
Rangsit Journal of Arts and Sciences, July-December 2011     RJAS Vol. 1  No. 2, pp. 127-137 

127 

A performance comparison using principal component analysis and differential evolution  
on fuzzy c-means and k-harmonic means 

 
Siriporn Supratid

1
* and Phichete Julrode

2 

 
Faculty of Information Technology, Rangsit University, Patumthani 12000, Thailand 

1E-mail: siri_sup1@hotmail.com; 2 E-mail: phichete@pkru.ac.th 
 

*Corresponding author 
 

Submitted 6 August 2011; accepted in final form 27 November 2011 
 

 
Abstract 

Several clustering researches have attempted to optimize the clustering approaches regarding initial clusters. 

The purpose is to alleviate local optima traps. However, such an optimization may possibly not significantly improve 

the accuracy rate; contrarily it usually generates abundant runtime consumption. In addition, it may cause the 

emergence of local traps rather than providing the proper clusters initialization. One may turn to focus on the problems 

of high dimensional, noisy data and outliers hidden in real-world data. Such difficulties can seriously spoil the 

computation of several types of learning, including clustering. Feature reduction is one of the approaches to relieve such 

problems. Thereby, this paper proposes a performance comparison using principal component analysis (PCA) and 

differential evolution (DE) on fuzzy clustering. The purpose relates to evaluating the consequences of feature reduction, 

compared to those of optimization of the clustering environment. Here, the fuzzy clustering approaches, fuzzy c-means 

(FCM) and k-harmonic means (KHM) are experimented. FCM and KHM are soft clustering algorithms that retain more 

information from the original data than those of crisp or hard. PCA, the feature reduction method, is employed as a 

preprocessing of FCM and KHM for relieving the curse of high-dimensional, noisy data. The performance of the FCM 

and KHM based on PCA feature extraction, called PCAFCM and PCAKHM are compared with related algorithms, 

including the FCM and KHM optimized by differential evolution (DE) method. Comparison tests are performed related 

to 7 well-known benchmark real-world data sets. Within the scope of this study, the superiority of the feature reduction 

using PCA over DE optimization on FCM and KHM is indicated. 
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1.  Introduction 

Many real-world applications are really 

ambiguous and cannot be exclusively clustered 

into distinct classes. To compensate for these 

artifacts, soft clustering methods, fuzzy c-means 

(FCM) algorithm (Bezdek, Ehrlich, & Full, 1984), 

has recently been used extensively with some 

success in the fuzzy clustering areas (Balafar, 

Ramli, Saripan, Mahmud, & Mashohor, 2008; 

Chen, Ginger, & Bick, 2006; Chuang, Tzeng, 

Chen, Wu, & Chen, 2006; Kannan, Ramathilagam, 

Sathya, & Pandiyarajan, 2010; Yong, Chongxun & 

Pan, 2004;). The objective regarding FCM is to 

group data, based on arithmetic means into set of 

disjointed clusters. The data within the same 

clusters are highly similar with one another and 

dissimilar with those in other clusters. The strength 

of FCM over traditional clustering such as k-means 

(KM) is that it allows one piece of data to belong 

to two or more clusters. Given an input point, FCM 

yields the degree of membership value in each 

cluster. The other presented clustering method, k-

harmonic means (KHM) algorithm is an algorithm 

proposed by Zhang, Hsu, and Dayal (1999), Zhang 

(2000) and modified by Hammerly and Elkan 

(2002). Instead of using an arithmetic mean, k-

harmonic clustering uses the harmonic average to 

calculate the similarity of the points in the data set 

to the cluster centers, to which they belong. 

Moreover, KHM associates the influence weight of 

a single data on the cluster center in the following 

iterations.  FCM as well as KHM are soft 

clustering algorithms that retain more information 

from the original data than those of crisp or hard; 

they perform data clustering based on arithmetic 

and harmonic means. KHM also associates the 

influence weight of a single data on the cluster 

center for the next iteration (Frackiewicz & Palus, 

2008; Li, Gu, & Zhang, 2010; Ma & Staunton, 

2007). 

