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Abstract  
In this paper, with immersion and invariance (I&I) techniques, a nonlinear dual-excited and steam-valving 

control of synchronous generators is proposed for the transient stability and voltage regulation enhancement of an 

electrical power system after the occurrence of a large disturbance. The proposed nonlinear controller is used to not 

only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is 

transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the 

simulation results illustrate that the proposed controller can not only keep the system transiently stable but also 

simultaneously accomplish the system stability improvement and voltage regulation following temporary faults and 

permanent faults. 

 

Keywords: Dual-excited synchronous generator; steam-valving control; transient stability; Immersion and Invariance 

methodology. 

________________________________________________________________________________________________ 

บทคัดย่อ   
บทความนี้น าเสนอ การควบคุมที่มีการกระตุ้นสองชุดและวาล์วไอน้ าที่ไม่เป็นเส้นของเครื่องก าเนิดไฟฟ้าซิงโครนัสด้วยวิธีการฝังในและ 

ความยืนยงเพื่อเพิ่มเสถียรภาพชั่วครู่และการควบคุมแรงดันไฟฟ้าเมื่อมีสัญญาณรบกวนขนาดใหญ่บทสายส่งไฟฟ้า ตัวควบคุมที่ไม่เป็นเชิงเส้นจาก 
วิธีการฝังในและ ความยืนยงถูกน ามาใช้เพื่อบรรลุเสถียรภาพของมุมก าลังและการควบคุมความถี่และแรงดันพร้อมทั้งรับประกันได้ว่า ระบบวงรอบปิด 
มีเสถียรภาพแบบชั่วครู่และแบบเชิงเส้นก ากับ เพื่อแสดงถึงประสิทธิภาพของการออกแบบตัวควบคุม ผลการจ าลองด้วยคอมพิวเตอร์แสดงให้เห็นว่า 
ตัวควบคุมทีน่ าเสนอสามารถท าให้ระบบมีเสถียรภาพแบบชั่วครู่ และยังบรรลุเสถียรภาพของมุมก าลังพร้อมทั้งการควบคุมความถี่และแรงดันของ 
ระบบไฟฟ้าก าลังภายใต้สัญญาณรบกวนที่เกิดขึ้นชั่วคราวและถาวร 
 
ค ำส ำคัญ: Dual-excited synchronous generator; steam-valving control; transient stability; Immersion and Invariance 

methodology. 
________________________________________________________________________________________________ 

 

1.  Introduction  

Due to power systems with the rapid 

increase of the size and complexity, power system 

stability, including power angle stability along 

with frequency and voltage regulation, is of great 

importance. In general, power system operation is 

faced with the difficult task of maintaining stability 

when small or large disturbances occur in the 

power system. Therefore, the excitation control 

(Bazanella & Conceicao, 2004; Dib, Kenne, & 

Lamnabhi-Lagarrigue, 2009;  Galaz, Ortega, 

Bazanella, & Stankovic, 2003; Lu, Sun, & Wei, 

2001; Paul & Gerardo, 2004) and steam-valving 

control (Jian, Chen, Liu, Liu, & Jing, 2011; Lu, 

Sun & Wei, 2001; Sun & Zhao, 2010) recently 

become two main ways to not only further stabilize 

and control dynamic models of generators, but also 

achieve the desired control objectives.  

From references above, the excitation 

control and steam-valving control have independ- 

ently been employed to not only improve power 

system operations but also provide an opportunity 

for system stability improvement of the power 

system. In order to further improve the system 

stability- particularly transient stability of power 

systems, the coordination of generator excitation 

and steam-valving control has attracted much 

attention in literature for years. Wang & Mao 

(2009) have shown that with the help of 

differential geometry theory and variable structure 
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control theory, a nonlinear variable structure 

