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Abstract 

This paper proposes four confidence intervals (CIs) for estimating the parameters of the Zeghdoudi distribution, which 

is commonly used in the analysis of lifetime data. We introduce and evaluate the likelihood-based, Wald-type, bootstrap-t, and 

bias-corrected and accelerated (BCa) bootstrap CIs using Monte Carlo simulation studies and apply them to two real datasets. 

We assess the effectiveness of these CIs by evaluating their empirical coverage probability (CP) and average length (AL), 

which offer valuable insights into their performance in various scenarios. Furthermore, we have developed an explicit 

formulation of the Wald-type’s CI formula, simplifying its computation. The results demonstrate that the CPs of likelihood-

based and Wald-type CIs converge towards the nominal confidence level of 0.95 for all cases. However, when the sample size 

is small, the bootstrap-t and BCa bootstrap CIs have CPs less than 0.95. On the other hand, as sample sizes increase, the CPs 

of all CIs tend to approach 0.95. However, when the sample sizes are small, the CPs of the bootstrap-t and BCa bootstrap CIs 

tend to decrease. We verified the efficacy of CIs by applying them to precipitation data and COVID-19 mortality rate data, 

and the results matched those from the simulation study. 

 

Keywords: lifetime distribution; interval estimation; likelihood; Wald; bootstrap 

 

 

1.  Introduction 

Modeling and statistical analysis of real 

lifetime data sets from many practical sciences, such 

as engineering, biomedical science, insurance, 

finance, demography, and others, are very important 

for policymakers. There is a wide variety of lifetime 

distributions documented in the statistical literature. 

Recent developments in distribution theory suggest 

that classical distributions do not adequately fit some 

real-world datasets. Numerous lifetime distributions 

exist primarily because each distribution depends on 

particular assumptions; even minor modification to 

these assumptions generates an entirely new 

distribution. This requires the creation of novel, 

flexible probability distributions that improve the 

quality of the results. Considerable effort has been 

devoted to improving the flexibility of existing 

probability distributions. As a result, researchers 

utilize various approaches to suggest new 

distributions or improve the flexibility of existing 

distributions. Some of them increased the number of 

parameters in the available models, making them 

more flexible. Examples include the power Lindley 

distribution (Ghitany et al., 2013), transmuted Lindley 

distribution (Merovci, 2013a), transmuted Rayleigh 

distribution (Merovci, 2013b), weighted exponential 

distribution (Dey et al., 2015), generalization of 

Sujatha distribution (Shanke, & Shukla, 2017a), 

power Ishita distribution (Shanker, & Shukla, 2018), 

Darna distribution (Al-Omari, & Shraa, 2019), transmuted 

Aradhana distribution (Gharaibeh, 2020), Loai distribution 

(Alzoubi et al., 2022a), Sameera distribution (Alzoubi 
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et al., 2022b), among others. However, this method of 

adding the parameters to the probability distribution 

may complicate parameter estimates. 

Several papers suggest combining distributions 

to create new distributions without requiring extra 

parameters. Some examples include the Shanker 

distribution (Shanker, 2015a), Akash distribution 

(Shanker, 2015b), Aradhana distribution (Shanker, 

2016a), Rama distribution (Shanker, 2017a), Gharaibeh 

distribution (Gharaibeh, 2021), Iwueze distribution 

(Elechi et al., 2022), Juchez distribution (Mbegbu, & 

Echebiri, 2022), and Ola distribution (Ola, & Mohammed, 

2023), among others. Recently, Messaadia, & Zeghdoudi 

(2018) proposed the Zeghdoudi distribution, a two-

component mixture of gamma distributions with  

a constant scale parameter, and two different shape 

parameters 2 and 3. This distribution has superior 

efficiency in comparison to other one-parameter 

distributions. The application of the Zeghdoudi distribution 

to the survival times data sets demonstrates its 

flexibility. 

In the review literature, no research has been 

conducted on estimating the confidence intervals 

(CIs) for the parameter of the Zeghdoudi distribution. 

Therefore, the objective of this paper is to propose the 

CIs for the parameter of the Zeghdoudi distribution in 

four methods, namely, likelihood-based CI, Wald-

type CI, bootstrap-t CI, and bias-corrected and 

accelerated (BCa) bootstrap CI. We conduct a 

simulation study and analyze two real datasets to 

compare the performance of CIs for the parameter of 

the Zeghdoudi distribution. 

 

2.  The Zeghdoudi Distribution and Point 

Parameter Estimation 

The Zeghdoudi distribution is obtained by 

combining the gamma distributions using appropriate 

mixing probabilities. The gamma distributions have a 

fixed scale parameter   and two different shape 

parameters, 2 and 3. Let X  be a random variable 

which follow the Zeghdoudi distribution with 

parameter .  The probability density function (pdf) 

of the Zeghdoudi distribution can be obtained by 

utilizing a mixture model with two component mixing 

probabilities as follows: 

1 2( ; ) ( ; ,1) ( ; , 2)f x p g x p g x  = +

( )
3

2 22
.

2 2 2

x xxe x e  


 

− − 
= +  

+ +  
 

Therefore, 
3

( ; ) (1 ) , 0, 0.
2

xf x x x e x
 



−= +  
+

 

Figure 1 displays the pdf plot of the Zeghdoudi 

distribution for several parameter values. 

Additionally, the cumulative distribution function 

(cdf) for the Zeghdoudi distribution is given by 
2 2 ( 2) 2

( ; ) 1 , 0.
2

xx x
F x e x   




− + + + +
= −  

+ 
 

The mean and variance of X  are respectively as 

follows: 

2( 3)
( ) ,

( 2)
E X



 

+
=

+

 and ( )

( )

2

22

2 6 6
( ) .

2
Var X

 

 

+ +
=

+

 

The log-likelihood function log ( | ),iL x  is 

maximized to obtain the point estimator of .  

