approaches generated 12 ML models, whose performance was evaluated under three different train/test split 

ratios: 70/30, 80/20, and 90/10. Compared to the IB approach, the results demonstrate that all US, OS and CS techniques 

significantly improved model performance, particularly in terms of F1 score, G-mean, and balanced accuracy. Among the 

models, RF-CS, KNN-OS, and XGB-CS exhibited the best classification performance. Although these evaluation metrics 

improved over the imbalanced scheme, KNN’s overall performance in detecting fatal accidents was weaker compared to RF 

and XGB. Specifically, KNN struggled more with the imbalanced dataset, even after applying resampling techniques. These 

findings suggest that choosing the appropriate resampling techniques is crucial for enhancing model performance in classifying 

accident severity.  

 

Keywords: gradient boosting; imbalanced data; KNN; over-sampling; random forest; road safety; SDGs 3 

 

 

1.  Introduction 

Thailand has the highest Road Traffic Fatality 

(RTF) rate among ASEAN countries and ranks 9th 

among 175 countries globally, with approximately 

36.2 deaths per 100,000 population (WHO, 2018). 

Since the ratio exceeds the global average, Thai 

people are at quite high risk of dying from road 

accidents, and road accident statistics continue to rise. 

Notably, the incidence of road accidents is even 

higher during festival periods (Lerdsuwansri et al., 

2022). One of the major challenges of road accidents 

in Thailand is their severity. In other words, road users 

must exercise caution to reduce the risk of fatalities, 

injuries, and property damage. 

Road Traffic Accidents (RTAs) can occur due 

to various factors, including human errors (such as 

drowsiness, intoxication, traffic violations, and lack of 

road familiarity) and vehicle-related issues (such as 
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operating an unroadworthy vehicle). Animals, 

particularly those that wander too close to move vehicles, 

can also contribute to accidents. Furthermore, a 

multitude of factors, including road conditions, weather 

conditions, driving duration, and geographical location, 

might impact the likelihood of road accidents 

(Simmachan et al., 2022; Taveekal et al., 2023). It is 

critical to implement policies that aim to reduce RTA and 

RTF rates from such accidents. Building a model to 

classify RTA severity in Thailand is crucial. Accident 

severity classification (i.e., non-fatal vs. fatal accidents) 

often results in imbalanced data, where one class 

significantly outnumbers the other. This issue has an 

impact on the classification model’s performance. More 

specifically, it reduces the predictive model’s accuracy 

and effectiveness (Kotb, & Ming, 2021; Simmachan et 

al., 2023). To improve model efficiency, class-balancing 

techniques are essential before developing the predictive 

model. Numerous techniques exist to enhance model 

performance. To address Thailand’s urgent road safety 

concerns in alignment with Sustainable Development 

Goal 3, this study proposes a framework for predicting 

RTA severity using multiple resampling techniques, 

including under-sampling, over-sampling, and 

combined sampling, across various Machine learning 

(ML) models such as Random Forest (RF), K-Nearest 

Neighbors (KNN), and Extreme Gradient Boosting 

(XGBoost). This paper will provide deeper insights into 

how these techniques can enhance the performance of 

ML models, offering valuable recommendations for 

future studies and applications in road safety.  

   

1.1 Related Works 

Over the past two decades, Thai road safety 

research has primarily focused demography and human 

behavior rather than road and environmental factors 

(Chantith et al., 2021; Wisutwattanasak et al., 2022; 

Phaphan et al., 2023). Motorcycles, young individuals, 

intoxicated driving, and lack of helmet usage have been 

the primary factors contributing to road traffic accidents, 

fatalities, and injuries (Tanaboriboon, & Satiennam, 

2005; Siviroj et al., 2012a, 2012b; Riyapan et al., 2018). 

This trend highlights the limited effectiveness of road 

safety programs and law enforcement efforts in 

Thailand. Research focusing on road and environmental 

factors contributing to RTAs remains limited. A 

significant increase in RTA incidence was observed in 

Thailand’s southern and northern provinces between 

2012 and 2018, which can be attributed to increased 

precipitation levels. The correlation between rainfall and 

RTA frequency underscores the need for further 

investigation into meteorological influences on road 

safety in these regions (Boonserm, & Wiwatwattana, 

2021; Sangkharat et al., 2021; Worachairungreung et al., 

2021). Thai highway data from 2011 to 2017 indicated 

that segment length and average annual traffic volume 

influenced accident rates. (Champahom et al., 2021).

 

Table 1 Recent studies on road safety in Thailand using ML approaches 
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Many efforts have been made to reduce road 

traffic fatality and injury rates using various 

approaches. By analyzing the relationship between 

motorization and RTFs per 100,000 people, the safety 

status of Thailand and other Asian countries has been 

studied (Klungboonkrong et al., 2019). Count regressions 

models have been implemented to predict road traffic 

injuries, fatalities, and their combined impact. Thai 

RTAs from 2015 were used in the investigations 

(Simmachan et al., 2022; Lerdsuwansri et al., 2022; 

Taveekal et al., 2023). Several studies examined ML 

framework for RTA severity prediction in Thailand. 

Table 1 reviews recent ML-based works. Statistical 

models for binary and multi-class classifications were 

frequently applied (Champahom et al., 2023a, 2023b; 

Mahikul et al., 2022; Mahikul et al., 2024). However, 

a notable gap in these studies is the limited exploration 

of resampling techniques and their effects on various 

models. Most studies focus on traditional models like 

logistic regression, decision trees, and random forests, 

with gradient boosting being used more frequently in 

recent years. However, advanced techniques such as 

XGB and KNN are underrepresented. While over-

sampling techniques have been applied in several 

studies under-sampling and combined sampling are 

less frequently applied across studies. Interestingly, 

there is a lack of detailed analysis on how these 

resampling strategies influence model performance, 

particularly with imbalanced datasets such as those 

involving road accident severity in Thailand.  

 

1.2 Problem Formation 

To evaluate the effect of resampling techniques 

on ML model performance in classifying road 

accident severity in Thailand, two main tasks were 

undertaken: (1) balancing the dataset by ensuring an 

equal number of class instances and (2) optimizing 

ML model performance using Thailand’s RTA data. 

Let D represent the dataset, consisting of N instances 

(road traffic accidents) and k features or predictors 

related to each accident, such as road section, weather 

condition, crash type, etc., along with a target variable 

Y. The dataset can be written as 

D={(X1,X2,…,Xk),Y} where their descriptions are 

given in Table 2. Given the imbalance in the dataset, 

where the number of non-fatal accidents (Y=0) is 

practically much greater than fatal accidents (Y=1), 

we will firstly apply resampling techniques to balance 

the dataset. Employing the resulting data in the 

training set, the classification performance was 

evaluated in the testing set. Subsequently, the 

optimizations were conducted as follows: 

1.2.1 Resampling 

To minimize the class imbalance between fatal 

and non-fatal accidents by selecting the appropriate 

resampling technique, the objective is to achieve class 

balance by minimizing the difference between the 

number of samples in the two classes after resampling, 

i.e., min
r

|N0
(r)

-N1
(r)

|where r denotes the replication. The 

constraint for each resampling technique is described 

in section 3.4.  

 

1.2.2 ML Performance 

To minimize the classification error while ensuring 

that the model achieves acceptable performance metrics, 

the least classification error of the model M was 

considered via min
M

Error(M). By training the ML model 

on the resampled data and ensuring it generalizes well, 

the better classification performance of the model M can 

be determined by evaluation metrices such as F1-score 

or G-mean. Thus, maximizing the evaluation metrics, 

e.g., max
M

F1-score(M) or max
M

G-mean(M), is more 

convenient and utilized instead of min Error( )
M

M in this 

study. Each evaluation metric is explained in section 3.7.  

 

2.  Objectives 

The goal of this research is to compare 

resampling techniques for class-balancing. Under-

sampling, over-sampling, and both are used to 

resample imbalanced data. The work combines three 

popular and efficient ML algorithms: RF, XGB, and 

KNN, a basic nonparametric distance function-based 

method. ML models and resampling are used to 

classify RTA severity in Thailand. Thai Ministry of 

Transport open data website includes 2021–2022 road 

accident data (Open Government Data of Thailand, 

2023). The research aims to assist government 

agencies in establishing guidelines for managing 

traffic accident injuries and fatality guidelines. The 

nation’s economy and society will lose less. 

 

3.  Methodology 

Classifying RTA severity is essential for 

preventing RTAs. Figure 1 presents the RTA severity 

prediction framework. The methodology encompasses  
a comprehensive range of processes, spanning from 

initial dataset acquisition and description through 

rigorous data pre-processing, strategic data splitting, 

the implementation of three distinct techniques to 

address imbalanced data, the application of diverse 

machine learning algorithms, and thorough evaluations 

of their respective performance metrics. The predictive 
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models were constructed using various resampling 

techniques to achieve the study’s goal. ML algorithms 

and a data-driven approach were used. Data on RTA 

factors, including accident causes, road sections, and 

incident regions, was presented first. Then, data 

quality and analytical readiness were ensured by data 

pre-processing. Train-test splits were utilized to split 

data. ML algorithms were implemented to develop 

and operate classification models in training sets to 

discover accident severity patterns that predict accident 

severity. Finally, test sets generated evaluation metrics 

for forecasting models. 

