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Abstract  

A transient stress analysis for the problems of a thermoelastic medium containing a finite crack experiencing 
a sudden change in temperature over the surface of the crack is studied employing coupled thermoelasticity theory. By 
assuming that heat is suddenly transferred across the surface of a crack according to Newton’s Law of Cooling and 
using Laplace and Fourier’s method of integral transforms, the problem is reduced to a system of coupled dual integral 
equations.   Further application of Tranter’s method, in expressing unknown functions as an infinite series of Bessel 
functions, reduces the equations to an infinite set of linear algebraic equations whose solution in the Laplace transform 
domain is inverted numerically to yield the values of the dynamic stress-intensity factor, ( )1k t . The results reveal the 
significant influence of inertia but negligible coupling effects. 
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1.  Introduction 

In past decades, the failure of brittle 
materials containing initial defects under dynamic 
loadings has been a main concern to many 
investigators (Kassir & Sih, 1975; Chen & Sih, 
1977). The process leading to catastrophic failure 
in structural components may occur suddenly, or 
over a period of time, depending on the magnitude 
of the local stress field around the crack tip which 
is measured by the stress intensity-factor. Under 
rapidly applied thermal loading and fluctuating 
thermal disturbance, the stress intensity factor can 
be considerably amplified, and in many instances 
may trigger crack extension and eventual failure 
even before initial yielding takes place.  Although 
thermal problems have been solved by many 
investigators in the past, most of them are usually 
based on conventional treatment neglecting the 
inertia term in the equation of motion and the 
thermoelastic coupling term in the heat conduction 
equation. This hypothesis of a quasi-static process 
is known to yield useful results without significant 
errors in practical engineering applications; 
however, when a temperature field exhibits steep 
time-gradients, the inertia and coupling effects 
may be significant and the coupled theory of 
thermoelasticity should be employed (Sternberg  & 
Chakravorty, 1959; Takeuti & Furukawa, 1981).  

Several transient and steady-state 
problems have been solved in the past using the 
coupled theory of thermoelasticity (Boley & 
Weiner, 1960; Chadwick, 1960).  This theory takes 
into account the interdependence of temperature 

and displacement fields in which one can not exist 
without the other. Transient problems involving 
applied normal stress and/or heat flux across the 
surfaces of a finite crack was solved by Kassir, 
Phurkhao and Bandyopadhyay (1986). Their 
approach was to use the Fourier and the Laplace 
transforms to reduce the problem to a standard 
Fredholm integral equation whose solution in a 
regular time domain was numerically inverted to 
yield a dynamics stress-intensity factor. 
Georgiadis, Brock and Rigatos (1998) employed 
Green’s function for cracked surfaces under a pair 
of line heat sources using coupled 
thermoelastodynamic equations. Recently, a 
transient problem concerning a penny-shaped 
crack was investigated by Ampunsuk and 
Phurkhao (2005) by utilizing the Hankel and 
Laplace transforms. The reported results reveal 
similar increases in the dynamic stress intensity-
factor, rising to the peak quickly and then 
decreasing to the static value while, the coupling 
has a negligible effect.  

Phurkhao and Kassir (1991) investigated 
the diffraction problems of thermally-induced 
thermo-elastic waves by a line of a finite crack 
using the integral transform technique and 
obtained the frequency-dependent dynamic stress 
intensity factor.   In a recent paper,   Phurkhao 
(2010) employed the same technique to solve an 
analogous problem concerning the propagation of 
thermoelastic waves induced by mechanical 
excitation.   

While a considerable amount of work has 
been done on the topic of thermal impact, to the 
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best of the author’s knowledge, there are no 
solutions for an elastic medium with a finite crack 
being subjected to a sudden change in temperature 
over the crack surfaces when taking the inertia and 
coupling effects into consideration. 
 