Therefore, the maximum likelihood (ML) estimator 

for   of the Zeghdoudi distribution is derived by the 

following processes: 
𝜕

𝜕𝜃
𝑙𝑜𝑔 𝐿 (𝜃|𝑥𝑖) =

𝜕

𝜕𝜃
[3𝑛 𝑙𝑜𝑔( 𝜃) − 𝑛 𝑙𝑜𝑔( 𝜃 + 2) +

∑ 𝑙𝑜𝑔(𝑥𝑖 + 𝑥𝑖
2)𝑛

𝑖=1 − 𝜃 ∑ 𝑥𝑖
𝑛
𝑖=1 ] 

1

3
.

2

n

i

i

n n
x

  =

= − −
+



 The subsequent equation is a nonlinear equation 

obtained through the process of solving the equation 
set

log ( ; ) 0iL x 



=


 for ,  

1

3
0,

2

n

i

i

n n
x

  =

− − =
+

          (1) 

Since there is no exact mathematical expression 

available for the ML estimator of the parameter ,  

numerical iteration methods are used to solve the 

related non-linear problem (Nwry et al., 2021). In this 

study, the maxLik package (Henningsen, & Toomet, 

2011) was utilized to perform ML estimation using 

the Newton-Raphson technique in the statistical 

software R.
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Figure 1 The pdf of the Zeghdoudi distribution for several parameter values 

 

3.  Confidence Intervals 

In this section, we propose the likelihood-

based, Wald-type, bootstrap-t, and BCa bootstrap CIs 

for the parameter of the Zeghdoudi distribution. 
 

3.1 Likelihood-based Confidence Interval 

The likelihood-based CI is a statistical method 

used to estimate a parameter.  It relies on a likelihood 

function, which represents the probability of 

observing a set of data given a particular statistical 

model and its parameters.  This approach is based on 

maximizing the log- likelihood function with respect 

to the parameter of interest and then identifying the 

range where the likelihood satisfies the desired 

confidence level. 

The likelihood-based CI has theoretically solid 

foundations, offering asymptotic validity and better 

performance in complex models or situations where 

other methods may fail, such as when parameters are 

near the boundary of the parameter space or 

distributions are non- normal.  It is flexible and 

efficiently uses the likelihood function, providing 

accurate coverage probabilities in large sample 

settings.  However, it has notable weaknesses, 

including computational complexity, sensitivity to 

model misspecification, and unreliable performance 

in small samples.  This method often requires 

numerical optimization, which can be resource-

intensive and prone to instability, and the lack of a 

closed- form solution makes it less intuitive and 

accessible for routine use. 

Given the observed data ,x  the likelihood 

function for the Zeghdoudi distribution, ( | ),L x  is a 

function of the parameter .  It captures the 

probability of observing the given data under different 

hypothesized   values.  The ML estimator of ,  ˆ,  

will be obtained after solving  
set

(log 0;)L x



=


∣  

this estimate is the most likely estimate given the 

observed data. 

The likelihood- based CI is then constructed 

around the ML estimator.  This method begins by 

defining a likelihood ratio ( )   as 

ˆ( ) ( | ) ( | ).L x L x   =  By Wilks’  theorem, under 

regular conditions, the distribution of 2log ( ) −  

follows approximately a chi- square distribution, 

where the degrees of freedom are equal to the number 

of parameters being estimated.  Thus, the CI for   at 

(1 )100%−  confidence level is given by 

2

1 ,1

( | )
2 log

ˆ( | )

L x

L x



 


−

  
−  

  

 = 

( )
( )

3

2

1 ,13
1 1

ˆ 2
ˆ2log exp ,

ˆ 2

n
n

n n

i inn
i i

x x 

 
   

 
−

= =

  +    − − +    +    
 

   

where 
2

1 ,1 −  is denoted by the critical value obtained 

from the chi-square distribution with one degree of 

freedom (Severini, 2000). When considering the 

Zeghdoudi distribution, the likelihood ratio test (LRT) 

becomes more complicated due to the composite 
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structure of the distribution. The gamma component, 

which includes shape and scale parameters, 

introduces additional complexity to the likelihood 

function. Consequently, computational techniques 

like numerical optimization have proven to be 

successful in calculating accurate ML estimators and 

building CIs. 

The ML estimator in the Zeghdoudi distribution 

is determined using a root- finding approach to 

optimization based on Brent’s method. Given that 
set

1

3
( ) log ( | ) 0,

2

n

i

i

n n
f L x x 

   =


= = − − =
 +

  

Using Brent’ s method,   is found so that ( ) 0.f  =  
Brent’ s method benefits from the reliability of 

bracketing methods, ensuring convergence, and the 

efficiency of open methods, which typically converge 

faster.  If the product of ( )f a  and ( )f b  is less than 

zero, ( ) ( ) 0,f a f b   the bisection method is applied 

as an initial step to ensure reliability.  Hence, it 

alternates between inverse quadratic interpolation and 

linear or quadratic polynomial interpolation based on 

the function's behavior and the bracketing interval: 

1

second

1

( ) ,
( ) ( )

n n

n n

n n

f
f f

 
  

 
−

−

−
= −

−
 

and secant technique (linear interpolation): 

( )( )
1 2

quad

1 2

( ) ( )

( ) ( ) ( ) ( )

n n

n

n n n n

f f

f f f f

 
 

   
− −

− −

= +
− −

 

This method iteratively improves the root 

estimate by alternating between methods which yields 

a more stable or accurate estimate ( Kiusalaas, 2013; 

Bolker, 2023) .  Figure 2 shows the plot 2log ( ) −  

versus   ( solid blue line) , 
2

0.95,1  ( dashed red line) , 

and 95% likelihood-based CI (solid green line) when 

a random sample of size 20 sampled from the 

Zeghdoudi distribution with 1. =  

By Wilks’ theorem, the cut-point for 

constructing a likelihood-based CI is often based on 

an asymptotic distribution like the chi-square 

distribution. The sample size influences the accuracy 

of the likelihood-based CI, which approximates the 

actual parameter values. Nevertheless, the likelihood-

based CI does not generally depend on large sample 

sizes. Even when the sample size is small, the 

likelihood function remains effective in generating 

precise interval estimates under the condition that it 

exhibits satisfactory behavior. 