 

3.1 Dataset and Description 

This study utilizes a dataset including 

information on RTAs that occurred in Thailand 

between January 1, 2021, and December 31, 2022. 

The dataset includes a total of 31,817 accidents. Table 

2 demonstrates relevant variable descriptions and 

their descriptive statistics. The accident severity is the 

binary dependent variable, i.e., 0 indicates non-fatal 

accident while 1 represents fatal accident. Accidents 

resulted in 28,634 injuries (89.99%), and 3,183 deaths 

(10.01%). It is evident that the number of fatal 

accidents was significantly lower than the number of 

non-fatal accidents, indicating imbalanced data. In 

this case, a fatal accident represents a positive class 

whereas a non-fatal accident denotes a negative class. 

The other nine variables are categorical features used 

to establish predictive models. The bold face 

represents the top value. 

 

3.2 Data Pre-Processing  

Thoroughly, data pre-processing is essential 

before integrating data into prediction models. This 

essential stage involves ensuring data meets ML 

models, processing parameters and methodically 

correcting missing values. Firstly, the dataset was 

checked to see if there was any missing data. If there 

is missing data, it will be removed before further 

analysis. Moreover, data transformation or data 

encoding is necessary. This procedure transforms raw 

data into an appropriate format for analysis, 

improving the capacity to understand models, 

optimizing computational speed, and reducing the 

impact of outliers (Aksoy, & Haralick, 2001; Ioffe, & 

Szegedy, 2015). Dummy variable encoding was used 

for categorical features. This method, which 

represents each category using binary vectors of 0s 

and 1s, overcomes the constraints of numerical input 

models. 

 

 
 

Figure 1 Framework for classifying RTA severity 
 

 

 

 



SIMMACHAN, & BOONKRONG 

JCST Vol. 15 No. 2, April - June 2025, Article 99 

5 

3.3 Data Splitting  

To evaluate the efficacy of ML models in 

predicting road accident severity in Thailand, rigorous 

data validation techniques are imperative. Given the 

substantial sample size (n = 31,817), a train-test split 

was deemed appropriate. To mitigate potential bias 

and ensure equitable representation of both positive 

and negative classes in the training and test sets, 

stratified random sampling was initially employed. 

Subsequently, three widely accepted train-test split 

ratios were implemented, i.e., 70/30, 80/20, and 90/10 

percent. This approach enables a comprehensive 

assessment of model performance across different 

data distributions, thereby enhancing the robustness 

and generalizability of predictive models. The 

stratification process is crucial for maintaining the 

original class distribution in both subsets, thus 

preserving the dataset’s inherent characteristics 

(Moon et al., 2019; Na Bangchang et al., 2023; 

Simmachan et al., 2023). Varying the train-test split 

ratios in ML classification tasks, such as classifying 

road accident severity in Thailand, serves several 

important purposes. First, it allows for the exploration 

of model performance stability under different 

training data sizes. A smaller training set (e.g., 70%) 

might lead to a model that has not learned the full 

complexity of the data, increasing the likelihood of 

underfitting, while a larger test set ensures a robust 

evaluation of model performance. Conversely, a 

larger training set (e.g., 90%) helps the model capture 

more patterns in the data but may leave insufficient 

data for a rigorous test set evaluation. Thus, data 

splitting provides insights into the amount of data 

required for the model to achieve optimal performance.

 

Table 2 Variable descriptions and their descriptive statistics of Thai RTAs in 2021-2022 

Variable role Variable name Description RTAs (Percentage) 

Dependent variable/ 

Target variable 

Accident severity (Y) 1: Fatal accident  3,183 (10.01) 

 0: Non-fatal accident 28,634 (89.99) 

Independent variables/ 

Predictor variables/ 

Features/ Attributes 

Cause of accident (X1) 1: Caused by a person 27,876 (87.61) 

 2: Caused by a vehicle 1,323 (4.16) 

 3: Others 2,618 (8.23) 

Road section (X2) 1: Straight 25,654 (80.63) 

 2: Curve 5,482 (17.23) 

 3: Others 681 (2.14) 

Region of incidence (X3) 1: North 7,594 (23.86) 

 2: Central 9,333 (29.33) 

 3: East 4,176 (13.13) 

 4: Northeast 6,432 (20.21) 

 5: South 4,282 (13.45) 

Crash type (X4) 1: Overturned 18,869 (59.30) 

 2: Collision 9,703 (30.50) 

 3: Others 3,245 (10.20) 

Road type (X5) 1: National highway 31,762 (99.83) 

 2: Rural road 55 (0.17) 

Weather condition (X6) 1: Clear 26,909 (84.57) 

 2: Rain 4,679 (14.70) 

 3: Others 235 (0.73) 

Time of incidence (X7) 1: Day 18,448 (57.98) 

 2: Night 13,369 (42.02) 

Day of incidence (X8) 1: Weekdays 22,574 (70.95) 

 2: Weekends 9,243 (29.05) 

Month of incidence (X9) 1: Festive month 10,582 (33.36) 

 2: Others 21,235 (66.74) 
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3.4 Handling Imbalanced Data 

Imbalanced datasets, where there is a 

disproportionate ratio of training samples in each 

class, pose a fundamental challenge in machine 

learning (Polvimoltham, & Sinapiromsaran, 2021; 

Zha et al., 2022, Arockia Panimalar, & Krishnakumar, 

2023). Practical applications often encounter this 

scenario, such as the RTA dataset used in this study. 

Since non-fatal accidents outnumber fatal accidents, 

ML models favor the majority class, making them 

untrustworthy (Kotb, & Ming, 2021; Simmachan et 

al., 2023). Consequently, class-balancing techniques 

are necessary for handling the imbalanced dataset. These 

techniques modify the distribution of classes to boost 

model performance. Classes can be balanced in many 

ways. The basic class balancing approaches are data-

based and algorithm-based (Mathew, 2022). Both 

approaches aim to reduce the effects of class imbalance, 

but differently. The main distinction lies in whether the 

emphasis is on modifying the data or the learning 

algorithm. After data splitting, resampling techniques 

under data-based approaches were applied to the training 

sets. There were four different resampling techniques 

employed in this study: one of which did not use any 

resampling techniques, while the other three did. 

Focusing on the binary target variable Y, where Y = 0 

represents a non-fatal accident (majority class) and Y = 

1 represents a fatal accident (minority class), the 

resampling techniques aim to balance the number of 

instances in these classes without considering the 

features Xi. The details of the four techniques were 

described as follows: 

 

3.4.1 Imbalanced Scheme (IB) 

The original dataset remains imbalanced, with 

the number of instances of Y = 0 is much larger than 

Y = 1 leading to biased model predictions in its favor. 

The class distribution can be written as 

|Y=0|≫|Y=1|. In other words, the original dataset is 

directly assessed by classification model without any 

modification.  

 

3.4.2 Under-sampling (US) 

Under-sampling is a technique that reduces 

the number of observations in the majority class to 

achieve a balanced dataset (Polvimoltham, & 

Sinapiromsaran, 2021). This technique can mitigate 

bias toward the majority class but may lead to the loss 

of crucial information. The number of instances in the 

majority class Y = 0 is decreased to balance the 

dataset with the minority class Y = 1. Thus, the new size 

of both classes after under-sampling is denoted by 

nUS= min{|Y=0|,|Y=1|} . Under-sampling selects a 

random subset of 0Y = instance such that  

 

YUS={Yi=0|i∈random subset, |Y=0|=nUS}∪|Y=1|.  

 

As a result, the dataset becomes balanced, but crucial 

information from the majority class 0Y =  may be 

lost. 

 

3.4.3 Over-sampling (OS) 

Over-sampling is a technique that involves 

augmenting the number of observations in the minority 

class to achieve a balanced dataset (Zha et al., 2022, 

Pasangthien & Yimwadsana, 2022). To balance the 

dataset by over-sampling, the number of instances in 

the minority class 1Y = is increased to be equal with 
0Y = . Then, the new size of both classes after over-

sampling is nOS= max{|Y=0|,|Y=1|} . Simple 

duplication is used to balance the class sizes, ensuring 

equal representation: 

 

YOS={Yi=0|i∈Dmajority}∪{Yj=1|j∈Dminority, randomely duplicate|Y=1|=nOS}

. 

This strategy can augment the training data for the 

minority class, but it may lead to overfitting due to 

repeated instances. 

 

3.4.4 Combined sampling (CS) 

Combined sampling combines under-sampling 

of the majority class and over-sampling of the 

minority class to create a balanced dataset. It 

addresses the limitations of both methods: under-

sampling, which can result in loss of important data, 

and over-sampling, which may lead to overfitting (He 

et al., 2005; Polvimoltham, & Sinapiromsaran, 2021). 