2.  Objectives 

The purpose of this study is to determine 
the transient response of a thermoelastic solid 
containing a finite crack flaw using the theory of 
coupled thermoelasticity. The main focus is the 
determination of the stress-intensity factor, the 
influence of inertia and the coupling effect when 
the crack experiences an abrupt change in 
temperature and the transfer of heat across the 
cracked surface according to Newton’s law of 
cooling. The Laplace and Fourier integral 
transforms (Sneddon, 1951) are employed to 
reduce the mixed-boundary value problem  to a 
system of dual integral equations (Sneddon, 1966). 
Furthermore, to facilitate the numerical work, the 
system of dual integral equations are then 
transformed to an infinite set of linear algebraic 
equations by the application of Tranter’s method 
(Tranter, 1956).  

Two typical materials, lead and copper, 
with high and low coupling constants, respectively, 
are selected for numerical computation and 
determination of the coupling effect inherent in the 
theory. The state of plane strain is assumed in this 
investigation.  
 
3.  Materials and methods 

Neglecting body forces and internal heat 
sources, the governing equations of the linear 
coupled theory of thermoelasticity for isotropic 
elastic material in the non-dimensional space and 
time variables ( , , ; )x y z t are (Boley and Weiner, 
1960; Chadwick, 1960) 

    2 2 2(1 ) ,e    u u                       (1)                       

    
2 0e      ,                                       (2)      

where, a dot over a function indicates 
differentiation with respect to the non-dimensional 
time t . The symbols  and 

2 designate the usual 
del and Laplacian operators;  stands for the ratio 
of the isothermal velocities of the shear 

2( )c and 
the dilatational waves 1( )c in the medium, and 
denotes the coupling constant. They are given as 

     

 

1 2

2 2

0

( 2 ) / , / ,

(3 2 )
.

2

c c

T

c

    

  


  

  



 
 

      (3)    

 
Here,  and c denote, respectively, the coefficient 
of linear thermal expansion and the specific heat at 

constant volume.  and  represent the Lame’s 
elastic constants, and  is the mass density of the 
medium. Moreover, 

0T and e designate the 
reference stress-free temperature (absolute) and the 
dilatation of the medium, respectively. 

Equations (1) and (2) relate the 
normalized displacement vector , ,x y zu u uu = ( )  to 
the normalized temperature .  The actual space 
and time variables ( , , ; )x y z t    , the displacement 
vector ( , , )x y zU U UU and the temperature T are 
related to the dimensionless variables by the 
following relations 

       

 

1 1 1

2

1 0 0

1

/ , / , / ,

/ , / ,

/ div 

x c x y c y z c z

t c t T T T

c e

  

 



     


   


 u U,  = u,

  (4)              

where, ( / )k c  and 
0T T  denotes, 

respectively,  diffusivity and the deviation of 
temperature from the reference

0T .  
In order to determine the equations 

governing the propagation of the dilatational and 
shear waves in the xy -plane under the state of 
plane strain, it is necessary to decompose the 
displacement vector u  into two potential functions
 and  in the following form      

     , , 0x y zu u u
x y y x

      
    
   

, (5) 

and insert them into (1) and (2).  It follows that the 
potentials  and  associated with the dilatational 
waves are governed by  

     
2 ,                                                   (6)        

     
2 2 0        ;                                   (7) 

while, 2 2            (8)                                                 
governs the shear wave.                 

     The non-dimensional stress components 
(normalized by  ), in particular, the components 

y and 
xy  can be easily expressed in terms of the 

potentials ,  and  by 

     2 22y
x x y

 
   

   
     

   
,          (9)     

     
2 2 2

2

2 2
2xy

x y y x

  
 

   
   

    
.            (10)                      

In addition, the equations (6)-(8) must be 
supplemented by the specified boundary and initial 
conditions.  