single-excited and steam-valving control can 

provide satisfactory dynamic performance and 

good robustness. Guo, Hill, & Wang (2000) have 

shown that a nonlinear decentralized robust control 

(both single excitation and steam valve control 

loop) is able to make the closed-loop systems 

transiently stable when a fault occurs, and is robust 

with regard to uncertain network parameters - 

attenuating the persistent disturbances. A nonlinear 

single-excitation control of synchronous generators 

with steam valve control (Li & Wang, 2006) has 

been proposed to attenuate external disturbances 

and deal with unknown parameters via a Hamil- 

tonian function methodology. Very recently, based 

on the Hamiltonian function methodology, a 

family of robust adaptive single-excited and steam-

valving control (Xu, & Hou, 2012) for synchro- 

nous generators has been proposed and can offer a 

degree of freedom to accomplish further desired 

control performances. Besides, a number of 

nonlinear control design techniques for the single-

excited and steam-valving control of synchronous 

generators in literature have been proposed to 

stabilize and control dynamic models of power 

systems, and provide additional benefits beyond 

single-excited controller or steam-valving 

controller. However, in the references above, note 

that the d-axis field voltage is assumed to be 

constant, resulting in reducing the fourth-order 

dynamic system into a third-order dynamic system. 

Therefore, in order to offer greater flexibility the 

combination of d-axis and q-axis field voltages 

(called dual-excitation) is a promising way to 

improve system stability. Moreover, the dual 

excitation of synchronous generators has d-axis 

and q-axis field windings and each field voltage 

can be independently adjusted, leading to more 

flexibility for achieving control objectives.  

So far, both linear and nonlinear 

controllers (Aggarwal, & Hogg, 2012; Daniels, & 

Lee, 1976; Huang, Tu, & Chen, 1997; Wang, & 

Lin, 2011) of dual-excited synchronous generators 

have been developed to improve the power system 

stabilization and dynamic performance. 

To the best of our knowledge, relatively 

little prior work has been devoted to the 

combination of dual-excited and steam-valving 

control of synchronous generators. In Chen, Ji, 

Wang, & Xi (2006), using coordinated passivation 

techniques the stability enhancement for single-

machine power systems has been investigated and 

shown to provide better dynamic performance than 

a feedback linearization methodology. 

This paper continues this line of 

investigation and particularly extends our work 

reported in Kanchanaharuthai (2013) by using the 

concept of immersion and invariance (I&I) techni- 

que to design a nonlinear control law for system 

stability and voltage regulation enhancement of a 

Single-Machine Infinite Bus (SMIB) power 

system. The I&I technique is based on selecting a 

target dynamical system that can capture the 

desired behavior of the closed-loop system to be 

controlled. The control objective of this method is 

to find a stabilizing control law not only to ensure 

that the closed-loop system behaves asymptotically 

the same as the pre-specified target system, i.e. 

achieve asymptotic model matching, but also to 

achieve the desired closed-loop system perform- 

ance requirements in Section 2. However, in our 

prior work, there is still a drawback in control 

design procedure due to practically immeasurable 

variables, particularly two generator transient 

voltage sources that are employed in the resulting 

control law. The I&I controller proposed in this 

paper is based upon all measurable state variables 

and designed to not only simultaneously achieve 

power angle stability along with frequency and 

voltage regulation, but also keep the system 

transiently stable. Simulation results are provided 

for an SMIB with a Synchronous Generator (SG), 

including both dual-excited and steam-valving 

control connected to the infinite bus.  

The rest of this paper is organized as 

follows. In Section 2, the problem formulation is 

provided. In Section 3, power system models 

considered is briefly given. The I&I design 

methodology used to construct a nonlinear control 

law is stated in Section 4. In Section 5, simulation 

results are given while we conclude in Section 6. 

 

2.  Problem statement  

In this paper we are interested in studying 

the transient stability of a nonlinear power system 

including generator dual excitation and steam-

valving controller. The nonlinear system 

considered can be written in the general form as 
 
 

 ( ) ( ) ( ) ( )x t f x g x u x  , (1)
 

where
nx is the state variable, 

mu  is the 

control action, and ( )f x and  g x  are assumed 

to be smooth functions. 
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 The problem of interest in this paper is 

the following:  given a stable equilibrium point
ex , 

find a stabilizing state feedback controller law 

 u x  so that the closed-loop system satisfies 

1. The desired equilibrium point 
ex  is asymptoti- 

cally and transiently stable. 