The technique uses a balance factor, α∈[0,1], to adjust 

the proportions of under-sampled and over-sampled data, 

forming the new dataset. CS combines simplified versions 

of US and OS, providing nCS=α⋅nUS+(1-α)⋅nOS. The new 

dataset is formed asYCS=YUS∪YOS, which α=0.5is used 

in this study. This approach balances the binary target 

variable, Y, ensuring that the classifier generalizes better 

and reduces bias toward the majority class. Regarding 

four data handling techniques, Table 3 presents train 

and test distributions for road accident severity 

classification from four sampling schemes.  

.
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Table 3 Train/test ratios for different data sampling techniques in road accident severity classification 

Train/Test  Class of Y 
IB US OS CS 

 Train   Test   Train   Test   Train   Test   Train   Test  

70/30 1: Fatal accident   2,367  994   2,367   994   19,904   994   11,206   994  

 0: Non-fatal accident 19,904    8,552  2,367  8,552    19,904  8,552   11,065   8,552   

80/20 1: Fatal accident  2,707   654   2,707   654   22,746   654   12,621   654  

 0: Non-fatal accident  22,746   5,710   2,707   5,710   22,746   5,710   12,832   5,710  

90/10 1: Fatal accident  3,032   329   3,032   329   25,603   329   14,149   329  
 

0: Non-fatal accident  25,603   2,853   3,032   2,853   25,603   2,853   14,486   2,853  

 

Regarding four data handling techniques, 

Table 3 presents train and test distributions for road 

accident severity classification from four sampling 

schemes. For IB, the original dataset is used with the 

imbalance preserved, showing a significant difference 

between non-fatal and fatal accident cases. In US, 

non-fatal cases are under-sampled to match the 

number of fatal accidents, resulting in a balanced train 

set, but the test set remains imbalanced. OS applies 

oversampling to fatal cases, balancing them with non-

fatal accidents for training while keeping the test set 

unchanged. Lastly, CS combines both under- and 

over-sampling, balancing fatal and non-fatal cases 

within the train set, while the test set retains its 

original distribution. Each approach addresses data 

imbalance uniquely, ensuring more reliable model 

training and improving the accuracy of predicting 

fatal versus non-fatal road accidents. 

 

3.5 Machine Learning Algorithms  

To address the effect of resampling techniques 

on ML models for classifying road accident severity, 

several studies have explored various methods to 

handle imbalanced datasets, which is a common issue 

in this domain. Resampling techniques play a crucial 

role in improving the classification performance of 

machine learning models. Thus, this study utilizes 

three efficient and widely used ML algorithms, 

including RF, XGB, and KNN. These nonparametric 

algorithms do not rely on explicit assumptions and are 

user-friendly. The key details of each algorithm are 

outlined below: 

 

3.5.1 Random Forest 

Random Forest (RF) was first presented by 

Breiman (2001). It is a type of ensemble learning 

algorithm called bagging or bootstrap aggregation 

(Breiman, 2001). This algorithm comprises multiple 

independent decision trees functioning cooperatively. 

Initially, in bootstrap samples, n instances are 

randomly selected from the training data to create 𝑛 

decision trees. The prediction for each tree is based on 

feature importance scores, such as Mean Decrease in 

Accuracy (MDA) or Mean Decrease in Impurity 

(MDI) (James et al., 2013). For each tree, a set of 

features X1,X2,…,Xkis randomly selected, and a 

majority vote among the predicted values from all 

trees determines the final prediction for a new data 

point: 

 

ŷ=majority vote(ŷ
1
,ŷ

2
,...,ŷ

n
) , 

where ˆ
iy is the prediction from the ith tree, and i = 1, 

2, …, n. This method enhances the overall accuracy 

of the model through aggregation (Kowshalya, & 

Nandhini, 2018; Simmachan et al., 2023; Na 

Bangchang et al., 2023).   

 

3.5.2 Extreme Gradient Boosting (XGB) 

XGB is a robust ML algorithm devised by 

Friedman (2001) and has been implemented in various 

fields (Friedman, 2001; Bentéjac et al., 2021). XGB is 

another type of ensemble algorithm, specifically 

boosting. Boosting is a technique that combines 

numerous weak learners, such as decision trees, into a 

single strong learner. Mathematically, XGB 

minimizes the loss function L(θ) over multiple trees, 

each tree t making prediction ŷ
(t)

:  

L(θ)= ∑ l(y
i
,ŷ

i

(t))

n

i=1

+ ∑ Ω(ft)

t

 

 

where l(⋅)is the loss function (e.g., squared error for 

regression, log loss for classification), and Ω(ft) is a 

regularization term for controlling model complexity. 

The goal is to iteratively correct the prediction errors 

from previous trees by adding new trees that minimize 

the current error, enhancing the model’s accuracy 

(Bentéjac et al., 2021; Na Bangechang et al., 2023). 

 

3.5.3 K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) algorithm is a 

nonparametric, instance-based learning method that 
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classifies observations based on proximity to other data 

points in the feature space (Moulaei et al., 2022; 

Pechprasarn et al., 2025). It operates by identifying the 

𝑘 closest instances to a query point using a distance 

metric, typically Euclidean distance. The Euclidean 

distance D(p
i
,q

j
) between two data points p and q with k 

features is computed as: 

D(p
i
,q

j
)=√∑ (p

il
,q

jl
)
2

k

l=1

 

Classification is then performed by majority voting 

among the 𝑘-nearest neighbors (Prasasti et al., 2020): 

ŷ=majority vote(y
1
,y

2
,...,y

k
) 

 

where y
1
,y

2
,...,y

k
 are the labels of the k nearest 

neighbors. This approach leverages local information 

and assumes that nearby data points likely share the 

same class label, making it effective for many pattern 

recognition tasks (Wang et al., 2007; Boonkrong, & 

Simmachan, 2016; Mamdouh Farghaly et al., 2023). 

This study explores the combined application 

of three ML algorithms and four resampling strategies 

to explore and enhance predictive performance. 

Subsequently, 12 ML possible algorithms and their 

descriptions are listed in Table 4. 

 

3.6 Hyperparameter Tuning 

Hyperparameter tuning is crucial in developing 

ML models for several reasons.  Proper tuning 

hyperparameters can significantly enhance a model’s 

performance by optimizing complexity and learning 

rate (Geron, 2019). It helps prevent overfitting by 

limiting model complexity and underfitting by 

allowing more flexibility (Goodfellow et al., 2016). 

Hyperparameters, such as regularization strength, 

influence the bias-variance trade-off, enabling models 

to generalize well (Hastie et al., 2009). Moreover, 

tuning ensures models perform well on unseen data, 

minimizing overfitting and maximizing generalization 

performance (Kuhn, & Johnson, 2013). The grid 

search technique, a popular tuning tool, was used to 

optimize the parameters of the ML models. This 

technique explores different combinations of 

hyperparameters to find the set that yields the best 

classification performance. Therefore, 12 ML models 

across all data splitting ratios were trained using 

different hyperparameter combinations. Table 5 

shows parameter settings and the best values for the 

ML model in classifying the RTA severity. The best 

values, such as 800 trees for RF, 9 neighbors for KNN, 

and 150 boosting rounds in XGB, were obtained 

through the hyperparameter tuning process.  

  

Table 4 Description of algorithms used for predicting RTA severity 

Algorithm Description 

RF-IB Random Forest without resampling techniques or under imbalanced data. 

RF-US Random Forest with under-resampling technique. 

RF-OS Random Forest with over-resampling technique. 

RF-CS Random Forest with combined resampling technique. 

KNN-IB K-Nearest Neighbor without resampling techniques or under imbalanced data. 

KNN-US K-Nearest Neighbor with under-resampling technique. 

KNN-OS K-Nearest Neighbor with over-resampling technique. 

KNN-CS K-Nearest Neighbor with combined resampling technique. 

XGB-IB Extreme Gradient Boosting without resampling techniques or under imbalanced data. 

XGB-US Extreme Gradient Boosting with under-resampling technique. 

XGB-OS Extreme Gradient Boosting with over-resampling technique. 

XGB-CS Extreme Gradient Boosting with combined resampling technique. 

 

Table 5 Machine learning models with their parameter settings 

Model Hyperparameter Best Value 

RF The number of trees {100, 200, …, 1000} 800 

 The maximum depth of each tree {1, 2, …, 5} 5 

 The number of features to consider when looking for the best split {1, 2, 3}  3 

 The minimum number of samples required to split a node {1, 2, …, 10} 3 

 The minimum number of samples required to be at a leaf node {1, 2, …, 5} 3 

KNN The number of neighbors (k) {3, 5, …, 31} 9 

XGB Number of boosting rounds {50,100, 150, 200} 150 

 Learning rate {0.1-0.5} 0.1 

 The maximum depth of each tree {1, 2, …, 10} 3 
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Figure 2 Confusion matrix for RTA Severity Classification  

 

3.7 Model Evaluation 

Assessing the performance of an ML model is 

essential. A confusion matrix is a useful tool for 

computing evaluation metrics. When selecting 

evaluation metrics for RTA severity classification 

model, it is critical to prioritize metrics that provide 

the most insight into the model’s performance, 

especially given the class imbalance. 