In this study, it is assumed that a finite 
crack of actual length 2a situated in an infinite 
elastic medium along the x -axis from a to a  
with 1( / )a c a  being the normalized crack 
length, initially at rest, undeformed and at a 
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reference temperature
0T , is subjected to a transfer 

of heat across the crack surfaces due to a sudden 
change in temperature 

0 . Considering the 
symmetry of the problem with respect to the x -
axis, it is, therefore, sufficient to consider the 
problem within the region 0y  . The appropriate 
boundary conditions on 0y  plane and 0t  are 

0xy  ,                               all x ,              (11)                                

   0y  ,                              x a ,            (12)       

   0yu  ,                               x a ,            (13)                   

    0 ( ) 0h H t
y


 


  


,     x a ,           (14) 

   0
y





,                              x a .           (15) 

In (14), ( )H t denotes the Heaviside step function; 
while, 

1( / )h h c k  stands for the normalized 
coefficient of surface heat transfer (Carslaw & 
Jaeger, 1959). In addition to (11)-(15), all 
components of displacements, stresses and 
temperature fields must vanish at remote distances 
from the crack region.  

Assuming initially all components of 
stresses, displacements and temperature are zero,  
application of the Laplace transform pair      

                 0

( ) ( )

1
( ) ( )

2

pt

pt

Br

f p f t e dt

f t f p e dp
i



 




 











           (16)           

to (6)-(8) and (11)-(15) yields the governing 
equations 

     2 2 ,p                                          (17)        

     2 2 0,p p                                (18)          

     2 2 2 .p                                          (19)           

and the boundary conditions  

   0xy   ,                               all x                (20)  

   0y   ,                              x a              (21) 

    0yu  ,                              x a              (22) 

   
0 / 0h p

y


 




    
,  x a              (23)                                                                                          

   0
y

 



,                            x a              (24)                           

in the Laplace transform plane.  
Equations (17)-(19) admit the following 

integrals bounded for large y  

     1 2

1 2

0

2
cos( )

y y
A e A e sx ds

 




           (25) 

    1 22 2 2 2

1 1 2 2

0

2
cos( )

y y
p A e p A e sx ds

   




     

                                                                           (26)    

3

3

0

2
sin( )

y
A e sx ds






   .                                (27)            

Here, ( , ), 1,2,3j jA A s p j   are unknown 
transform parameters, and the exponents 

, 1,2,3j j  are defined by 
2 2 1/ 2( ) 0j js    ,   0 s                    (28)         

2 2

1,2 1 (1 ) 4 / 2p p p p         
 

,  (29)      

2 2 2

3 /p  .                                                 (30)        

Now, condition (20) in conjunction with (10), (25)  
and (27) are readily shown to imply that 

                  1 1 2 2

3 2 2

3

2 ( )

2

s A A
A

s

 



 



.                   (31) 

The remaining boundary conditions, namely, (21)-
(24) yields a set of simultaneous dual integral 
equations governing the remaining unknown 
functions 

1A and
2A  

 11 1 12 2

0

cos( ) 0a A a A sx ds



  ,          0 1x  ,(32)  

 21 1 22 2 0

0

cos( ) / 2a A a A sx ds h p 


  , 0 1x  , 

(33) 

 11 1 12 2

0

cos( ) 0b A b A sx ds



  ,               1x  , (34) 

 21 1 22 2

0

cos( ) 0b A b A sx ds



  ,               1x  . (35) 

Here, for simplicity, the normalized crack 
dimension a  has been taken as a unity; while,

ija
and 

ijb being functions of s and p  are given in the 
Appendix. 

To proceed toward establishment of the 
system of simultaneous dual integral equations in 
the form suitable for determination of the solution, 
the following abbreviations are introduced 

           1 11 1 12 2( , )V s p s b A b A  ,              (36) 

           2 21 1 22 2( , )V s p s b A b A  ,             (37) 

in conjunction with the identity (Magnus & 
Oberhettinger, 1949) 

 
1/ 2cos( ) ( )

2

sx
sx J sx


                    (38) 

to reduce the equations (32)-(35) to 

 11 1 12 2 1/ 2

0

( ) 0c V c V J sx ds



  ,         0 1x  , (39)        
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  0

21 1 22 2 1/ 2

0

( )
2

h
c V c V J sx ds

p x

 


  , 0 1x  ,  

(40)   

1 1/ 2

0

( ) 0V J sx ds



  ,                             1x  ,     (41) 

2 1/ 2

0

( ) 0V J sx ds



  ,                             1x  .     (42) 

Here,
1/ 2J

is the usual Bessel function of the first 
kind of order -1/2, and ( , )ij ijc c s p for , 1,2i j 
are known functions given in the Appendix. 