2.  Power angle stability, voltage and frequency 

regulation are simultaneously achieved. 

In the next section, we provide simplified 

non-linear models of power system elements and 

use these to design a state feedback control law 

that meets the requirements given above. 

 

3. Power system models  

In this section, the dynamic models of the 

synchronous generator are briefly provided. A 

dynamic model of a synchronous generator (SG) 

can be obtained as 
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where  is the power angle of the generator,   
denotes the relative speed of the generator, 

0D  is a damping constant, 
qE  and 

dE is the q-

axis, and d-axis internal transient voltages, 

respectively. dX 
and qX 

are the d-axis and q-axis 

transient reactances, respectively. eP  is the 

electrical power delivered by the generator to the 

voltage at the infinite bus V , s  is the 

synchronous machine speed, 2s f  , H  

represents the per unit inertial constant, f  is the 

system frequency and 2 / sM H  . 

d d T LX X X X 

   
 

is the react-ance 

consisting of the direct axis transient reactance of 

SG, the reactance of the transformer 
TX , and the 

reactance of the transmission line 
LX . Similarly, 

d d T LX X X X    is identi- cal to 

dX 


except that 

dX  denotes the direct axis 

reactance of SG. 
0dT   and 0qT 

 are the d-axis and 

q-axis transient short-circuit time constants.  
fdu  

and 
fqu are the d-axis and q-axis field voltage 

control inputs, respectively. 
meP  is the initial 

value of mechanical power, 
HC is the assigned 

coefficient of high-pressure cylinder. 
HT 

 is the 

equivalent time constant of steam valve control 

systems. Gu  is the steam-valving control input. 

(See Lu, Sun, & Wei (2001) for further details).   
In practice, the generator transient 

voltages 
dE and qE  are often physically not 

measurable while only 
mP is always monitored, so 

we consider two new variables, namely, 
eqP and 

edP as  

 

2

,
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,

2
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 Differentiating the electrical powers 
eqP  

and 
edP , respectively, in (2) and then defining the 

variables yield 

1 2 3, , ,s mx x x P     

4 5,eq edx P x P  . The dynamic model of the 

power system including dual-excited and steam-

valving control can be expressed as the general 
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form (1) and (4) below. 
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The region of operation is defined in the set. 

1{ | 0 }
2
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
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The open loop operating equilibrium is denoted by 
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4. Immersion and invariance 

The I&I method for stabilizing nonlinear 

systems was proposed in Astolfi & Oreta (2003), 

and further developed as summarized in Astolfi, 

Karagiannis, & Oreta (2007). The method is based 

on the notion of invariant manifolds and system 

immersion.   This methodology carries out from 

transforming the original state of the system ( )x t  

into two new states, namely ( )t  and ( )z t . The 

dimension of state ( )t  becomes strictly less than 

the dimension of state ( )x t . The new reduced state 

( )t  is called the target dynamics and the 

transformation employed to get these states defines 

the invariant manifold. The state ( )z t  is called the 

off-the-manifold state and complements the 

dimension of ( )t . The resulting control law is 

designed to ensure that the original state ( )x t is 

bounded, that the manifold is rendered invariant, 

and that the off-line-manifold state ( )z t converges 

asymptotically to the origin. Besides, the original 

state ( )x t will converge to a desired equilibrium 

point with a dynamic behavior converging to that 

of the target dynamical system.  Roughly speaking, 

the I&I concept relies upon selecting a target 

dynamical system that is capable of capturing the 

desired behavior of the closed-loop system to be 

controlled. This method is applicable to practical 

control design problems for many types of 

systems, refer to Astolfi et al. (2007) for further 

details. For transient stability and voltage 
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regulation enhancement of power systems with 

excitation control, see Dib, Kenne, & Lamnabhi-

Lagarrigue (2009). 