 

3.7.1 Confusion Matrix 

A confusion matrix is a commonly utilized tool 

in classification tasks (Akarajarasroj et al., 2023; 

Yilmaz, & Demirhan, 2023). In RTA severity binary 

classification problems, we treat a fatal accident as a 

positive class and a non-fatal accident as a negative 

class. Four possible outcomes are used in the matrix, 

which depicts predicted and actual counts as shown in 

Figure 2. TP represents the model’s fatal accident 

accuracy. TN denotes the model’s correct non-fatal 

accident identification. FP indicates the number of 

non-fatal accidents misclassified as fatal. FN shows 

fatal accidents misclassified as non-fatal. To measure 

how good the models have performed, all TP, TN, FP 

and FN are necessary for computing evaluation 

metrics.  

 
3.7.2 Evaluation Metrics  

Typically, road safety practitioners prioritize 

raising awareness of fatal accidents (positive class) 

over non-fatal accidents (negative class). In RTA 

severity classification, missing a fatal accident (false 

negative) could have severe consequences, making it 

crucial to maximize the detection of fatal accidents. 

However, this research considers both fatal and non-

fatal accident classes. Given this goal and class 

imbalance characteristics of RTA dataset, therefore, 

priority metrics include G-mean, balanced accuracy, 

F1-score, and accuracy. These metrics assess the 

model’s ability to detect fatal accidents while 

minimizing false alarms, optimizing safety and 

resource allocation. The corresponding characteristics 

and formulas of the metrics are provided as follows:  

• Accuracy measures the proportion of correct 

predictions (both true positives and true 

negatives) out of the total predictions. It is often 

used as the default evaluation metric but can be 

misleading in imbalanced datasets. For this 

reason, accuracy is often less prioritized in this 

study. Generally, the accuracy is defined as 

accuracy= 
TP + TN

TP + TN + FP + FN
. 

 

• F1-score is the harmonic means of both recall and 

precision. The F1-score achieves a balance 

between precision and recall, offering a single 

statistic considering both false positives and false 

negatives, which is useful in situations when both 

are costly. F1-score is given as 

F1-score=
2TP

2TP + FP + FN
  

where precision =
TP

TP + FP
 and recall =

TP

TP + FN
.   

 

• G-mean (Geometric mean) is the geometric mean 

of sensitivity (recall) and specificity. G-mean 
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provides an overall balance of the classifier’s 

performance across both classes. G-mean is 

particularly useful in imbalanced data because it 

considers the balance between sensitivity (true 

positive rate) and specificity (true negative rate). 

G-mean is derived as 

G-mean = √
TP

TP + FN
×

TN

TN + FP
  

where specificity =
TN

TN + FP
. 

 

• Balanced Accuracy adjusts the traditional 

accuracy metric to account for class imbalance. It 

is the arithmetic means of sensitivity and 

specificity. It helps capture the overall 

performance while accounting for both false 

negative and false positives. Balanced Accuracy 

is computed by 

Balanced Accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
)  . 

 

as the value of each evaluation metric rises, the 

model’s performance improves. 

  

4. Results and Discussion 

This section presents a detailed analysis of 

numerical outcomes, primarily focusing on the 

performance of various machine learning models 

under different resampling techniques. Additionally, 

the discussion interprets these findings, emphasizing 

key trends, potential limitations, and practical 

implications for optimizing model selection in 

imbalanced datasets. 

 

4.1 Numerical Results 

This work has effectively highlighted the 

integration of ML methodologies and resampling 

techniques to accurately predict the severity of RTAs 

in Thailand. Three classifiers, including RF, KNN, 

and XGB, were used in conjunction with four 

resampling strategies, generating 12 predictive 

models. Table 6 shows the overall performance of all 

predictive models. Bold text indicates the best models 

in each evaluation metric for each train-test split. 

Model performance across the three train-test splitting 

options was consistent. For easier interpretation, the 

graphical results are shown in Figure 3. The 

evaluation metrics were averaged over all train-test 

splits. Based on the main objective of the study, the 

numerical findings were given as follows: 

 

4.1.1 Classification without Resampling 

Using different resampling techniques, Table 6 

provides model performance metrics for RF, KNN 

and XGB classifiers across three train/test splits 

(70/30, 80/20, 90/10). The IB results demonstrate how 

each model performs with the original data, 

highlighting the challenges of predicting the minority 

class (fatal accidents). For RF, IB achieves the highest 

accuracy at 89.59% for the 70/30 split, 89.49% for 

80/20, and 89.53% for 90/10, but the F1-score and G-

mean are significantly low, indicating poor 

performance in classifying the minority class. For 

KNN, IB produces consistently high accuracy, but the 

F1 score remains low (ranging from 17.63 to 17.64), 

reflecting poor minority class performance. XGB’s IB 

accuracy is similarly high, reaching 89.60% to 

89.85%, but the F1 scores are low, particularly for the 

fatal accidents class. While IB yields high accuracy, 

this metric is misleading due to the class imbalance, 

with non-fatal accidents dominating the dataset. 

Accuracy alone fails to account for the performance 

disparity between majority and minority classes. The 

very low F1 scores, particularly for RF (0.20–0.60) 

and KNN (17.63–17.64), demonstrate poor precision 

and recall for fatal accidents. G-mean and balanced 

accuracy, both of which consider performance on both 

classes, are also much lower for IB compared to the 

other resampling techniques. This highlights the need 

for improvement in IB, as models trained on 

imbalanced data are biased toward the majority class, 

leading to poor generalization in predicting fatal 

accidents, which is critical in this scenario. To avoid 

misleading conclusions in an imbalanced dataset, G-

mean and balanced accuracy were more suitable than 

accuracy when considering both classes of RTA 

severity. Meanwhile, the F1 score measured the 

model’s capability in predicting the positive class 

(fatal accidents). Clearly, the imbalanced scheme 

resulted in an extremely low F1 score.
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Table 6 Model performance (%) along with different resampling techniques 

Train/ Test RF  KNN  XGB 

70/30 IB US OS CS  IB US OS CS  IB US OS CS 

Accuracy 89.59    73.38    73.88    73.79           89.72   62.95    64.39     67.69      89.60      71.36     72.35    71.85      

F1-score 0.20 32.26 32.53    32.67      17.63   26.63      26.57      25.94       8.31      30.93 31.72       31.92     

G-mean 3.17 67.49 67.54 67.80  32.43 63.87 63.46 61.53  21.22 66.81 67.37 67.95 

Balanced Acc. 50.04 67.85 67.95 68.17  54.74 63.88 63.47 61.95  52.01     67.03 67.63 68.11   

Train/ Test RF  KNN  XGB 

80/20 IB US OS CS  IB US OS CS  IB US OS CS 

Accuracy 89.49    72.69      75.16      74.83      89.73 62.96 64.41 67.70  89.85 71.59      73.21         72.41          

F1-score 0.30 33.58 32.58 33.82    17.63 26.64 26.58 25.96  8.31      30.93 31.72       31.92     

G-mean 3.87 68.74 68.77 68.83  32.45 63.87 63.47 61.54  21.22 66.81 67.37 67.95 

Balanced Acc. 50.06 68.94   69.23 69.12  54.75 63.89 63.47 61.96  52.01     67.03 67.63 68.11   

Train/ Test RF  KNN  XGB 

90/10 IB US OS CS  IB US OS CS  IB US OS CS 

Accuracy 89.53   74.54      74.39    75.20         89.73 62.99 64.48 67.72  89.57    72.34    74.10       73.82      

F1-score 0.60 32.27   32.25 33.08      17.71 26.65 26.62 25.96  4.60 32.13      32.00 31.36    

G-mean 5.48 66.94 67.02 67.58  32.45 63.90 63.51 61.60  15.56 67.03 67.05 67.08 

Balanced Acc. 50.13 67.52 67.57 68.16    54.80 63.91 63.50 61.99  51.02 67.37 67.54 67.52 

 

4.1.2 Effect of Resampling Techniques 

Investigating the effect of different resampling 

techniques across different train/test ratios and 

classification models, Table 6 and Figure 3 compare 

their performance in classifying the accident severity. 

It is observed that resampling techniques, including 

US, OS and CS significantly improve performance 

over IB in classifying road accident severity. Each 

resampling technique affects the model performance 

as follows: 

• US: It is seen that non-fatal accident cases are 

reduced to balance the dataset. While this method 

lowers accuracy across models compared to IB, it 

improves the F1-score, G-mean, and balanced 

accuracy. For example, KNN sees F1-score rise 

from 17.63% to 26.63% in the 70/30 split, and RF 

achieves a G-mean of 68.74% for 80/20. This 

indicates better performance in handling minority 

classes (fatal accidents). However, under-

sampling risks discarding valuable information 

from the majority class, potentially reducing 

overall accuracy, which is why its F1-score, and 

G-mean improvements must be carefully 

weighed against accuracy drops. 