Following the method outlined by Tranter 
(1956) and Erdogan and Bahar (1964), the 
unknown functions 

1( , )V s p and 
2 ( , )V s p  will then   

be represented in the form  

 
1

1

1

1 0 1,2 1 13
2

0 2

( ) ( )
2

m
m

m

s
V h p J s

p






 

 


  



  ,     (43)  

2

2

1

2 0 2,2 1 13
2

0 2

( ) ( )
2

m
m

m

s
V h p J s

p






 

 


  



  .    (44)     

It follows that equations (41) and (42) are 
automatically satisfied when use is made of the 
Sonine-Schafheitlin integral property (Magnus & 
Oberhettinger, 1949), i.e., 

       1

1/ 2

0

( ) ( ) 0i

iks J s J sx ds






  ,   1x  ,          (45)             

     Re(2 1) 0m  1/ 2 2i ik m       0i             

In (43) and (44),
, ( ), 1,2i l p i  are unknown 

coefficients and , 1,2i i  are parameters which 
must be chosen so as to make the involved 
integrals exist.  

 Upon substitution of (43) and (44) into 
the remaining equations (39) and (40) and 
interchanging the order of summation and 
integration yields 

2
1

, 1 1/ 2

1 0 0

( ) ( , ) ( ) ( ) 0j

jj l j k

j m

p s c s p J s J sx ds



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



 
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                                                                           (46)  
2

1 2 1/ 2

, 2 1/ 2

1 0 0

( ) ( , ) ( ) ( ) ,

1/ 2 2 .
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jj l j k

j m

j j

p s c s p J s J sx ds p x

k m
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 



 



   
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                                                                           (47)                      
Further, equations (46) and (47) are then 
multiplied, respectively, by  

    1 11/ 2 2 2

1(1 ) ( 1/ 2 ,1/ 2, )kx x x
 

     

and  

    2 11/ 2 2 2

2(1 ) ( 1/ 2 ,1/ 2, )kx x x
 

    , 

0,1,2,..k   

with
k being the Jacobi polynomial, and 

integrated with respect to x from 0 to 1. The 

resulting equations,  when the following properties 
(Tranter, 1956) are utilized 

11/ 2 2 2

1/ 2

0

1

1/ 2 2

(1 ) ( 1/ 2 ,1/ 2, ) ( )

2 (1/ 2) ( )
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i
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x x x J sx dx
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                                                                           (48)   
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0 0

2,

2, 1/ 2 1/ 2

0 0

( )
( ) ( ) ( )

2

( )
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(2 1)

r

l r l

m

r

l r l

m

pds
p J s J s

s r

pds
p J s J s
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











 




 






 

 

 

      (49) 

                                                                                
with

1 3/ 2  and  
2 1  , assume the forms 

2
1,

, 1 1,

1 0

( )
( ) ( ) ( )

2

r

j l j r

j m

p
p K p B p

r






 

  ,     (50)     

2
2,

, 2 2,

1 0

( )
( ) ( ) ( )

2 1

r

j l j r

j m

p
p K p B p

r





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 


 ,    (51)                       

        0,1,2,...k  , 2 1r k  , 2 1l m   

where 

1,

12
2

2,

0

2

( ) 0, 1,3,5,...
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( ) (1/ 2,1/ 2, )

(1/ 2) ( 1)

0, 1

, 1

r
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B p x dx

k

r
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


  
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  
   


 

  

     52)                                                                               

and 

 

1 1

11 11

0

3/ 2

12 12 1/ 2

0

3/ 2

21 21 1/ 2

0

1

22 22 1/ 2 1/ 2

0

( ) ( , ) 1 ( ) ( )

( ) ( , ) ( ) ( )

( ) ( , ) ( ) ( )