The following results, discovered in those 

papers, are used to design this proposed nonlinear 

coordinated controller for power systems including 

dual-excitation and steam-valving controllers 

 

Theorem 1: Consider the nonlinear system1 

(Astolfi & Oreta, 2003; Astolfi et al., 2007)  

( ) ( ) ( ) ( )x t f x g x u x  , (4)
              

with state 
nx  and control input 

mu , and 

an assignable equilibrium point 
n

ex   to be 

stabilized. Let s n , and assume that there exist 
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( )

: ,  : ,  : ,

: ,  : ,

s s s n n m

n n s n n s m
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   

 
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
 

such that the following hold. 

 

(H1) (Target system) The system    

( )    ,                       (5) 

          with state 
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stable equilibrium at 
s
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(H3) (Implicit manifold) The following set 
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(H4) (Manifold attractivity and trajectory 

boundedness)  

All trajectories of the system  
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1 It is assumed that all functions and mappings are 
  throughout this paper 

are bounded and satisfy  lim ( ) 0
t

z t


 . 

Then, 
ex  is a globally asymptotically stable 

equilibrium of the closed loop system 

( ) ( ) ( ) ( , ( ))x t f x g x x x    .               (9) 

Taken from Astolfi et al., (2007) Theorem 1 

above can be interpreted as follows. Given the 

nonlinear system (4) and the selected target 

dynamical systems (5), find if possible, a manifold 
s{ | ( ),     }nx x      M that can be 

rendered invariant and asymptotically stable and 

for which the restriction of the closed-loop system 

to M is described by the target system (H1). Note 

that the control input u that makes the manifold 

invariant is not unique, it is only uniquely defined 

on M , that is, ( ( ),0) ( ( ))c     . Based on 

(H4) in order to drive the off-the-manifold 

coordinate z to zero and keep the system 

trajectories bounded, one of all possible controls is 

selected 

 

4.1 I&I Controller Design 

4.1.1 Target system 

In order to design a stabilizing 

controller and verify the condition according to 

Theorem 1, we start with selecting the target 

dynamics as the mechanical subsystems (e.g., a 

simple damped pendulum system) 

1
1 2 2 2
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
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 ,             (10) 

where 
1( )V   and ( )R   represent the potential 

energy and a damping function of the pendulum 

systems, respectively, both of which are selected. 

The pendulum system, considered with a stable 

equilibrium point
1( ,0)T

e e  , has the potential 

energy 1( )V   satisfying the two following 

assumptions: (i) 1( )
0eV 




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
  (ii) 

2

1

2

( )
0eV 




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and the damping function verifying ( ) 0eR    

and the energy function 
2

2 1

1
( ) ( )

2
H V    . 

It is easy to choose the potential energy 1( )V   

along conditions as 

1 1( ) cos ,  V     1 1 1 ,  0e        
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4.1.2 Immersion condition 

As the desired target system has been 

selected, a mapping :     S S  

is determined as follows. 

 1 2 1 2 3 54( , ) : ,  ( ),  ( ),  , ( ) 
T

          

 where 
3( )  , 

4 ( )  and 
5( )   are selected. 

Besides, the condition of Theorem 1 gives the 

constraints, namely, , 1,2 , ., 5ie iex i    We 

can choose 
3 4( ), ( )    and 

5( )   to satisfy 

condition (7), especially the second row as shown 

below. 
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 (11) 

From the expression above, in order to 

simplify our derivations, 
4 ( )   and 

5( )   are 

chosen as follows, 
44 2( ) e dx     

and
55 2( ) e dx    . Consequently, we can 

compute 
3( )  as  

1 2 4 5( ) sin ( ) ( )dM              (12) 

 (12) 

As the mapping ( )  has been chosen, by using 

some lengthy, but straightforward, calculation 

from the third to fifth rows, respectively, we have 

the control input below that renders the manifold 

M invariant. 