There still exists a question on the causes 

of local optima traps problems, occurring in FCM 

DOI : 10.14456/rjas.2011.15 

Copyright © 2011, Rangsit University. All rights reserved 

mailto:siri_sup1@hotmail.com1
mailto:phichete@pkru.ac.th
http://www.doi.nrct.go.th/index.php?page=resolve_doi&resolve_doi=10.14456%2Frjas.2011.15


SUPRATID & JULRODE 

128 

as well as KHM learning.  In order to avoid such 

local traps, many researches applied several types 

of optimizations on either FCM or KHM to get the 

appropriate initial set of clusters (Gomathi & 

Thangaraj, 2010; Wang, Liu, Zhao, & Xu, 2006; 

Yang, Sun & Zhang, 2009). Differential evolution 

 (DE), one of the efficient optimization methods, 

has been introduced by (Price, Storn, & Lampinen, 

2005; Storn & Price, 1997). The main idea is to 

create a population of candidate solutions to an 

optimization problem. Those solutions are 

iteratively refined by alteration and selection of 

good solutions for the next iteration. FCM and 

KHM are sensitive to the initial clusters. There 

exists research involved with optimizing FCM or 

KHM by using DE. FCDE, an algorithm of FCM 

optimized by DE, was proposed by (Kao, Lin, & 

Huang, 2008). FCDE showed better performance 

over FCM. The work (Tian, Liu, & Qi, 2009) 

presented an algorithm concerning KHM, 

optimized by DE for the clustering purpose. Such 

an algorithm took an advantage of DE’s global 

searching ability to overcome getting stuck at local 

minima. The results clearly demonstrated that the 

optimization algorithm obtained more acceptable 

results than KHM.  

Nevertheless, such clustering optimiza-

tions may not significantly improve clustering 

precision; oppositely, the runtime consumption is 

usually worse than the clustering without any 

optimization. This is a reason why one should turn 

to focus on some other cause of local trap 

problems such as high dimensional, noisy data and 

outliers. Such problems seriously spoil the 

computation of several types of learning, including 

clustering. Several real-world applications usually 

suffer from such high dimensionality problems. 

Irrelevant dimensional features could seriously 

deteriorate the generalization performance of 

clustering. A linear feature extraction method, 

principal component analysis (PCA) is one of the 

important tools for coping with such 

dimensionality problems (Jolliffe, 1986). In order 

to perform dimension reduction, PCA maps the 

original predicting features into smaller numbers 

of features. Thereby, applying PCA as 

preprocessing for such a dimension reduction 

would lead to the improvement of the clustering 

efficiency. There have been some works e.g., the 

library evaluation (Wei & Li, 2009) that combined 

PCA with FCM. Such a work denoted the 

advantage of a cooperation of PCA and FCM over 

FCM and the Back Propagation neural network. 

This work gave the incentive to this study. The 

optimization and feature reduction, related to 

clustering areas, have been separately explored. A 

comparison study among them has not yet been 

fulfilled. 

This paper presents a performance 

comparison using principal component analysis 

(PCA) and using differential evolution (DE) on  

fuzzy clustering. The combination of the 

preprocessing and the clustering approaches are 

here called, PCAFCM and PCAKHM. The 

optimizations of DE on FCM as well as on KHM, 

called here DEFCM and DEKHM are also 

determined in a comparison test. Here, PCAFCM 

and PCAKHM are compared to DEFCM and 

DEKHM. The rest of the paper is organized as 

follows. Sections 2 and 3 introduce FCM and 

KHM clustering. Section 4 briefly describes DE 

search technique. In section 5, PCA preprocessing 

is described. Then, experimental results are 

determined in section 6. Finally, conclusions are 

made in section 7. 

 

2.  Fuzzy c-means (FCM) 

Fuzzy C-Means (FCM) is a clustering 

method that allows a data point to belong to two or 

more clusters with different degrees of 

membership; unlike k-means (KM), the traditional 

clustering method that assigns a pattern to only a 

single cluster. FCM is widely used in pattern 

recognition. It is based on minimization of the 

following objective function: 

 

  

 

where, X = {x1, ..., xn, ..., xN}, xn is the n
th

 of d-

dimensional measured data; is a set of data to be 

clustered xc is a c
th 

cluster centers, where c = 1, 2, 

…, C. m, fuzziness degree controls the extent of 

membership sharing between fuzzy clusters; here it 

equals 2, unc is the degree of membership of input 

xn in the cluster c. ||*|| is any norm expressing the 

similarity between any measured data and the 

center. Fuzzy partitioning is carried out through an 

iterative optimization of the objective function 

shown in (1). The update of membership unj and 

the cluster centers xc follow (2) and (3) 

consecutively: 
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This iteration will stop when: 

 

where, ε is a termination criterion ranged between 

0 and 1 and superscript iter is the iteration number. 

However, the problem of getting into local optima 

still exists in FCM learning. 