( ) ( , ) 1 ( ) ( )

l r

l r

l r

l r

K p s s c s p J s J s ds

K p s c s p J s J s ds

K p s c s p J s J s ds

K p s c s p J s J s ds



 

















 


    




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







  
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







(53)  

The asymptotic behavior of the following 
functions 

1 2

11( , ) 1 ( )s c s p O s   , 1

12 ( , ) ( )c s p O s ,  

1

21( , ) ( )c s p O s , 1

22 ( , ) 1 ( )c s p O s    

for s   is observed, and for  0s  all the 
integrands are of the order 1; thus, all integrals in 
(53) exist at both upper and lower limits and pose 
no difficulties in numerically computational works. 

In order to obtain the dynamic stress 
intensity factor, it is necessary to consider only the 
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singular stress field near the crack tips; in 
particular, the stress component 

y on the 0y 
plane.  With a view toward this goal, the stress 
intensity factor in the Laplace transform domain 
will be derived from the stress component 

     11 1 12 2

0

2
cos( )y a A a A sx ds





   .           (54) 

Now, substituting for ( , )jA s p in terms of ( , )jV s p  
for 1,2j   via (36)-(37) and making use of (43)-
(44), it is readily confirmed that the transformed 
stress containing the singular term for 1x 
assumes the form 

           0

0

2
( , )cos( ) ....,y h G p s sx ds 





        

(55) 

where 
2

1,2 1 2 1

1

( 1)
( , ) ( ) ( )m m

m

G s p p J s
p






 




  .      (56)  

Further, interchanging the order of integration and 
summation in conjunction with the recurrence 
formula (Magnus & Oberhettinger, 1949) 

             
1 1

2
( ) ( ) ( )n n n

n
J s J s J s

s
   ,            (57) 

and retaining only the singular term, the equation 
(55) reduces to 

           
0 1

0

( )
( )cos( ) ....y

p
J s sx ds

p
 



 
      (58) 

where 

           
1

1,2 1

1

( ) ( 1) ( )m

m

m

p p








   ,                 (59) 

and 

           2

0 0

2
( 1)h  


   .                           (60) 

Near the crack tip, the singular part of the 
expression in (58) can be extracted by noting that 
as 1x  and 1r x   (Erdelyi, 1954) 

               
1

0

1
( )cos( ) 1

2
J s sx ds

r



  .               (61)  

In view of this observation, equation (58) can be 
written in the following form 

     1

1/ 2

( )
( ,0, ) .....

(2 )
y

k p
x p

r




                 (62) 

with
1 ( )k p denoting the stress-intensity factor in 

the p -plane is given by 

 1 0

( )
( )

p
k p

p
 

 .                         (63) 

Equations (50)-(51) can be solved 
numerically for

, ( )j l p  by truncating the series a 

finite number of terms, and the values of ( ) /p p
are then inserted into the Laplace inversion integral  

                  1

0

( ) 1 ( )

2

pt

Br

k t p
e dp

i p 


  ,               (64) 

to yield the stress-intensity factor
1( )k t  in the time 

domain. The numerical method of Laplace 
inversion outlined by Miller and Guy (1966) will be 
utilized to evaluate the integral over the Bromwich 
path in (64). The remaining section of this paper 
contains the numerical results of 

1 0( ) /k t 
appearing in (64). 
 
4.  Results and discussion 

Two materials, lead and copper having 
high and low values of coupling constants, 
respectively, were selected for numerical 
computation and application of the solution 
presented. The elastic constants listed in Table 1 
are taken from (Phurkhao and Kassir, 1991). The 
solution of the infinite set of linear algebraic 
equations, (50)-(51) was determined numerically 
by truncating the infinite series solution to a finite 
number of terms to yield the values of the 
functions