 

 
Figure 2 The plot of 2log ( ) −  versus   
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3.2 Wald-type Confidence Interval 

The Wald-type CI is used to estimate the 

uncertainty associated with a parameter estimate in a 

probability distribution. The ML estimate of the 

parameter, represented as ̂  for the Zeghdoudi 

distribution, is fundamental to Wald-type CI. The 

Wald-type CI is simple to calculate and widely used 

due to its closed-form solution, making it 

computationally efficient and accessible for routine 

statistical analysis. It performs well under standard 

conditions, mainly when sample sizes are large, and 

the underlying distribution are approximately normal. 

However, it has several weaknesses, including poor 

performance in small samples or when parameters are 

near the boundary of their parameter space. 

Additionally, it assumes normality, producing 

inaccurate CIs in skewed or non-normal data cases. 

The Wald-type CI can also be overly narrow or too 

wide when the sample size is insufficient, leading to 

biased coverage probabilities. 

The Wald-type CI is constructed using a 

quadratic approximation of the log-likelihood 

function, denoted as ( | ),L x  which can be further 

extended by using a Taylor series around ˆ.  The 

Wald statistic approximates the log-likelihood ratio 

by expanding the statistic to the second-order 

component around the ML estimate, with the first-

order term being zero: 

log L (θ|x) ≈ log L (θ̂|x)+(θ-θ̂)
∂

∂θ
log L (θ|x)|

θ=θ̂

 

+
1

2
(θ-θ̂)

2 ∂
2

∂θ
2 log L (θ|x)|

θ=θ̂

 

( )
22

2
ˆ

( | ) 1 ˆlog log ( | )
ˆ 2( | )

L x
L x

L x  


  


=


 −


 

2( | ) ˆ ˆ2log ( ) ( ),
ˆ( | )

L x
I

L x


  


−  −  

where ˆ( )I   is the estimated observed Fisher 

information. The Wald statistic can be used to 

approximate the LRT statistic, especially when the 

sample size is large enough for the asymptotic 

properties to hold, leading to a quadratic 

approximation of the log-likelihood ratio (Pawitan, 

2001). The first and second derivatives of the log-

likelihood function for the Zeghdoudi distribution are 

as follows: 

1

3
log ( | ) ,

2

n

i

i

n n
L x x

   =


= − −

 +
  

2

2 2 2

3
log ( | ) .

( 2)

n n
L x

  


= − +

 +
 

Therefore, the estimated Fisher information is 

as follows: 
2

2
ˆ ˆ( ) log ( | ) |I E L x  



 
= − 

 
2

2 2 2 2

ˆ ˆ3 2 12 ( 1)
.

ˆ ˆ ˆ ˆ( 2) ( 2)

n n n n 

   

− −
= − =

+ +
 

and the Wald-type CI for   at (1 )100%−  

confidence level is given by 

1 1

2 2
1

2
2 2

ˆ ˆ ,
ˆ ˆ( 2)ˆ( )

ˆ ˆ2 12 ( 1)
z zI

n n
 

 

 
  

−

−

−


+

−
=

−
  

where 1 ( /2)z −  denotes the ( )
th

1 ( / 2)−  quantile of 

the standard normal distribution. 

 

3.3 Bootstrap-t Confidence Interval 

The bootstrap-t CI is an advanced method that 

calculates the CI for a parameter using the variability 

of the estimator's standard error. This approach 

enhances the accuracy and reliability of the bootstrap 

percentile method, especially when the sample size is 

small, or the estimator's distribution is non-normal 

(Panichkitkosolkul, 2024). The bootstrap-t CI is also 

a flexible and robust method that does not rely on 

normality assumptions. It is well-suited for data that 

deviate from standard distributions or when sample 

sizes are small. By resampling the data and using the 

t-statistic, it provides more accurate coverage 

probabilities, especially in complex models or non-

normal situations. Additionally, it adapts to the actual 

variability in the data, offering better performance 

compared to traditional methods in some cases. 

However, it can be computationally intensive due to 

the need for multiple bootstrap replications, and its 

accuracy depends on having a reasonably large 

sample size for reliable resampling. Additionally, this 

method can be sensitive to outliers, and poor bootstrap 

resampling techniques or insufficient replications 

may lead to unstable intervals. 

The procedure for creating a bootstrap-t CI can 

be explained through the following sequential steps: 

1) Initialization: The process begins by 

selecting a sample 1, , nX X  and estimating 

the parameter, ̂  and its standard error ˆ. .( )S E   are 

derived. 

2) Bootstrap Resampling: Generate B = 1000 
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bootstrap samples, * *

1 , , ,nX X  by random sampling 

with replacement from the original dataset. 

3) Statistical Computation: For each bootstrap 

sample, compute the bootstrap replicate of the 

estimator, denoted as *ˆ ,  and its associated standard 

error ˆ. .( ).S E   

4)  Studentization:  Construct the bootstrap- t 

statistic for each replicate as 
*

* *

1 *

ˆ ˆ
ˆ ˆ( , , ) .

ˆ( )
t X

I

 
 

−

−
=  

This studentized statistic accounts for the variability 

in the standard error of the bootstrap estimate. 

5) Repeating this process B = 1000 times 

results in an empirical distribution of the estimator to 

approximate the distribution of the pivotal quantity. 

6) Empirical Distribution: Construct the 

empirical distribution of the bootstrap-t statistics 

using the ensemble of B  replicates. 

7) Quantile Extraction: Ascertain the critical 

values,  ( )
*

/ 2
t
  and ( )

*

1 ( /2)
,t

−  which correspond to the 

th( / 2)  and th(1 ( / 2))−  quantiles of the empirical 

bootstrap-t distribution, 

( )* * *

/ 2
ˆ ˆ# ( , , )t X t

B

 



=  and 

( )* * *

1 ( /2)
ˆ ˆ# ( , , )

1 ( / 2),
t X t

B

 


−
= −  

where #( )  denotes the number of times the 

condition is true. 