 

• OS: Increasing the number of fatal accident cases 

to balance the dataset. It typically shows 

performance improvements across F1-score, G-

mean, and balanced accuracy. For example, 

XGB’s F1-score increases from 8.31% in IB to 

31.72% in OS for the 70/30 split, and RF’s G-

mean improves to 67.58% for 90/10. 

Oversampling prevents information loss from the 

majority class but can lead to overfitting, 

especially in models like KNN. F1-score, G-

mean, and balanced accuracy are crucial in this 

context, as they reflect how well the model 

captures both fatal and non-fatal accidents, 

regardless of class imbalance. 

 

• CS: Merging both US and OS techniques to 

balance the dataset, this method achieves high 

F1-score, G-mean, and balanced accuracy 

without sacrificing as much information as US or 

overfitting like OS. For instance, RF in the 70/30 

split achieves the highest balanced accuracy 

(68.17%) and a significant F1-score 

improvement (32.67%). XGB also benefits, with 

balanced accuracy rising to 68.11% for 80/20. 

The combined approach provides a balanced 

trade-off between handling class imbalance and 

maintaining model generalizability. F1-score, G-

mean, and balanced accuracy are crucial in 

evaluating CS’s performance, as they ensure the 

model predicts both accident types effectively.
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                           (a)                                                           (b)                                                          (c) 

 

Figure 3 Model performance over three train/test ratios 

 

    
          (a)            (b)             (c)             (d) 

    
            (e)             (f)             (g)             (h) 

    
            (i)             (j)             (k)             (l) 

 

Figure 4 The confusion matrices across four different samplings in three classification models with train/test ratio of 70/30: 

(a) – (d) RF models; (e) – (h) KNN models; (i) – (l) XGB models. 

 

 As shown in Figure 3, the radar plots illustrate 

model performance across three train/test splits 

(70/30, 80/20, and 90/10) using F1-score, G-mean, 

and Balanced Accuracy metrics. Each axis represents 

the 12 ML algorithms generated by a combination of 

the 3 main models (RF, KNN, XGB) and resampling 

techniques (IB, US, OS, CS). Balanced Accuracy 

(orange) consistently scores higher, whereas F1-score 

(blue) and G-mean (sky blue) show greater variability 

across models and techniques. Focusing on the 70/30 

train/test split, the confusion matrices in Figure 4 

display classification results for 12 ML algorithms. 

The 1st – 3rd rows respectively indicate the 

performance of RF, KNN, and XGB models. The 1st 

– 4th columns represent that of IB, US, OS, and CS, 

respectively. Most models perform better in non-fatal 

accidents (class 0) but struggle with fatal accidents 

(class 1). For instance, US and CS resampling 

techniques slightly yield improved performance on 

minority class predictions, particularly in XGB as 

shown in Figure 4: (j)-(l). These techniques balance 

the dataset and enhance F1-score, G-mean, and 
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balanced accuracy by addressing the imbalance 

between fatal and non-fatal accident predictions, 

especially for models like XGB and RF. In 

conclusion, the results indicate that resampling 

techniques, particularly US, OS, and CS, significantly 

improve model performance in classifying RTA 

severity compared to IB. The metrics F1-score, G-

mean, and balanced accuracy consistently show 

improvements when these resampling methods are 

applied, addressing the class imbalance challenge. 

The CS method appears to offer a balanced trade-off 

between handling class imbalance and preserving 

overall model performance, making it a suitable 

technique for improving classification outcomes in 

road accident severity prediction. 

 

4.2 Discussion 

The numerical results obtained from our 

analysis shed light on the critical role of resampling 

techniques in addressing the challenge of imbalanced 

data in road accident severity classification for 

Thailand. This section delves into the implications of 

these findings, discussing how different resampling 

strategies influenced model performance. Furthermore, 

we explore the practical implementation of these 

insights in real-world scenarios, considering how 

improved prediction accuracy can enhance road safety 

measures, inform policy decisions, and ultimately 

contribute to reducing the severity and frequency of 

road accidents in Thailand. 

 

4.2.1 Effect of Resampling Techniques 

The comparative analysis of RF, KNN and 

XGB models under three resampling techniques 

reveals distinct performance patterns. Resampling 

techniques play a crucial role in addressing class 

imbalances in RTA severity prediction models. The 

empirical results demonstrate that IB often leads to 

models that are biased toward the majority class (non-

fatal accidents), resulting in poor detection of fatal 

accidents (the minority class). US balances the dataset 

by reducing majority class instances. While this 

method improves minority class detection, it often 

sacrifices overall accuracy due to the loss of valuable 

data. For instance, KNN sees a substantial F1-score 

increase from 17.63% (IB) to 26.63% (US) in the 

70/30 split, but the overall accuracy decreases. 

Oversampling (OS), on the other hand, balances the 

dataset by increasing the minority class cases. This 

method prevents the loss of information, enhancing 

both F1-score and G-mean without significantly 

compromising accuracy. XGB-OS, for example, 

delivers exceptional performance, with its F1- score 

rising from 8.31% (IB) to 31.72% (OS) and its G-

mean increasing as well. However, oversampling may 

lead to overfitting, especially in simpler models like 

KNN. CS achieves high F1, G-mean, and balanced 

accuracy across all models without losing as much 

information as US or overfitting like OS. RF-CS in the 

70/30 split, for example, achieves the highest 

balanced accuracy (68.17%) with significant F1-score 

improvements (32.67%). Thus, the choice of 

resampling technique significantly influences the 

model’s ability to classify RTA severity accurately. 

The mechanism of resampling techniques affecting 

the model performances are discussed as follows: 

 

• RF performs well with CS because it relies on 

aggregating multiple decision trees, each trained 

on different subsets of the data. Thus, using a mix 

of OS and US techniques can further enhance RF 

performance (Ran, 2023; Sainin et al., 2017; Sun 

et al., 2021). CS balances both the majority and 

minority classes, reducing the likelihood of bias 

in individual trees towards the majority class. 

This balanced data allows RF to make better 

splits at each tree level, improving the prediction 

of both classes and yielding higher overall 

performance. CS ensures that valuable information 

from both classes is preserved, enhancing RF’s 

ensemble nature, which thrives on diversity in the 

data 

 

• KNN shows high performance with US because 

it relies on the proximity of data points to make 

predictions. When the dataset is heavily 

imbalanced, the majority class dominates the 

decision boundaries, making it difficult for KNN 

to predict the minority class accurately. By under-

sampling the majority class, the dataset becomes 

more balanced, allowing KNN to focus more on 

identifying patterns within the minority class. US 

eliminates the overwhelming influence of the 

majority class, helping KNN to form clearer 

decision boundaries, improving the detection of 

the minority class. However, KNN struggles with 

imbalanced datasets, which can lead to biased 

results (Hao et al. 2008; Nair, & Kashyap, 2019; 

Aryanti et al., 2023; Simmachan et al., 2025). 

KNN’s sensitivity to class distributions makes it 

susceptible to majority class bias. Under-

sampling and other preprocessing techniques 

effectively address this issue, allowing KNN to 
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focus more on class proximity and improve 

classification performance.  

 

• XGB’s strength lies in its ability to iteratively 

improve upon the mistakes of prior models 

(boosting). With CS technique, the dataset 

becomes more balanced, allowing XGB to 

correct errors more effectively for both classes 

(Xu et al, 2014; Aggarwal, & Jacob, 2020; Sarac, 

& Guvenis, 2023). In an imbalanced dataset, 

XGB would focus primarily on the majority class, 

but CS ensures that it pays equal attention to the 

minority class. The improved class balance 

enhances the model’s ability to optimize the loss 

function, resulting in better predictions for both 

the minority and majority classes. Therefore, 

combining over-sampling and under-sampling 

techniques with XGB classifiers can substantially 

improve model performance across different 

domains by effectively addressing class imbalance 

issues.  

 

4.2.2 Model Implementation  

The research findings on classifying RTA 

severity in Thailand offer valuable insights into 

improving predictive model performance, particularly 

when handling imbalanced data. For RF and XGB, the 

OS and CS techniques significantly improve 

performance in handling imbalanced data. RF with CS 

achieves the best balanced accuracy, particularly in 

the 70/30 split, while maintaining a strong F1 score, 

making it effective for detecting both fatal and non-

fatal accidents. XGB consistently outperforms RF, 

especially with OS, showing higher F1 scores, G-

mean values and balanced accuracy, indicating better 

prediction of fatal accidents. XGB with CS also 

achieves balanced accuracy, making it the most 

effective approach for predicting road accident 

severity in Thailand. Additionally, it prevents the 

erroneous classification of non-fatal accidents as fatal, 

thereby averting unnecessary panic and resource 

misallocations. Therefore, XGB is treated as the most 

effective algorithm based on the priority of evaluation 

metrics, and this finding corresponds to the study of 

Vanishkorn, & Supanich (2022). The proposed 

models may guide road safety practitioners or 

authorities to raise road safety planning or policies to 

the RTAs in Thailand as well as fatality rate. Other 

features, such as the festive period mentioned in 

Lerdsuwansri et al., (2022) and the driver 

demographic factors used in Phaphan et al., (2023), 

should also be considered for more accurate model 

performance. Another limitation of this work is that 

the features used are all categorical. These features 

may not accurately reflect the actual patterns of RTA 

severity. Therefore, the quantitative features, such as 

the number of vehicles of various types utilized in 

Vanishkorn, & Supanich (2022), should be looked on. 