1

0
3
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0
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,  , ( ( ))

( ( ))

T

H f
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q

q

d

f f

c
C u u u
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T T T
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 

 

  
            

  

4.1.3 Implicit Manifold 

From the results above, the mapping ( )   

has been defined and the condition in (8) is 

verified. It is obvious that the mapping ( )x can 

be defined as 

3 3 1 2

4 4

5 25

2

( , )

( )( )

( )

x x x

x xx

x x







 
 

  
  

 .   (13)                   (13) 

4.1.4 Manifold attractivity and trajectory 

boundedness: 

In this subsection, a control law 

 ,u x z is designed to ensure that all 

trajectories of the closed-loop system are bounded 

and converge to the manifold M . Let  :z x  

be the off-the-line manifold coordinate, 

substituting
3 4,x x and 

5x  into the expression 

below we have 
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In order to ensure that the trajectories of the off-

the-manifold coordinate z  are bounded and 

lim ( ) 0
t

z t


 according to condition (10), we 

take , 0, 1,2.i i i iz z i      and then we get 
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4.1.5 The control law:  

We can compute the control laws as 

follows: 
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 (14) 

where 
1 1

1 2

3 3cos( ),e dM x x
x x

 
 

 
   

 
 

and 

5

2

4

2

d
x x





   

 
. 

According to the condition (H4), it is also 

necessary to prove boundedness of the trajectories 

of the closed-loop system with the control law 

( , ( )),  1,2i x x i    and the off-the-manifold 

coordinate z as given by 
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T
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   (15) 

We begin with the fact that clearly 

1x S is bounded and 
1 2,z z  and 

3z  are 

exponentially decaying functions- that is, 

( ) (0) ,it

i iz t z e


  1,2,3i  and also 

bounded. It follows that 
4 2 4 2( ),x z     and 

5 5 25( )x z     are bounded. Substituting 

1 33 1 2( , )x z x x  ,  24 24 xx z    and 

55 25( )x z x   into the second equation of 

(15) and using the energy function 

3

2 2 2 2

2 1 1 2

1 1
( , ) ( ) ( )

2 2
W x z x V x z z z     , 

we have 
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and the first inequality follows from Young's 

inequality, i.e.
 

2
22

b
ab ca

c
  to eventually 

obtain the final inequality. From the last inequality 

above, 
1 2 3, ,   are positive and 0, 0dD   , 

it can be seen that there exists a time 
ft  such that 

1 2 3( , , ) 0z z z  , for all 
ft t  and eventually we 

have 
2

2

2( )
0dD

W x
M

 
   . Therefore, there 

exists a ball around the operating equilibrium, 

strictly contained in D  such that all trajectories 

starting in this set satisfy 

1 2 1 2( , ) ( (0), (0))H x x H x x - thus resulting in 

boundedness of 
1 2( ,  )x x . This also implies 

boundedness of 
13 2( , )x x . Finally, boundedness 

of 
3 4,x x and 

5x
5x

 follows the fact that 

3 1x z 

1 2 43 4 2 5 3 5 22 (( , ) ), ), (x x x z x xx z    

Hence, boundedness of the trajectories of (15) and 

lim ( ) 0
t

z t


  have been shown. We can establish 

the main result summarizing the proposed I&I 

controller design in the following proposition. 

Proposition 1: The closed-loop system (15) with 

the control laws (14) is locally asymptotically stable 

in 
ex

 
Proof: The proof of proposition 1 is based on the 

arguments as given above in (10)-(13). 

 

5.  Simulation results  

In this section, simulation results from 

coordination of generator dual excitation and 

steam-valving control in SMIB power systems 

considered in previous sections are shown using 

power angle stability as well as voltage and 

frequency regulations to point out the transient 

stability enhancement and dynamic properties. 

Consider the single line diagram as shown 

in Figure 1 with SG connected through parallel 

transmission line to an infinite-bus.  Such 

generators deliver 1.2749 pu., power while the 

terminal voltage 
tV  is 1.0475 pu., and an infinite-

bus voltage is 1.0 per unit. However, when there is 

a three-phase fault (a large perturbation) occurring 

at the point P , the midpoint of one of the 

transmission lines, this leads to rotor acceleration, 

voltage sag, and large transient-induced electro- 

mechanical oscillations. 