1, ( ) l p and 
2, ( ) l p at several discrete 

points (1 ) , 1,2,...p n n   along the real axis. 
The real and positive number  must be selected 
such that ( )f t can be best approximated within a 
particular range of time. It is observed that 
retaining 6-8 terms in the series, in all cases 
examined, the series converge rapidly. These 
values were then inserted into (64) to determine 
the corresponding dynamic stress-intensity factors 
in the regular time domain. The numerical Laplace 
inversion was then carried out by the scheme 
outlined by Miller and Guy (1966) which has been 
employed successfully for several transient 
problems in the past (Chen & Sih, 1977; Kassir et 
al., 1986). The inversion formula is given in the 
series expansion of the Lengendre functions 
orthogonal within the interval (-1,1) by   

0

( ) (2 1)
N

t

k k

k

f t C P e 



  .                   (65)     

Here, ( )f t is the inverse of the Laplace transform 

( )f p , and 
kC  are coefficients which can be 

determined from the orthogonalilty properties of 

the Jacobi polynomial. In this numerical work, it is 

found that N=6 and the values of 0.125, 0.35   

yield a good approximation. The results of 

1 0( ) /k t  versus non-dimensional time 2

1( / )t c t   

are displayed graphically in Figure. 1. It is 

observed that the dynamic stress-intensity factors 

exhibit a common character, rising very quickly 

with time and subsequently approaching the 

steady-state solution for a sufficiently long time.  

For lead, the increase in the stress-intensity factor 
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over the static value is approximately 30% with the 

elapsed time of 
93.3 10 sec.; while, for copper 

the increase is lower,  about 15%,  and occurs at 

approximately the same elapsed time.   
The influence of mechanical coupling 

inherent in the theory was also investigated by 
setting 0   in the numerical computations, and 
the results are shown graphically by dotted curves 
in Figure 1. There is no significant difference 
noted for both materials. 

 
Table 1  Material properties (measured at 21 C )   

Symbol Unit Copper Lead 

k  / . .Cal s cm K  0.93 0.084 

  2 /cm s  1.14 0.25 

  /cm cm C  16.5E-6 29.3E-6 

  - 0.017 0.0729 

1c  /cm s  4.36E5 2.145E5 

E  
2/dyn cm  11.45E11 1.63E11 

  - 0.32 0.446 

  3/gm cm  8.93 11.34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1  Dynamic stress-intensity factor as function of 

time 

 
5.  Conclusion 

A class of mixed boundary-value 
problems involving a finite crack embedded in an 
elastic medium with its surfaces suddenly exposed 
to a change in temperature was investigated in this 
paper.  The main objective is to determine the 
influences of inertia and thermoelastic coupling 
effects upon the stress-intensity factor when the 
heat exchange across the crack surface is according 
to Newton’s law of cooling.  Integral transform 

methods were utilized to reduce the problem to a 
system of simultaneous dual integral equations. 
Moreover, by expressing the unknown functions in 
the form of an infinite series of Bessel functions, 
the problem was reduced to solving a system of an 
infinite set of linear algebraic equations. 
Significant increase in stress intensity-factors due 
to an inertia effect has been noticed for the two 
selected materials, but the coupling effect is 
negligible for both materials. Based on the 
previous investigations (Kassir et al., 1986; 
Phurkhao & Kassir, 1991; Ampunsuk &  
Phurkhao, 2005; Phurkhao, 2010) and the present 
results, it can be concluded that, for normal 
materials in practical engineering applications, the 
stress induced by the coupling term in the heat 
conduction equation is not substantially 
significant. The straining in the solid has no 
significant effect upon the change in temperature. 

The results found in this study are crucial 
in determining the stability of a crack under severe 
thermal impact loading. Moreover, the method 
outlined in this study may be applied in some other 
areas of a similar nature; for example, a fluid 
infiltrated poroelastic crack problem in rock 
materials where fluid pressure plays the same role 
as temperature. 
 
6.  References 
Ampunsuk, C., & Phurkhao, P. (2005). Transient 

response of an elastic solid containing a 
penny-shaped crack due to mechanical 
and thermal impact loadings using 
coupled theory of thermoelasticity. 
Proceedings of the 10

th
 National 

Convention on Civil Engineering, 
COM41-46. Pattaya: EIT. 