8) Confidence Interval Construction: The 

bootstrap-t CI is as follows: 
2 2 2 2

* *

/2 1 ( /2)2 2

ˆ ˆ ˆ ˆ( 2) ( 2)ˆ ˆ, .
ˆ ˆ ˆ ˆ2 12 ( 1) 2 12 ( 1)

t t
n n n n

 

   
 

   
−

+ +
+ +

− − − −

 

 

3.4 Bias-Corrected and Accelerated (BCa) 

Bootstrap Confidence Interval 

The BCa bootstrap method is a statistical 

technique used to estimate CIs. This approach 

enhances the fundamental bootstrap technique by 

incorporating adjustments for both bias and skewness 

within the distribution of bootstrap estimates. Bias is 

determined by examining the proportion of bootstrap 

estimates that fall below the observed estimate, and 

this information is then employed to modify the 

percentiles of the CI. An acceleration parameter is 

introduced to accommodate the asymmetry or 

skewness present in the bootstrap distribution.  

The BCa bootstrap CI is highly regarded for its 

ability to adjust for both bias and skewness in the 

distribution of the estimator, making it more accurate 

than basic bootstrap methods in many cases. It is 

especially effective in non-normal data, providing 

better coverage probabilities and reducing bias. 

Furthermore, a wide range of statistical models can 

apply BCa bootstrap CI without relying on parametric 

assumptions due to their versatility. However, the 

BCa bootstrap method can be computationally 

expensive, as it requires extensive bootstrapping to 

estimate both bias and acceleration factors. It is also 

sensitive to the quality of the bootstrap resamples, 

meaning that poor resampling techniques or 

inadequate bootstrap replications can lead to unstable 

or unreliable intervals. 

The algorithm is described below: 

1) Bootstrap Resampling: From the empirical 

distribution of the original sample, generate B = 1000 

bootstrap samples and compute the bootstrap 

estimates 
*ˆ ,b  for 1,2, ...,1000.b =  

2) Bias Correction 0( ) :z  Determine the 

proportion of bootstrap estimates that are less than the 

original estimate ˆ,  denoted .p  The bias correction 

factor 0z  is the quantile of the standard normal 

distribution corresponding to .p  

3)  Acceleration ( ) :a  Find the acceleration 

value a  that accounts for the estimator’ s 

distributional asymmetry.  This is often estimated 

using the jackknife method or other methods that 

quantify the skewness of the sampling distribution. 

4)  Adjusted Percentiles:  Transform the bias-

corrected normal deviates to adjust the percentiles for 

constructing the CI. The adjusted percentiles are given 

by 

( )
* 0 /2

0

0 /21
L

z z
p z

a z z





 +
=  +  − + 

 and 

( )
0 1 ( /2)*

0

0 1 ( /2)

,
1

U

z z
p z

a z z





−

−

 +
 =  +
 − +
 

 

where   is the standard normal cumulative 

distribution function, and 
2z  and 

1 2z −
 are the 

th( / 2)  and 
th(1 ( / 2))−  quantiles of the standard 

normal distribution, respectively. 

5) Confidence Interval Construction: The BCa 

bootstrap CI is constructed using the percentiles 
*

Lp  

and *

Up  to extract the corresponding quantiles from 
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the bootstrap distribution of 
*ˆ .ML  The BCa bootstrap 

CI is as follows: 

* *

* *

( ) ( )

ˆ ˆ, ,  
 L UP P

 

where *

*

( )
̂

LP
 and *

*

( )

ˆ
UP

  are 
* th( )Lp  and 

* th( )Up  

quantiles of the bootstrap estimates 
*ˆ .b  

 

4.  Simulation Study and Results 

In this study, the 95% two-sided CIs for the 

parameter of the Zeghdoudi distribution are proposed 

using the likelihood-based, Wald-type, bootstrap-t, 

and the BCa bootstrap methods. Using the R Studio, 

the effectiveness of the proposed CIs is evaluated in 

the simulation study under various scenarios. The 

study focuses on the sample sizes, parameter values, 

empirical coverage probability (CP), and the average 

length (AL) of the CIs. Sample sizes ( )n  are set to 10, 

20, 30, 50, 100, 200, and 500, while the distribution’s 

parameter values ( )  are 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 

and 2.5. The CPs and ALs of the CIs are estimated 

using Monte Carlo simulations with 2,000 

replications.  

 

4.1 Coverage Probability 

The results of the simulation study are 

presented in Table 1 and depicted in Figure 3. The CPs 

for likelihood-based and Wald-type CIs approach the 

nominal level of 0.95 for all cases. This indicates that 

the CIs exhibit satisfactory performance in terms of 

CP. However, the bootstrap-t and BCa bootstrap 

methods have lower CPs, particularly when dealing 

with small sample sizes. 

For all CIs, the sample size has a significant 

effect on the CP. For smaller sample sizes, such as n  

= 10 and 20, the CPs are consistently below the 

nominal level of 0.95 for the bootstrap-t and BCa 

bootstrap CIs, indicating under coverage. 

Nevertheless, as the sample size increases, the CPs of 

the CIs tend to increase and approach the nominal 

confidence level. This implies that although these 

methods are sensitive to sample size, they can still 

provide adequate coverage in larger samples. This 

convergence is more rapid for the likelihood-based 

and Wald-type CIs as compared to the bootstrap-t and 

BCa bootstrap CIs. 

The likelihood-based and Wald-type CIs 

demonstrate a higher level of stability in CP when 

considering both sample size and parameter value, 

keeping values closer to the nominal level across a 

range of parameter values and sample sizes. In 

comparison, the bootstrap-t and BCa bootstrap 

methods show more variation in CP, especially with 

small sample sizes and larger parameter values, where 

they tend to perform less effectively. 