 

3.  K-harmonic means clustering (KHM) 

K-harmonic means clustering (KHM) 

applies degrees of membership to allow each data 

point to belong to two or more clusters (Hammerly 

& Elkan, 2002; Gungor & Unler, 2007; Gungor & 

Unler, 2008), similar to FCM. However, in KHM, 

the arithmetic mean of distance from a data point 

to the centers, used in FCM, is replaced by the 

harmonic mean. The harmonic means gives a good 

(low) score for each data point when that data 

point is close to any one center. This is a property 

of the harmonic means; it is similar to the 

minimum function used by KM, but it is a smooth 

differentiable function. The following notations are 

used to formulate the KHM algorithm. 

p : the membership function defining 

theproportion of data point xn that belongs to 

center c. 

w(xn): the weight function defining how much 

influence data point xn  has in re-computing the 

center parameters in the next iteration. 

The basic algorithm for KHM clustering 

is shown as follows: 

1. Randomly choose the initial C centers. 

2. Calculate the objective function value accor-

ding to 

 

 
 

where m is equivalent to 2, like that in FCM. 

3. For each data point xn, compute its member- 

ship p  in each center  according to 

(5) 

 

 
 

 

4. For each data point xn, compute its weight 

w(xn) according to (6) 

 

 
 

5. For each center , re-compute its location 

from all data points according to their 

member-ships and weights as show in (7) 

 

 
 

6.  Repeat steps 2–5 until reaching a predefined 

number of iterations or until KHM(X,C) 

does not change significantly. 

7. Assign a data point to a cluster  with 

the biggest p . 
 

4.  Using differential evolution for optimizing 

FCM and KHM (DEFCM and DEKHM) 

Differential evolution (DE) algorithm 

(Price, Storn & Lampinen, 2005) is a simple and 

efficient heuristic for global optimization over 

continuous spaces. Like any other evolutionary 

algorithm, DE is also a stochastic population-based 

method. However, DE does not make use of some 

probability distribution function in order to 

introduce variations into the population. Instead, 

DE uses the differences between randomly 

selected data vectors as the source of random 

variations for a third vector, referred to as the 

target vector. Trial solutions are generated by 
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adding weighted difference vectors to the target 

vector. This process is referred to as the mutation 

operator where the target vector is mutated. The 

crossover and selection step are then applied to 

produce an offspring which is only accepted if it 

improves on the fitness of the parent individual. 

DE is used for initial clusters optimization 

on FCM and KHM. The optimization, made on 

FCM and KHM are consecutively called DEFCM 

and DEKHM. The idea is similar to other 

clustering optimization such as simulated 

annealing heuristic (SA) (Tian, Liu, & Qi, 2009) or 

tabu search method (Bankapalli, Babu, & Devi, 

2011). In DEFCM and DEKHM, the populations 

of candidate solutions which contain C number of 

cluster centers are sampled randomly. Then the 

standard KHM and DE algorithm executes 

alternately when the stop criterion is satisfied, and 

the final solution of the cluster centers and the 

partition obtained by the globally best 

chromosome is reported. The pseudo code for the 

complete DEFCM and DEKHM clustering 

algorithm is presented in Figure 1. 

 

5.  Using principal component analysis with 

FCM and KHM for dimension reduction 

(PCAFCM and PCAKHM) 

 PCA is an orthogonal basic transforma-

tion. Given a data set:  

where D is the number of dimensions, N refers to 

the samples size. Y = (y1,…,yn) is given as a 

centered matrix; yi =  where 

. The basis is found by 

diagonalizing the centered covariance matrix, 

defined by 

 

  

 

The coordinates in the eigenvector basis are called 

principal components. In PCA, one has to find 

eigenvalues
 p  

and eigenvectors vp of M, 

satisfying vp = Mvp. The size of each eigenvalue 

p equals the amount of variance in the direction 

of the corresponding an eigenvectors where 

. The directions of the first 

eigenvectors corresponding to the biggest 

eigenvalues cover as much variance as possible by 

P orthogonal directions. The principal eigenvectors 

of M are the principal directions of  

The principal eigenvectors  of M are the 

principal components. Entries of each are the 

projected values of data points on the principal 

direction and  are related via (8) 
 

  

DEFCM and DEKHM algorithms 

Step 1. Initialize each candidate solutions to contain C number of randomly selected cluster centers (population size is 

NumPop and dimension is D) 

Step 2. Set iterative count t=0 and Maximum number of iterations maxIter. 

Step 3. Execute DE algorithm on population. 

 Step 3.1. (mutation) Generate a mutant vector. 

 Step 3.2. (crossover) Generate a trial vector. 

 Step 3.3. Compare trial vector and target vector by their fitness, and update the globally best candidate   

solution G. 

Step 4. For each candidate solutions, execute basic FCM (or KHM) 

 Step 4.1. Compute membership function and weight value, then update cluster centers. 

 Step 4.2. Calculate the objective function value following (1) and (4) and update the globally best 

candidate solution G. 