Boley, B.A., & Weiner, J.H. (1960). Theory of 
thermal stresses, New York: John Wiley 
& Sons, Inc.  

Carslaw, H.S., & Jaeger, J.C. (1959). Conduction 
of heat in solids, 2

nd
 ed., New York: 

Oxford University Press Inc. 
Chadwick, P. (1960). Thermoelasticity: The 

dynamical theory. In I. N. Sneddon, & R. 
Hill (Eds.), Progress in Solid Mechanics 
(pp. 264-328). Amsterdam, Holland: 
North-Holland. 

Chen, E.P., & Sih, G.C. (1977). Mechanics of 
fracture 4: Elastodynamic crack 
problems,  Leyden, The Netherlands: 
Noordhoff. 

Erdelyi, A. (Ed.). (1954). Table of Integral 
Transforms – Vol. 2, New York: 
McGraw-Hill. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 5.00 10.00 15.00 20.00

Lead

Lead -
Uncoupled

Copper

1
0

(
)
/

k
t



2

1( / )t c t 



RJAS Vol. 1 No. 1 Jan.-Jun. 2011 

 

55 

Erdogan, F., & Bahar, L.Y. (1964). On the solution 
of simultaneous dual integral equations. J. 
Soc. Indust. Appl. Math., 12 (3), 666-675. 

Georgiadis, H.G., Brock, L.M., & Rigatos, A.P. 
(1998). Transient concentrated 
thermal/mechanical loading of the faces 
of a crack in a coupled-thermoelastic 
solid. Int. J. of Solids and Structures, 35 
(11), 1075-1097. 

Kassir, M.K., & Sih, G.C. (1975). Mechanics of 
fracture 2: Elastodynamic crack 
problems, Leyden, The Netherlands: 
Noordhoff. 

Kassir, M.K., Phurkhao, P.A., & Bandyopadhyay, 
K.K. (1986). Some transient coupled 
thermoelastic crack problems. Theoretical 
and Applied Fracture Mechanics, 6, 197-
206. 

Magnus, W., & Oberhettinger, F. (1949). 
Formulas and theorems for the functions 
of mathematical Physics, New York: 
Chelsea. 

Miller, M.K., & Guy, W.T. (1966). Numerical 
inversion of the Laplace Transform by 
use of Jacobi Polynomials. SIAM J. 
Numerical Analysis, 3, 624-635. 

Phurkhao, P. & Kassir, M.K. (1991). 
Thermoelastic wave propagation in an 
elastic solid containing a finite crack. Int. 
J. of Fracture, 47, 213-227. 

Phurkhao, P. (2010). Stress intensity factor of an 
elastic solid containing a finite crack 
under the coupled elastic and induced 

 thermal waves. Proceedings of the 15
th

 
National Convention on Civil 
Engineering, STR9. Ubon.: EIT. 

Sneddon, I.N. (1951). Fourier transforms, New 
York: McGraw-Hill. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sneddon, I.N. (1966). Mixed boundary value 
problems in potential theory, Amsterdam: 
North-Holland. 

Sternberg, E., & Chakravorty, J.G. (1959). On 
inertia effects in a transient thermoelastic 
problem. Journal of Applied Mechanics, 
26, 503-509. 

Takeuti, Y., & Furukawa, T. (1981). On inertia 
effects in a transient thermoelastic 
problem. Journal of Applied Mechanics, 
48, 113-118. 

Tranter, C.J. (1956). Integral transforms in 
mathematical Physics, New York: John 
Wiley & Sons, Inc.  

 
Appendix 

In this appendix, some of the 
abbreviations employed in the paper are defined 
and collected for easy reference. 

2 2

32 2 2

1 2 2

3

4
( , ) 2 , 1,2

2

j

j

s
a s p s p j

s

  



   


 

2 2

2 ( , ) ( )( ), 1,2j j ja s p p h j      

1 2 2
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2
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2
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jb s p j
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2 2

2 ( , ) ( ) , 1,2j j jb s p p j     
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