Due to the class imbalance in the dataset, where fatal 

accidents represent a small number of observations 

compared to non-fatal accidents, classification models 

favor the majority class, leading to low performance. 

Additionally, the limited feature set restricts the 

model’s ability to capture key patterns or relationships 

that could improve overall classification performance 

in future research. Integrating additional quantitative 

and environmental features, such as traffic density, 

road quality, or driver demographics, could improve 

model performance. 

 

5.  Conclusion 

Addressing class imbalance issues, this study 

highlights the critical role of resampling techniques in 

improving machine learning model performance for 

classifying road accident severity in Thailand. By 

applying three popular models including RF, KNN, 

and XGB to the imbalanced dataset using four 

different resampling methods including IB, US, OS, 

and CS, the results demonstrate that the resampling 

methods significantly enhance the models’ ability to 

classify the RTA severity. While models trained on 

the imbalanced dataset showed high accuracy, they 

performed poorly in terms of F1-score, G-mean, and 

balanced accuracy, particularly in detecting fatal 

accidents. Under-sampling (US) improved the 

detection of minority class instances but led to a loss 

in overall accuracy, but KNN showed its best 

performance in this case. Oversampling (OS) showed 

superior performance across all metrics without 

information loss. Based on our numerical findings, 

combined sampling (CS) balanced the benefits of both 

under- and oversampling, achieving the highest 

performance of RF and XGB across all metrics 

without sacrificing data or overfitting. These findings 

underscore the importance of selecting appropriate 

resampling techniques customized to specific 

performance objectives. Increasing RTAs is a critical 

issue worldwide, especially in Thailand. Future work 

should explore the integration of additional features, 

other ML methods, and address data collection 

challenges to further enhance model performance for 

road traffic accident severity classification. Advanced 

machine learning techniques, such as ensemble 

methods and deep learning could be explored to 
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enhance accuracy and robustness. Addressing data 

collection limitations and utilizing external methods 

to handle class imbalance more effectively should also 

be prioritized. Expanding the dataset and 

incorporating real-time data analysis could further 

improve prediction capabilities and support better 

road safety interventions. 

 

6.  Acknowledgements 

We acknowledge the referees for their 

informative manuscript suggestions. The authors 

gratefully acknowledge the financial support provided 

by the Faculty of Science and Technology, 

Thammasat University, Contract No. SciGR 4/2567. 

 

7.  References  

Aggarwal, H. K., & Jacob, M. (2020). J-MoDL: Joint 

model-based deep learning for optimized 

sampling and reconstruction. IEEE Journal of 

Selected Topics in Signal Processing, 14(6), 

1151-1162. 

https://doi.org/10.1109/JSTSP.2020.3004094 

Akarajarasroj, T., Wattanapermpool, O., Sapphaphab, 

P., Rinthon, O., Pechprasarn, S., & Boonkrong, 

P. (2023, October 28-31). Feature selection in 

the classification of erythemato-squamous 

diseases using machine learning models and 

principal component analysis [Conference 

presentation]. 2023 15th Biomedical Engineering 

International Conference (BMEiCON). IEEE, 

Tokyo, Japan. 

https://doi.org/10.1109/BMEiCON60347.202

3.10322034 

Aksoy, S., & Haralick, R. M. (2001). Feature 

normalization and likelihood-based similarity 

measures for image retrieval. Pattern 

Recognition Letters, 22(5), 563-582. 

https://doi.org/10.1016/S0167-

8655(00)00112-4  

Almannaa, M., Zawad, M. N., Moshawah, M., & 

Alabduljabbar, H. (2023). Investigating the 

effect of road condition and vacation on crash 

severity using machine learning algorithms. 

International Journal of Injury Control and 

Safety Promotion, 30(3), 392-402. 

Arockia Panimalar, S., & Krishnakumar, A. (2023). 

A review of churn prediction models using 

different machine learning and deep learning 

approaches in cloud environment. Journal of 

Current Science and Technology, 13(1), 136-

161. https://doi.org/10.14456/jcst.2023.12 

Aryanti, R., Arifin, Y. T., Khairunas, S., Misriati, T., 

Dalis, S., Baidawi, T., ... & Marlina, S. 

(2023). The use of resampling techniques to 

overcome imbalance of data on the 

classification algorithm [Conference 

presentation]. AIP Conference Proceedings. 

AIP Publishing, Jakarta, Indonesia. 

https://doi.org/10.1063/5.0128424 

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. 

(2021). A comparative analysis of gradient 

boosting algorithms. Artificial Intelligence 

Review, 54, 1937-1967. 

https://doi.org/10.1007/s10462-020-09896-5 

Boonkrong, P., & Simmachan, T. (2016). A 

Multigroup SEIR Epidemic Model with 

Vaccination on Heterogeneous Network. 

Chiang Mai Journal of Science, 43(4), 897-903. 

Boonserm, E., & Wiwatwattana, N. (2021). Using 

Machine Learning to Predict Injury Severity 

of Road Traffic Accidents During New Year 

Festivals from Thailand’s Open Government 

Data [Conference presentation]. The 2021 9th 

International Electrical Engineering Congress 

(iEECON). IEEE, March 10-12, 2021, 

Pattaya, Thailand. 

https://doi.org/10.1109/iEECON51072.2021.9

440287 

Breiman, L. (2001). Random forests. Machine 

Learning, 45(1), 5-32. 

https://doi.org/10.1023/A:1010933404324 

Chaiwuttisak, P. (2019). Analysis of Accidental 

Deaths During Songkran Festival Using Data 

Mining [Conference presentation]. The 

International Conference on Industrial 

Engineering and Operations Management 

Pilsen, IEOM Society International, July 23-

26, 2019, Czech Republic. 

Chaiyapet, C., Phakdeekul, W., & Kedthongma, W. 

(2022). Risk factors of severity of road 

accident injury incidence at Kut Bak district 

Sakon Nakhon province, Thailand. Res 

Militaris, 12(5), 835-45. 

Champahom, T., Jomnonkwao, S., Banyong, C., 

Nambulee, W., Karoonsoontawong, A., & 

Ratanavaraha, V. (2021). Analysis of crash 

frequency and crash severity in Thailand: 

Hierarchical structure models approach. 

Sustainability, 13(18), Article 10086. 

https://doi.org/10.3390/su131810086  

Champahom, T., Wisutwattanasak, P., Se, C., 

Banyong, C., Jomnonkwao, S., & 

Ratanavaraha, V. (2023a). Analysis of Factors 

https://doi.org/10.1109/JSTSP.2020.3004094
https://doi.org/10.1109/BMEiCON60347.2023.10322034
https://doi.org/10.1109/BMEiCON60347.2023.10322034
https://doi.org/10.1016/S0167-8655(00)00112-4
https://doi.org/10.1016/S0167-8655(00)00112-4
https://doi.org/10.1063/5.0128424
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1109/iEECON51072.2021.9440287
https://doi.org/10.1109/iEECON51072.2021.9440287
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/su131810086


SIMMACHAN, & BOONKRONG 

JCST Vol. 15 No. 2, April - June 2025, Article 99 
 

16 

Associated with Highway Personal Car and 

Truck Run-Off-Road Crashes: Decision Tree 

and Mixed Logit Model with Heterogeneity in 

Means and Variances Approaches. 

Informatics, 10(3), Article 66. 

https://doi.org/10.3390/informatics10030066  

Champahom, T., Se, C., Aryuyo, F., Banyong, C., 

Jomnonkwao, S., & Ratanavaraha, V. 

(2023b). Crash Severity Analysis of Young 

Adult Motorcyclists: A Comparison of Urban 

and Rural Local Roadways. Applied Sciences, 

13(21), Article 11723. 

https://doi.org/10.3390/app132111723 

Chantith, C., Permpoonwiwat, C. K., & Hamaide, B. 

(2021). Measure of productivity loss due to 

road traffic accidents in Thailand. IATSS 

Research, 45(1), 131-136. 

https://doi.org/10.1016/j.iatssr.2020.07.001 

Friedman, J. H. (2001). Greedy function 

approximation: a gradient boosting machine. 

Annals of statistics, 29(5), 1189-1232. 

https://www.jstor.org/stable/2699986 

Geron, A. (2019). Hands-On Machine Learning with 

Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build 

Intelligent Systems (2nd ed.). O'Reilly Media. 

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. 

(2016). Deep learning. Cambridge: MIT press. 