 

4.2 Average Length 

The simulation results for the AL are shown in 

Table 1, and the results are shown graphically in 

Figure 4. For all methods, the AL of CIs decreases 

significantly as the sample size increases. This trend 

is consistent and expected, as larger sample sizes 

typically provide more information about the 

parameter of the distribution, thereby reducing the 

estimate’s uncertainty. For example, at a sample size 

of 10n =  and 1.00, =  the AL for the likelihood-

based CI is relatively wide at approximately 0.7610. 

Nevertheless, as the sample size increases to 500,n =  

the AL for the likelihood-based CI significantly 

decreases to about 0.1032. 

Moreover, the AL varies depending on the 

parameter values. For all methods, the AL tends to 

increase as the parameter value increases. For 

example, at 0.20 =  and 10,n =  the AL for the 

likelihood-based CI is about 0.1487, while at 

2.50, =  the AL increases to around 1.9547. In terms 

of AL, the likelihood-based and Wald-type CIs are 

consistent with the other two CIs. The bootstrap-t and 

BCa bootstrap CIs tend to provide shorter intervals at 

lower parameter values, but they show an increase in 

AL as the parameter value increases. The bootstrap-t 

CI generally yields the shortest intervals, as seen with 

an AL of approximately 0.1320 at 0.20 =  and 

10.n =  For 0.75 =  and 50,n =  the ALs are 0.2449 

for likelihood-based, 0.2477 for Wald-type, 0.2379 

for bootstrap-t, and 0.2410 for BCa bootstrap. On 

average, the bootstrap-t method provides the 

narrowest interval, whereas the likelihood-based and 

Wald-type methods provide slightly wider intervals.
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Table 1 Empirical coverage probability and average length of the 95% CIs for the parameter of the Zeghdoudi distribution 

θ n 

Empirical Coverage Probability Average Length 

Likelihood Wald Bootstrap-t 
BCa 

bootstrap 
Likelihood Wald Bootstrap-t 

BCa 

bootstrap 

0.20 

10 0.960 0.961 0.909 0.908 0.1487 0.1482 0.1320 0.1411 

20 0.945 0.947 0.923 0.921 0.1031 0.1029 0.0971 0.0995 

30 0.952 0.960 0.941 0.935 0.0838 0.0837 0.0805 0.0818 

50 0.955 0.956 0.934 0.945 0.0646 0.0645 0.0629 0.0636 

100 0.950 0.949 0.939 0.942 0.0455 0.0455 0.0448 0.0453 

200 0.952 0.954 0.947 0.945 0.0320 0.0320 0.0316 0.0319 

500 0.950 0.953 0.947 0.947 0.0203 0.0203 0.0201 0.0203 

0.30 

10 0.955 0.959 0.904 0.903 0.2237 0.2228 0.1986 0.2121 

20 0.953 0.951 0.924 0.923 0.1559 0.1556 0.1460 0.1496 

30 0.945 0.943 0.919 0.926 0.1254 0.1252 0.1202 0.1220 

50 0.944 0.947 0.928 0.927 0.0973 0.0973 0.0947 0.0957 

100 0.956 0.955 0.952 0.950 0.0682 0.0682 0.0675 0.0682 

200 0.950 0.947 0.944 0.943 0.0482 0.0482 0.0475 0.0480 

500 0.956 0.955 0.951 0.952 0.0305 0.0305 0.0303 0.0306 

0.50 

10 0.948 0.949 0.888 0.889 0.3762 0.3747 0.3337 0.3567 

20 0.948 0.951 0.922 0.912 0.2598 0.2593 0.2442 0.2502 

30 0.944 0.943 0.924 0.929 0.2106 0.2103 0.2019 0.2057 

40 0.949 0.947 0.934 0.938 0.1620 0.1618 0.1574 0.1593 

100 0.950 0.950 0.939 0.942 0.1143 0.1143 0.1127 0.1138 

200 0.950 0.949 0.944 0.948 0.0806 0.0806 0.0799 0.0806 

500 0.960 0.960 0.955 0.956 0.0511 0.0511 0.0506 0.0511 

0.75 

10 0.948 0.943 0.881 0.888 0.5608 0.5584 0.4955 0.5294 

20 0.949 0.952 0.920 0.916 0.3934 0.3926 0.3705 0.3800 

30 0.946 0.950 0.924 0.924 0.3187 0.3183 0.3061 0.3118 

50 0.946 0.944 0.931 0.933 0.2449 0.2447 0.2379 0.2410 

100 0.949 0.946 0.936 0.941 0.1721 0.1720 0.1692 0.1708 

200 0.954 0.953 0.951 0.947 0.1216 0.1216 0.1204 0.1216 

500 0.951 0.953 0.950 0.950 0.0772 0.0772 0.0766 0.0772 

1.00 

10 0.945 0.950 0.891 0.883 0.7610 0.7575 0.6790 0.7283 

20 0.951 0.952 0.927 0.924 0.5281 0.5270 0.4977 0.5116 

30 0.952 0.953 0.931 0.934 0.4280 0.4274 0.4107 0.4180 

50 0.948 0.946 0.935 0.940 0.3284 0.3281 0.3205 0.3239 

100 0.949 0.949 0.942 0.944 0.2322 0.2321 0.2289 0.2315 

200 0.956 0.956 0.947 0.953 0.1635 0.1634 0.1616 0.1634 

500 0.947 0.949 0.943 0.947 0.1032 0.1032 0.1026 0.1036 

1.50 

10 0.948 0.953 0.892 0.895 1.1510 1.1454 1.0263 1.1039 

20 0.943 0.952 0.912 0.918 0.7992 0.7973 0.7471 0.7677 

30 0.946 0.948 0.936 0.929 0.6471 0.6461 0.6190 0.6301 

50 0.951 0.952 0.938 0.941 0.4989 0.4984 0.4851 0.4911 

100 0.948 0.953 0.939 0.938 0.3532 0.3531 0.3479 0.3512 

200 0.951 0.952 0.946 0.947 0.2493 0.2492 0.2470 0.2495 

500 0.950 0.948 0.945 0.944 0.1567 0.1567 0.1552 0.1566 

2.00 

10 0.944 0.950 0.902 0.902 1.5617 1.5546 1.4012 1.5093 

20 0.945 0.949 0.919 0.914 1.0855 1.0828 1.0228 1.0532 

30 0.954 0.956 0.933 0.932 0.8797 0.8783 0.8405 0.8553 

50 0.950 0.945 0.934 0.937 0.6747 0.6740 0.6561 0.6663 

100 0.946 0.951 0.940 0.945 0.4756 0.4754 0.4674 0.4720 

200 0.952 0.952 0.948 0.952 0.3352 0.3351 0.3326 0.3358 

500 0.946 0.948 0.948 0.943 0.2120 0.2120 0.2103 0.2122 
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Table 1 Cont. 