We are, therefore, interested in the 

following question. After the fault is cleared from 

the network, will the system return to a post-fault 

equilibrium state? 

In this paper, the following two fault 

sequences are of interest, namely temporary and 

permanent faults. Usually, there are four basic 

stages associated with transient stability studies 

(temporary and permanent faults) of a power 

system: (i) The system is in a pre-fault steady state 

(ii) A fault occurs at 0t (iii) The fault is isolated by 

opening the breakers at 
ct  (iv) The transmission 

line is recovered without the fault at rt t sec. 

Eventually, the system is in a post-fault state at 

ft t sec. 

In this paper, two cases with different 

faults sequences are investigated as follows: 

Temporary fault 

The system is in a pre-fault steady state, a 

fault occurs at 
0 0.5t   sec., the fault is isolated by 

opening the breaker of the faulted line at 1ct   

sec., the transmission line is recovered without the 

fault at 1.5rt  sec. Afterward the system is in a 

post-fault state. 

Permanent fault 

The system is in a pre-fault steady state, a 

fault occurs at 
0 0.5t  sec., the fault is isolated 

by permanently opening the breaker of the faulted 
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line at 1ct   sec. The system is eventually in a post-

fault state.  

In this section, we investigate the 

effectiveness of the coordinated (dual-

excitation/steam-valving control) controller for 

improving transient stability of a power system 

through power angle stability, voltage, frequency, 

and power regulations.  

These results are also compared with the 

existing nonlinear controller, namely the 

coordinated passivation controller (Chen, Ji, 

Wang, & Xi, 2006)  

 

 
Figure 1  A single line diagram of SMIB 

 

The physical parameters (pu) and initial 

conditions ( ,  ,  ,  ),e s me e e eqe dPP P   for this 

proposed power system model are given as. 
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The tuning parameters of the coordinated 

controller selected to test in this paper 

are 1 2 3 100, 1000       , and 0.5d  . 

From our simulation results, the following can be 

seen. 

The transient stability of a power system 

with both generator dual excitation and steam-

valving control can be effectively enhanced by 

using the nonlinear coordinated controller 

proposed as shown in Figures 2 and 3. Although 

there is a large sudden fault (temporary or 

permanent) on the network, the system is able to 

keep transiently stable.    

  Time trajectories of a power angle  , 

SG relative speed (frequency)
s  , the 

mechanical power 
mP  of the proposed controller 

and the coordinated passivation controller, 

respectively, are shown in Figures 2(a) and 3(a).  

After the fault is cleared from the network, from 

two fault cases above the power angles e  , 

and the SG relative speeds, 0s   , and the 

mechanical power, m meP P  settle to the pre-

fault steady state as expected. Note also that, due 

to the presence of the permanent fault on the 

network, power angle,  SG relative speed, and the 

mechanical power of the I&I controller and the 

coordinated controller can go to the pre-fault state. 

In comparison with the coordinated passivation 

controller, time histories of the coordinated (dual 

excitation/steam-valving control) controller, part- 

icularly power angles and relative speeds, have 

obviously smaller overshoot along with faster 

reduction of oscillation. Regarding power and 

voltage regulation as shown in Figure 2(b) and 

3(b), the coordinated controller provides clearly 

better transient responses over the coordinated 

passivation controller and quickly settles to their 

pre-fault steady state of active power. In particular, 

the voltage sag of the proposed controller is 

quickly stabilized in comparison with the 

coordinated passivation controller in terms of 

settling time, rise time, and smaller overshoots. 