Hao, X., Zhang, C., Xu, H., Tao, X., Wang, S., & 

Hu, Y. (2008). An improved condensing 

algorithm [Conference presentation]. Seventh 

IEEE/ACIS International Conference on 

Computer and Information Science (icis 

2008). IEEE, May 14-16, 2008, Portland, OR, 

USA. https://doi.org/10.1109/ICIS.2008.67 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The 

Elements of Statistical Learning: Data 

Mining, Inference, and Prediction (2nd ed.). 

Springer. 

He, G., Han, H., & Wang, W. (2005). An over-

sampling expert system for learing from 

imbalanced data sets [Conference 

presentation]. the 2005 international 

conference on neural networks and brain. 

IEEE, October 13-15, 2005, Beijing. 

https://doi.org/10.1109/ICNNB.2005.1614671 

Ioffe, S., & Szegedy, C. (2015). Batch 

normalization: Accelerating deep network 

training by reducing internal covariate shift 

[Conference presentation]. Proceedings of the 

32nd International Conference on Machine 

Learning. July 6-11, 2015, PMLR, Lille, 

France. 

https://proceedings.mlr.press/v37/ioffe15.html 

James, G., Witten, D., Hastie, T., & Tibshirani, R. 

(2013). An introduction to statistical learning. 

New York: springer. 

Klungboonkrong, P., Woolley, J., Pramualsakdikul, 

S., Tirapat, S., Yotmeeboon, W., Pattulee, N., 

& Faiboun, N. (2019). Road safety status and 

analysis in Thailand and other Asian 

countries. Engineering & Applied Science 

Research, 46(4), 340-348. https://ph01.tci-

thaijo.org/index.php/easr/index 

Kotb, M. H., & Ming, R. (2021). Comparing 

SMOTE Family Techniques in Predicting 

Insurance Premium Defaulting using Machine 

Learning Models. International Journal of 

Advanced Computer Science and 

Applications, 12(9), 621-629. 

https://doi.org/10.14569/IJACSA.2021.0120970 

Kowshalya, G., & Nandhini, M. (2018). Predicting 

fraudulent claims in automobile insurance 

[Conference presentation]. the 2018 Second 

International Conference on Inventive 

Communication and Computational 

Technologies (ICICCT). April 20-21, 2018, 

IEEE, Coimbatore, India. 

https://doi.org/10.1109/ICICCT.2018.8473034 

Kuhn, M., & Johnson, K. (2013). Applied Predictive 

Modeling. New York: Springer. 

Lerdsuwansri, R., Phonsrirat, C., Prawalwanna, P., 

Wongsai, N., Wongsai, S., & Simmachan, T. 

(2022). Road traffic injuries in Thailand and 

their associated factors using Conway-

Maxwell-Poisson regression model. Thai 

Journal of Mathematics, 240-249. 

Mahikul, W., Aiyasuwan, O., Thanartthanaboon, P., 

Chancharoen, W., Achararit, P., Sirisombat, 

T., & Singkham, P. (2022). Factors affecting 

bus accident severity in Thailand: A 

multinomial logit model. PLoS One, 17(11), 

Article e0277318. 

https://doi.org/10.1371/journal.pone.0277318 

Mahikul, W., Thongbun, T., Tungparamutsakul, A., 

Kitudom, P., Phun, S., ..., & Onuean, A. 

(2024). Machine Learning for Predicting the 

Severity of Road Accident Victims at a 

University Hospital Emergency Center 

[Conference presentation]. the 2024 IEEE 

International Conference on Big Data and 

Smart Computing (BigComp). IEEE, 

February 18-21, 2024, Bangkok, Thailand. 

https://doi.org/10.1109/BigComp60711.2024.00091 

https://doi.org/10.3390/informatics10030066
https://doi.org/10.3390/app132111723
https://doi.org/10.1016/j.iatssr.2020.07.001
https://www.jstor.org/stable/2699986
https://doi.org/10.1109/ICIS.2008.67
https://doi.org/10.1109/ICNNB.2005.1614671
https://proceedings.mlr.press/v37/ioffe15.html
https://ph01.tci-thaijo.org/index.php/easr/index
https://ph01.tci-thaijo.org/index.php/easr/index
https://doi.org/10.14569/IJACSA.2021.0120970
https://doi.org/10.1109/ICICCT.2018.8473034
https://doi.org/10.1371/journal.pone.0277318
https://doi.org/10.1109/BigComp60711.2024.00091


SIMMACHAN, & BOONKRONG 

JCST Vol. 15 No. 2, April - June 2025, Article 99 
 

17 

Mamdouh Farghaly, H., Shams, M. Y., & Abd El-

Hafeez, T. (2023). Hepatitis C Virus 

prediction based on machine learning 

framework: a real-world case study in Egypt. 

Knowledge and Information Systems, 65(6), 

2595-2617. https://doi.org/10.1007/s10115-

023-01851-4 

Mathew, T. E. (2022). Appositeness of Hoeffding 

tree models for breast cancer classification.  

Journal of Current Science and Technology, 

12(3), 391-407. https://ph04.tci-

thaijo.org/index.php/JCST/article/view/253  

Moon, H., Pu, Y., & Ceglia, C. (2019). A Predictive 

Modeling for Detecting Fraudulent 

Automobile Insurance Claims. Theoretical 

Economics Letters, 9(6), Article 1886. 

https://doi.org/10.4236/tel.2019.96120 

Moulaei, K., Bahaadinbeigy, K., Ghasemian, F., & 

Taghiabad, Z. M. (2022). Predicting the 

Mortality in the Patients Hospitalized in 

Intensive Care Units (ICU) Based on Machine 

Learning Techniques. Science & Technology 

Asia, 27(2), 98–114. https://ph02.tci-

thaijo.org/index.php/SciTechAsia/article/view

/242886 

Na Bangchang, K., Wongsai, S., & Simmachan, T. 

(2023). Application of Data Mining 

Techniques in Automobile Insurance Fraud 

Detection [Conference presentation]. 

Proceedings of the 2023 6th International 

Conference on Mathematics and Statistics. 

July 14-16, 2023, ACM, New York, NY, 

USA. 

https://doi.org/10.1145/3613347.3613355 

Nair, P., & Kashyap, I. (2019). Optimization of kNN 

classifier using hybrid preprocessing model 

for handling imbalanced data. International 

Journal of Engineering Research and 

Technology, 12(5), 697-704. 

Open Government Data of Thailand. (2023). Road 

accident data set. Retrieved December 20, 

2023, from https://data.go.th/en/ 

Pasangthien, T., & Yimwadsana, B. (2022). 

Rebalancing Clinical Data with Probabilistic 

Random Oversampling. Journal of the Thai 

Medical Informatics Association, 8(2), 68–72. 

https://he03.tci-

thaijo.org/index.php/jtmi/article/view/480 

Pechprasarn, S., Srisaranon, N., & Yimluean, P. 

(2025). Optimizing diabetes prediction: an 

evaluation of machine learning models 

through strategic feature selection. Journal of 

Current Science and Technology, 15(1), 

Article 75. 

https://doi.org/10.59796/jcst.V15N1.2025.75 

Phaphan, W., Sangnuch, N., & Piladaeng, J. (2023). 

Comparison of the Effectiveness of 

Regression Models for the Number of Road 

Accident Injuries. Science & Technology Asia, 

28(4), 54–66. https://ph02.tci-

thaijo.org/index.php/SciTechAsia/article/view

/249723  

Polvimoltham, P., & Sinapiromsaran, K. (2021). 

Mass Ratio Variance Majority Undersampling 

and Minority Oversampling Technique for 

Class Imbalance. In Fuzzy Systems and Data 

Mining VII (pp. 152-161). IOS Press. 

https://doi.org/10.3233/FAIA210186 

Prasasti, I. M. N., Dhini, A., & Laoh, E. (2020). 

Automobile insurance fraud detection using 

supervised classifiers [Conference 

presentation]. The 2020 International 

Workshop on Big Data and Information 

Security (IWBIS). October 17-18, 2020, 

IEEE, Depok, Indonesia. 

https://doi.org/10.1109/IWBIS50925.2020.92

55426 

Ran, C. (2023). An Imbalanced Data Classification 

Algorithm Based on Mixed Sampling 

[Conference presentation]. 2023 IEEE 11th 

Joint International Information Technology 

and Artificial Intelligence Conference 

(ITAIC). December 8-10, 2023, IEEE, 

Chongqing, China. 

https://doi.org/10.1109/ITAIC58329.2023.104

09074 

Riyapan, S., Thitichai, P., Chaisirin, W., Nakornchai, 

T., & Chakorn, T. (2018). Outcomes of 

emergency medical service usage in severe 

road traffic injury during Thai holidays. 

Western Journal of Emergency Medicine, 

19(2), 266-275. 

https://doi.org/10.5811/westjem.2017.11.35169 

Sainin, M. S., Alfred, R., Adnan, F., & Ahmad, F. 

(2017). Combining sampling and ensemble 

classifier for multiclass imbalance data 

learning [Conference presentation]. 