θ n 

Empirical Coverage Probability Average Length 

Likelihood Wald Bootstrap-t 
BCa 

bootstrap 
Likelihood Wald Bootstrap-t 

BCa 

bootstrap 

2.50 

10 0.960 0.953 0.898 0.894 1.9547 1.9614 1.7495 1.8854 

20 0.950 0.955 0.919 0.920 1.3625 1.3596 1.2857 1.3240 

30 0.948 0.951 0.934 0.927 1.1065 1.1046 1.0573 1.0767 

50 0.944 0.943 0.930 0.928 0.8508 0.8499 0.8285 0.8394 

100 0.955 0.955 0.946 0.944 0.5997 0.5994 0.5882 0.5937 

200 0.957 0.961 0.953 0.956 0.4237 0.4236 0.4193 0.4229 

500 0.961 0.961 0.958 0.959 0.2673 0.2673 0.2653 0.2670 

 

 
Figure 3 Plots of the CPs of the CIs for   of the Zeghdoudi distribution 

 

 
Figure 4 Plots of the ALs of the CIs for   of the Zeghdoudi distribution 
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5. Applications to Real Data 

We applied four CIs for the parameter of the 

Zeghdoudi distribution defined in the previous section 

to two real-world situations. The adequacy of the 

Zeghdoudi distribution’s performance is compared to 

that of the following alternative distributions: 

1) The Komal distribution (Shanker, & Shukla, 

2023) 
2

2
( ; ) ( .1 )

1
0, 0,xf x x e x 




 

−= + 
+

+
+

 

 

2) The Juchez distribution (Mbegbu, & Echebiri, 

2022) 
4

3

3 2
( ; ) (1 ) , 0, 0.

6

xf x x x e x
 

 

−= + +  
+ +

 

 

3) The Iwueze distribution (Elechi et al., 2022) 

𝑓(x;θ)=
θ

5

(θ
4+2θ

3+6θ
2+12θ+24)

(1+x+x2)2e-θx,x>0, θ>0. 

 

4) The Adya distribution (Shanker et al., 2021) 
3

2

4 2
( 0.( ; ) ) , 0,

2 2

xf x x e x
 

 
−= 

+
+

+
 

 

5) The Prakaamy distribution (Shukla, 2018a) 
6

5

5
0.( ; ) (1 ) , 0,

120

xf x x e x



−=  +

+
 

 

6) The Pranav distribution (Shukla, 2018b) 
4

3

4
( ; ) ( ) , .0,

6
0xf x x e x

 


−=  +
+

 

 

7) The Akshaya distribution (Shanker, 2017b) 
4

3

3 2
( ; ) (1 ) , 0,

3 6 6
.0xf x x e x


  

−= + 
+


+ +

 

 

8) The Rani distribution (Shanker, 2017c) 
5

4

5
0.( ; ) ( ) , 0,

24

xf x x e x
 


−=  +

+
 

 

9) The Ishita distribution (Shanker & Shukla, 

2017b) 
3

2

3
( ; ) ( ) , .0,

2
0xf x x e x

 


−=  +
+

 

 

10) The Rama distribution (Shanker, 2017a) 
4

3

3
0.( ; ) (1 ) , 0,

6

xf x x e x



−=  +

+
 

 

11) The Suja distribution (Shanker, 2017e) 
5

4

4
0.( ; ) (1 ) , 0,

24

xf x x e x



−=  +

+
 

 

12) The Sujatha distribution (Shanker, 2016b) 
3

2

2
( ; ) (1 .) , 0 0,

2

xf x x x e x


 
−= + 

+
+

+
 

 

13) The Amarendra distribution (Shanker, 2016c) 

f(x;θ)=
θ

4

(θ
3+θ

2+2θ+6)
(1+x+x2+x3)e-θx,  x>0, θ>0. 

 

14) The Aradhana distribution (Shanker, 2016a) 
3

2

2
( ; ) (1 .) , 0,

2 2
0xf x x e x 




 

−= +
+


+

 

 

15) The Devya distribution (Shanker, 2016d) 

f(x;θ)=
θ

5

(θ
4+θ

3+2θ
2+6θ+24)

(1+x+x2+x3+x4)e-θx,   

   x>0, θ>0. 
 

16) The Garima distribution (Shanker, 2016e) 

( ; ) (1 ) , 0 .,
2

0xf x x e x
  


−= 

+
+ +  

 

17) The Shanker distribution (Shanker, 2015a) 
2

2
( ; ) ( ) , 0 ., 0

1

xf x x e x
 


−=  +

+
 

 

18) The Akash distribution (Shanker, 2015b) 
3

2

2
0.( ; ) (1 ) , 0,

2

xf x x e x



−=  +

+
 

 

19) The Lindley distribution (Lindley, 1958) 
2

( ; ) (1 ) , 0 .,
1

0xf x x e x



−=  +

+
 

 

20) The exponential distribution 

, 0.( ; ) , 0xf x e x  − =   

 

5.1 The Precipitation in Minneapolis-Saint Paul 

Hinkley (1977) reported the successive values 

of March precipitation (inches) for Minneapolis-Saint 

Paul in the USA. The data observations are; 0.77, 

1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 

3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 

0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 

0.90, and 2.05. Table 2 presents descriptive statistics 

for this dataset.  
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Figure 5 displays a histogram, Box and 

Whisker plot, kernel density plot, and violin plot of 

this dataset, showing its positive skewness. In the 

figure, the histogram shows that the majority of 

precipitation values are between 0 and 2 units, with 

fewer instances of higher values. This boxplot shows 

outliers above the upper whisker, indicating a few 

unusually high precipitation values. The boxplot 

illustrates the data’s central tendency, variability, and 

potential outliers. In the kernel density plot, the curve 

peaks around 1-2 units of precipitation, indicating that 

these values are the most common. The violin plot is 

symmetrical, with the widest part representing the 

precipitation level of the most concentrated data. 