Their voltage responses also return to the desired 

reference voltage 
refV , except for the permanent 

fault case, where there is a change on network 

structure 
2X . Figure 2(c) illustrates time histories 

of off-the-manifold coordinates 
21,  z z and 

3z , 

showing the manifold M  implicitly described by 

( ) 0x  .  These results indicate that the combina- 

tion of dual excitation and steam-valving control 

can obviously further improve transient stability 

along with dynamic properties when compared to 

the coordinated passivation controller.  In other 

words, in the permanent fault, Figures 3(a)-(b) 

illustrate power angle, SG relative speed, and the 

mechanical power can return to the pre-fault state 

excluding terminal voltage
tV . Also, the off-the-
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manifold coordinates 
21,  z z and 

3z
 
con verge to 

zero, as expected. Independent of the steady-state 

operating point of the system and fault sequences 

above, the nonlinear coordinated controller can 

achieve the expected requirements and accomplish 

better dynamic properties as seen in faster transient 

responses (dynamic properties) of the closed-loop 

systems under a large sudden fault.  From the 

simulation results above, it can be concluded that 

not only transient stability is enhanced but also 

power angle stability as well as frequency, power, 

and voltage regulations are simultaneously 

accomplished according to  two expected require- 

ments for the proposed controller. 

 

6. Conclusions 

In this paper, a nonlinear dual excitation 

and steam-valving controller, used to enhance the 

transient stability of a power system, has been 

proposed using I&I methodology. The proposed 

controller obtained in this work was further 

extended from the work of Kanchanaharuthai 

(2013) where some measurable states variables can 

be known. Simulation results have demonstrated 

that power angle stability along with voltage and 

frequency regulations are fulfilled by following the 

large (transient) disturbances on the network via 

I&I nonlinear model-based control design 

methodology. In particular, in spite of the 

occurrence of severe disturbances on the trans- 

mission line, the proposed coordinated controller 

proposed can not only maintain the transient 

stability but also accomplish better dynamic 

properties of the system than a coordinated 

passivation controller. 

In this work, we are interested in the 

design of a stabilizing controller for the power 

system with dual-excited and steam-valving 

controller for SGs connected to an infinite bus. 

Usually, a large interconnected system can be 

represented by the infinite bus when its voltage 

and frequency remain constant under all condi- 

tions. Even though in a large-scale power system 

there many generators, it is often possible to 

reduce the power system to a set of machines of 

interest connected through an equivalent network 

(Thevenin equivalent circuit) as shown in Figure 1. 

Unfortunately, if the reduced order power system 

is not an adequate representation of the power 

system for transient stability studies, then we can 

extend the earlier results to multi-machine systems 

by following an idea form Dib, Ortega, & Hill 

(2013). Also, throughout our results, we proposed 

a stabilizing control law for the SMIB power 

system that is lossless (for example, without 

transfer conductances between buses). Con- 

sequently, to further increase the efficacy of the 

resulting controller for successful applications in 

large-scale electric power systems, the nonlinear 

controller for power systems that are lossy should 

be developed. Also, many important control 

problems such as disturbance attenuation and 

adaptive stabilization problems for uncertain 

nonlinear power systems should be considered. 
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8. Appendix 

A. Coordinated Passivation Controller (Chen, Ji, 

Wang, & Xi, 2006) 

For simplicity, let us define the state variable 

by 

1 2 3, , ,e s m mex x x P P        

1 2,eq eqe eq eqey P P y P P     then the power 

systems considered in (3) is output strictly passive 

under the coordinated passivation controller are 
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and in this paper tuning parameters were chosen as 

1 2 3 20c c c   . Further, if i i iv y   
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 0, 1,2i i    and 1 2 3 /c c c D H   , the 

closed-loop system is asymptotically stable. 
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(c) 

Figure 2  Tempora1y fault case: Time histories of  (a)  power angle   ,   relative speed   s    and 

mechanical power voltage   mP , (b) active power   eqe edP P P   and terminal voltage  tV , (c) the 

off-the-line manifold coordinates 21,z z and 
3z . 
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Figure 3  Permanent fault case: Time histories of  (a)  power angle   ,  relative speed   s    and 

mechanical power voltage   mP , (b) active power   eqe edP P P   and terminal voltage  tV , (c) the 

off-the-line manifold coordinates 21,z z and 3z  