Computational Science and Technology: 4th 

ICCST 2017, November 29-30, 2017, Kuala 

Lumpur, Malaysia. Springer Singapore. 

https://doi.org/10.1007/978-981-10-8276-4_25 

Sangkharat, K., Thornes, J. E., Wachiradilok, P., & 

Pope, F. D. (2021). Determination of the 

impact of rainfall on road accidents in 

https://doi.org/10.1007/s10115-023-01851-4
https://doi.org/10.1007/s10115-023-01851-4
https://ph04.tci-thaijo.org/index.php/JCST/article/view/253
https://ph04.tci-thaijo.org/index.php/JCST/article/view/253
https://doi.org/10.4236/tel.2019.96120
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/242886
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/242886
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/242886
https://doi.org/10.1145/3613347.3613355
https://data.go.th/en/
https://he03.tci-thaijo.org/index.php/jtmi/article/view/480
https://he03.tci-thaijo.org/index.php/jtmi/article/view/480
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/249723
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/249723
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/249723
https://doi.org/10.3233/FAIA210186
https://doi.org/10.1109/IWBIS50925.2020.9255426
https://doi.org/10.1109/IWBIS50925.2020.9255426
https://doi.org/10.1109/ITAIC58329.2023.10409074
https://doi.org/10.1109/ITAIC58329.2023.10409074
https://doi.org/10.5811/westjem.2017.11.35169
https://doi.org/10.1007/978-981-10-8276-4_25


SIMMACHAN, & BOONKRONG 

JCST Vol. 15 No. 2, April - June 2025, Article 99 
 

18 

Thailand. Heliyon, 7(2), Article e06061. 

https://doi.org/10.1016/j.heliyon.2021.e06061 

Sarac, K., & Guvenis, A. (2023). Determining HPV 

status in patients with oropharyngeal cancer 

from 3D CT images using radiomics: Effect of 

sampling methods [Conference presentation]. 

International Work-Conference on 

Bioinformatics and Biomedical Engineering. 

Cham, July 12-14, 2023, Springer Nature 

Switzerland. https://doi.org/10.1007/978-3-

031-34960-7_3 

Simmachan, T., Manopa, W., Neamhom, P., 

Poothong, A., & Phaphan, W. (2023). 

Detecting fraudulent claims in automobile 

insurance policies by data mining techniques. 

Thailand Statistician, 21(3), 552-568. 

https://ph02.tci-

thaijo.org/index.php/thaistat/article/view/250065 

Simmachan, T., Wongsai, N., Wongsai, S., & 

Lerdsuwansri, R. (2022). Modeling road 

accident fatalities with underdispersion and 

zero-inflated counts. PLoS One, 17(11), 

Article e0269022. 

https://doi.org/10.1371/journal.pone.0269022 

Simmachan, T., Wongsai, S., Lerdsuwansri, R., & 

Boonkrong, P. (2025). Impact of COVID-19 

Pandemic on Road Traffic Accident Severity 

in Thailand: An Application of K-Nearest 

Neighbor Algorithm with Feature Selection 

Techniques. Thailand Statistician, 23(1), 129-143. 

Siviroj, P., Peltzer, K., Pengpid, S., & Morarit, S. 

(2012a). Helmet use and associated factors 

among Thai motorcyclists during Songkran 

festival. International Journal of 

Environmental Research and Public Health, 

9(9), 3286-3297. 

https://doi.org/10.3390/ijerph9093286 

Siviroj, P., Peltzer, K., Pengpid, S., & Morarit, S. 

(2012b). Non-seatbelt use and associated 

factors among Thai drivers during Songkran 

festival. BMC Public Health, 12, Article 608. 

https://doi.org/10.1186/1471-2458-12-608 

Sun, H., Wang, A., Feng, Y., & Liu, C. (2021). An 

optimized random forest classification method 

for processing imbalanced data sets of 

alzheimer's disease [Conference presentation]. 

2021 33rd Chinese Control and Decision 

Conference (CCDC). IEEE. 

https://doi.org/10.1109/CCDC52312.2021.9602177. 

Tanaboriboon, Y., & Satiennam, T. (2005). Traffic 

accidents in Thailand. IATSS Research, 29(1), 

88-100. https://doi.org/10.1016/S0386-

1112(14)60122-9 

Taveekal, P., Rajchanuwong, P., Wongwiangjan, R., 

Lerdsuwansri, R., Intrakul, J., Simmachan, T., 

& Wongsai, S. (2023). Modelling Road 

Accident Injuries and Fatalities in Suratthani 

Province of Thailand Using Conway-

Maxwell-Poisson Regression. Thailand 

Statistician, 21(3), 569-579. https://ph02.tci-

thaijo.org/index.php/thaistat/article/view/250067 

Vanishkorn, B., & Supanich, W. (2022). Crash 

severity classification prediction and factors 

affecting analysis of highway accidents 

[Conference presentation]. 2022 9th 

International Conference on Advanced 

Informatics: Concepts, Theory and 

Applications (ICAICTA). September 28-29, 

2022, IEEE, Tokoname, Japan. 

https://doi.org/10.1109/ICAICTA56449.2022.

9932998 

Wang, J., Neskovic, P., & Cooper, L. N. (2007). 

Improving nearest neighbor rule with a simple 

adaptive distance measure. Pattern Recognition 

Letters, 28(2), 207-213. 

https://doi.org/10.1016/j.patrec.2006.07.002 

Wisutwattanasak, P., Jomnonkwao, S., Se, C., & 

Ratanavaraha, V. (2022). Influence of 

psychological perspectives and demographics on 

drivers’ valuation of road accidents: a 

combination of confirmatory factor analysis and 

preference heterogeneity model. Behavioral 

Sciences, 12(9), Article 336. 

https://doi.org/10.3390/bs12090336 

Worachairungreung, M., Ninsawat, S., Witayangkurn, 

A., & Dailey, M. N. (2021). Identification of 

road traffic injury risk prone area using 

environmental factors by machine learning 

classification in Nonthaburi, Thailand. 

Sustainability, 13(7), Article 3907. 

https://doi.org/10.3390/su13073907 

WHO. (2018). Global status report on alcohol and 

health 2018. Retrieved December 20, 2023, 

from 

https://www.who.int/publications/i/item/978924

1565684 

Xu, J., Yao, L., Li, L., & Chen, Y. (2014). Sampling 

based multi-agent joint learning for association 

rule mining [Conference presentation]. The 2014 

international conference on Autonomous agents 

and multi-agent systems. ACM. 

https://dl.acm.org/doi/abs/10.5555/2615731.261

7527 

https://doi.org/10.1016/j.heliyon.2021.e06061
https://doi.org/10.1007/978-3-031-34960-7_3
https://doi.org/10.1007/978-3-031-34960-7_3
https://ph02.tci-thaijo.org/index.php/thaistat/article/view/250065
https://ph02.tci-thaijo.org/index.php/thaistat/article/view/250065
https://doi.org/10.1371/journal.pone.0269022
https://doi.org/10.3390/ijerph9093286
https://doi.org/10.1186/1471-2458-12-608
https://doi.org/10.1109/CCDC52312.2021.9602177
https://doi.org/10.1016/S0386-1112(14)60122-9
https://doi.org/10.1016/S0386-1112(14)60122-9
https://ph02.tci-thaijo.org/index.php/thaistat/article/view/250067
https://ph02.tci-thaijo.org/index.php/thaistat/article/view/250067
https://doi.org/10.1109/ICAICTA56449.2022.9932998
https://doi.org/10.1109/ICAICTA56449.2022.9932998
https://doi.org/10.1016/j.patrec.2006.07.002
https://doi.org/10.3390/bs12090336
https://doi.org/10.3390/su13073907
https://www.who.int/publications/i/item/9789241565684
https://www.who.int/publications/i/item/9789241565684
https://dl.acm.org/doi/proceedings/10.5555/2615731
https://dl.acm.org/doi/proceedings/10.5555/2615731
https://dl.acm.org/doi/proceedings/10.5555/2615731
https://dl.acm.org/doi/abs/10.5555/2615731.2617527
https://dl.acm.org/doi/abs/10.5555/2615731.2617527


SIMMACHAN, & BOONKRONG 

JCST Vol. 15 No. 2, April - June 2025, Article 99 
 

19 

Yilmaz, A. E., and Demirhan, H. (2023). Weighted 

kappa measures for ordinal multi-class 

classification performance. Applied Soft 

Computing, 134, Article 110020. 

https://doi.org/10.1016/j.asoc.2023.110020  

Zha, D., Lai, K. H., Tan, Q., Ding, S., Zou, N., & Hu, 

X. B. (2022). Towards automated imbalanced 

learning with deep hierarchical reinforcement 

learning [Conference presentation]. The 31st 

ACM International Conference on Information 

& Knowledge Management. October 17-21, 

2022, ACM, Atlanta GA USA. 

https://doi.org/10.1145/3511808.3557474 

 

https://doi.org/10.1016/j.asoc.2023.110020