The ML method was applied to estimate all 

parameters of the distributions. The study assessed 

different metrics, such as the log-likelihood (log L), 

Akaike information criterion (AIC), and Bayesian 

information criterion (BIC), to compare distributions 

(Wasinrat, & Choopradit, 2023). Table 3 presents the 

parameter estimates, their standard errors (SEs), and 

measures of goodness of fit for this dataset.  

The log-likelihood, AIC, and BIC values in 

Table 3 illustrate that the Zeghdoudi distribution 

provides an adequate fit compared with other 

distributions. The ML estimator for this data is 

1.5321. Table 4 presents the 95% two-sided CIs for 

the parameter of the Zeghdoudi distribution. The 

likelihood-based method yields a CI ranging from 

1.2288 to 1.8837, with an interval length of 0.6549. 

Similarly, the Wald-type method provides a CI of 

1.2051 to 1.8590, also with a length of 0.6539, which 

is almost identical to the likelihood-based method in 

terms of range and uncertainty. In contrast, the 

bootstrap-t method and the BCa bootstrap method 

both produce notably narrower CIs. 

 

5.2 The COVID-19 Mortality Rate in the 

Netherlands 

Almongy et al., (2021) recorded and discussed 

the COVID-19 death rate in the Netherlands during 30 

days from March 31 to April 30, 2020. The 

observations are: 14.918, 10.656, 12.274, 10.289, 

10.832, 7.099, 5.928, 13.211, 7.968, 7.584, 5.555, 

6.027, 4.097, 3.611, 4.960, 7.498, 6.940, 5.307, 5.048, 

2.857, 2.254, 5.431, 4.462, 3.883, 3.461, 3.647, 1.974, 

1.273, 1.416, and 4.235. Detailed descriptive statistics 

for this dataset are presented in Table 5.  

 

 
Figure 5 (a) Histogram (b) Box and Whisker plot (c) Kernel density plot (d) Violin plot of precipitation  

in Minneapolis-Saint Paul 

 

Table 2 Descriptive statistics for the precipitation in Minneapolis-Saint Paul 

Minimum Mean  Median Maximum St. Dev 

0.320 1.675  1.470 4.750 1.0006 
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Table 3 Analysis of model fit for several distributions applied to the precipitation for Minneapolis-Saint Paul 

Distributions Estimates (SE) Log L AIC BIC 

Zeghdoudi 1.532 (0.028) -38.671 79.3410 80.7422 

Komal 0.824 (0.012) -44.051 90.1026 91.5038 

Juchez 1.580 (0.019) -43.075 88.1498 89.5510 

Iwueze 1.954 (0.025) -40.407 82.8143 84.2155 

Adya 1.168 (0.012) -41.875 85.7505 87.1517 

Prakaamy 2.397 (0.019) -47.640 97.2803 98.6815 

Pranav 1.512 (0.012) -45.490 92.9809 94.3821 

Akshaya 1.582 (0.023) -40.316 82.6325 84.0337 

Rani 1.833 (0.012) -47.498 96.9970 98.3982 

Ishita 1.200 (0.012) -43.853 89.7057 91.1069 

Rama 1.634 (0.018) -44.440 90.8800 92.2812 

Suja 2.014 (0.019) -45.874 93.7474 95.1486 

Sujatha 1.249 (0.018) -42.160 86.3207 87.7219 

Amarendra 1.608 (0.021) -41.838 85.6756 87.0768 

Aradhana 1.240 (0.019) -41.480 84.9592 86.3604 

Devya 1.981 (0.022) -41.934 85.8678 87.2690 

Garima 0.823 (0.016) -44.300 90.5992 92.0004 

Shanker 0.898 (0.012) -42.987 87.9748 89.3760 

Akash 1.262 (0.017) -43.428 88.8563 90.2575 

Lindley 0.898 (0.012) -43.148 88.2956 89.6968 

Exponential 0.597 (0.012) -45.474 92.9488 94.3500 

Note: The boldface denotes the distribution with the lowest AIC and BIC values 

 

Table 4 Comparison of 95% CIs for the precipitation in Minneapolis-Saint Paul 

 Methods CIs Lengths 

Likelihood-based (1.2288, 1.8837) 0.6549 

Wald-type (1.2051, 1.8590) 0.6539 

Bootstrap-t (1.2772, 1.8320) 0.5548 

BCa bootstrap (1.2685, 1.8664) 0.5979 

 

Table 5 Descriptive statistics for the COVID-19 mortality rate in the Netherlands 

Minimum Mean Median Maximum St. Dev 

1.273 6.157 5.369 14.918 3.5333 

 

 
Figure 6 (a) Histogram (b) Box and Whisker plot (c) Kernel density plot (d) Violin plot of COVID-19 mortality rate 
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Figure 6 plots the histogram, Box and Whisker 

plot, kernel density plot, and violin plot of this dataset. 

The histogram reveals that most mortality rates fall 

between 5 and 10, with some lower and higher values. 

According to the Box and Whisker plot, a few outliers 

appear above the upper whisker, indicating unusually 

high mortality rates. The kernel density plot reveals 

that most data are concentrated around a mortality rate 

of 5 to 10, with a bandwidth of 1.312 regulating the 

curve’s smoothness. The width of the violin in the 

violin plot indicates the data density at various 

mortality rates, while the embedded boxplot shows 

the median and interquartile range (IQR). 

All parameters of the distributions were 

estimated by the ML method. To compare 

distributions, the study evaluated various metrics, 

including the log-likelihood (log L), AIC, and BIC. 

Estimates of the parameters, their standard errors 

(SEs), and measures of goodness of fit for this dataset 

are provided in Table 6. 

Table 7 presents comparisons of 95% CIs and 

their lengths for parameter estimation using various 

methods. The likelihood-based method estimates the 

CI to be between 0.3686 and 0.5588, with an interval 

length of 0.1902. The CI produced by the Wald-type 

method varies between 0.3621 and 0.5521 and has a 

length of 0.1900, which is in close agreement with the 

outcomes obtained from the likelihood-based method. 

On the other hand, the BCa bootstrap method offers a 

narrower CI, spanning from 0.3661 to 0.5510, with a 

reduced interval length of 0.1849. Similarly, the 

bootstrap-t method provides n CI, ranging from 

0.3745 to 0.5410, with the shortest interval length of 

0.1665.

 
Table 6 Analysis of model fit for several distributions applied to the COVID-19 mortality rate in the Netherlands 

Distributions Estimates (SE) Log L AIC BIC 

Zeghdoudi 0.457 (0.002) -76.928 155.8569 157.2581 

Komal 0.280 (0.001) -80.324 162.6482 164.0494 

Juchez 0.614 (0.003) -77.264 156.5290 157.9302 

Iwueze 0.730 (0.003) -77.326 156.6520 158.0532 

Adya 0.452 (0.002) -77.075 156.1494 157.5506 

Prakaamy 0.969 (0.005) -80.919 163.8389 165.2401 

Pranav 0.636 (0.003) -77.346 156.6916 158.0928 

Akshaya 0.560 (0.003) -76.956 155.9117 157.3129 

Rani 0.804 (0.004) -78.746 159.4912 160.8924 

Ishita 0.469 (0.002) -77.131 156.2610 157.6622 

Rama 0.630 (0.003) -77.414 156.8272 158.2284 

Suja 0.801 (0.004) -78.719 159.4387 160.8399 

Sujatha 0.437 (0.002) -77.676 157.3528 158.7540 

Amarendra 0.597 (0.003) -77.081 156.1626 157.5638 

Aradhana 0.423 (0.002) -77.750 157.5003 158.9015 

Devya 0.761 (0.004) -77.761 157.5218 158.9230 

Garima 0.243 (0.001) -82.664 167.3277 168.7289 

Shanker 0.307 (0.001) -78.784 159.5684 160.9696 

Akash 0.457 (0.002) -77.601 157.2014 158.6026 

Lindley 0.307 (0.001) -80.085 162.1696 163.5708 

Exponential 0.162 (0.001) -84.525 171.0505 172.4517 

Note: The boldface denotes the distribution with the lowest AIC and BIC values. 

 
Table 7 Comparison of 95% CIs for the COVID-19 mortality rate in the Netherlands 

 Methods CIs Lengths 

Likelihood-based (0.3686, 0.5588) 0.1902 

Wald-type (0.3621, 0.5521) 0.1900 

Bootstrap-t (0.3661, 0.5510) 0.1849 

BCa bootstrap (0.3745, 0.5410) 0.1665 
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6.  Conclusion and Discussion 

This paper presents and evaluates four distinct 

methods for constructing confidence intervals (CIs) 

for the parameters of the Zeghdoudi distribution using 

likelihood-based, Wald-type, bootstrap-t, bias-corrected 

and accelerated (BCa) bootstrap methods. The explicit 

formula for the Wald-type CI was derived and 

proposed in this paper. Simulation studies evaluate all 

confidence intervals by investigating their empirical 

coverage probability (CP) and the average length 

(AL) of the intervals. As the sample sizes increase, the 

results indicate an obvious trend where the CPs of all 

methods converge towards the nominal confidence 

level of 0.95. However, the bootstrap-t and BCa 

bootstrap methods perform poorly in terms of CP, 

particularly in smaller samples. 

The bootstrap-t and BCa bootstrap methods are 

based on the assumption that the resampled data 

accurately represent the characteristics of the 

underlying population. This assumption may not hold 

for datasets with very small sample sizes and 

skewness, potentially affecting the reliability of the 

CIs estimated using these methods. The bootstrap-t 

and BCa bootstrap CIs show high variability, 

especially when dealing with smaller sample sizes and 

larger parameter values. It would be beneficial to 

further investigate and consider alternative methods 

or adjustments to ensure reliability in such situations. 

Nevertheless, bootstrap methods’ computing 

requirements may present constraints in situations 

where there are limited computational resources. 

Several packages are available in the R programming 

language to simplify the calculation of bootstrap CIs, 

such as the 'boot' package (Canty, & Ripley, 2024) 

and the 'bootstrap' package (Kostyshak, 2024). Since 

the ALs of these methods are influenced by the 

parameter values, users must thoroughly assess their 

data context and characteristics before choosing a 

particular method. Furthermore, the effectiveness of 

likelihood-based and Wald-type CIs relies on specific 

regularity conditions. Failure to meet these conditions 

can compromise the performance of these CIs. 

The current study focuses on precipitation and 

COVID-19 mortality data, and the performance of 

four CIs may vary with other types of real data. Future 

research could expand on this by applying these CIs 

to different kinds of data to assess their robustness and 

adaptability. Expanding the scope to include interval 

estimation methods that are more robust to non-

normality or other real-world complexities would 

make the findings more widely applicable and 

relevant across diverse datasets in future work. 

Additionally, expanding the comparison beyond the 

four methods discussed in this study could be 

beneficial in future research. Incorporating additional 

techniques or alternative methods could offer further 

insights into their performance. Furthermore, future 

research could explore other weighted mixed 

distributions, such as the weighted Pranav (Shukla, & 

Shanker, 2020), weighted Nwikpe (Mohiuddin et al., 

2022), and weighted Odoma (Manoj, & Elangovan, 

2020) distributions, among others.  
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