Step 5. If t < maxIter, set t = t + 1, and goto Step 2; otherwise, output the final solution with cluster centers and the 

partition obtained by the globally best candidate solution G. 

Figure 1  The pseudo-code of DEFCM and DEKHM. 

 

 

Through such a PCA method, the main P 

of D dimensions are extracted; whilst noisy and 

irrelevant dimensional features, that could 

seriously deteriorate the generalization 

performance of clustering are eliminated. Thereby, 

PCA is utilized in this paper as preprocessing and 
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generates data with dimension reduction for later 

used in FCM and KHM learning process. The 

combination of PCA pre-processing and the 

clustering approaches are here called, PCAFCM 

and PCAKHM. 

6.  Experimental and results 

PCAFCM and PCAKHM are tested on 

seven benchmark medical data sets used from the 

URL, “http://archive.ics.uci.edu/ml/datasets.html” 

(Frank & Asuncion, 2010), PCAFCM as well as  

PCAKHM also compared with FCM, DEFCM, 

KHM and DEKHM. According to PCA feature 

reduction, the number of orthonormal 

eigenvectors, corresponding to the first 90% 

largest eigenvalues of the covariance matrix would 

be used in the feature space.  Such a selection  
criterion of eigenvector is applied for all data sets 
and related methods. This provides fairness for 
comparison determination. The details of the tested 
data sets are described in section 6.1. 

6.1 Data sets 
6.1.1 Pima Indians Diabetes (n = 768, d = 8, k = 
2), which consists of 768 objects characterized by 
eight features: number of times pregnant, plasma 
glucose concentration at 2 hours in an oral glucose 
tolerance test, diastolic blood pressure, triceps skin 
fold thickness, 2-hour serum insulin, body mass 
index, diabetes pedigree function and age. There 
are two categories in the data: tested positive for 
diabetes (268 objects) and vice versa (500 objects). 

6.1.2 Parkinson (n = 195, d = 22, k = 2), which 
consists of 195 objects characterized by twenty-
two features: average vocal fundamental frequency, 
maximum vocal fundamental frequency, minimum 
vocal fundamental frequency, five several 
measures of variation in fundamental frequency, 
six several measures of variation in amplitude, two 
measures of ratio of noise to tonal components in 
the voice, two nonlinear dynamical complexity 
measures, three nonlinear measures of fundamental 
frequency variation and signal fractal scaling 
exponent. There are two categories in the data: 
Parkinson’s (147 objects) and healthy (48 objects). 

6.1.3 Lymphography (n = 148, d = 18, k = 4), 
which consists of four different types of lym: 
normal find (2 objects), metastases (81 objects), 
malign lymph (61 objects), and fibrosis (4 objects). 
Each type has eighteen features, which are 
lymphatics, block of affere, block of lymph. c, 
block of lymph. s, by pass, extravasates, regeneration, 
early uptake, lym.nodes dimin, lym.nodes enlar, 
changes in lym., defect in node, changes in node, 
changes in stru, special forms, dislocation, exclusion 
and no. of nodes. 

6.1.4 Hepatitis (n = 155, d = 19, k = 2), which 
consists of two different types of life: dead (32 
objects), live (123 objects). Each type has nineteen 
features, which are age, sex, steroid, antiviral, 
fatigue, malaise, anorexia, liver big, liver firm, 
spleen palpable, spiders, ascites, varices, bilirubin, 

alk phosphate, sgot, albumin, protime and 
histology. 

6.1.5 Dermatology (n = 366, d = 34, k = 6), which 
consists of 366 objects characterized by thirty-four 
features: erythema, scaling, definite borders, 
itching, koebner phenomenon, polygonal papules, 
follicular papules, oral mucosal involvement, knee 
and elbow involvement, scalp involvement, family 
history, age, melanin incontinence, eosinophils in 
the infiltrate, PNL infiltrate, fibrosis of the papillary 
dermis, exocytosis, acanthosis, hyperkeratosis, para- 
keratosis, clubbing of the rete ridges, elongation of 
the rete ridges, thinning of the suprapapillary 
epidermis, spongiform pustule, munro microabcess, 
focal hypergranulosis, disappearance of the 
granular layer, vacuolisation and damage of basal 
layer, spongiosis, saw-tooth appearance of retes, 
follicular horn plug, perifollicular parakeratosis, 
inflammatory monoluclear infiltrate and band-
like infiltrate. There are six categories in the data: 
psoriasis (112 objects), seboreic dermatitis (61 
objects), lichen planus (72 objects), pityriasis rosea 
(49 objects), cronic derma- titis (52 objects) and 
pityriasis rubra pilaris (20 objects). 

6.1.6 Contraceptive Method Choice (n = 1473, d 
=9, k = 3): This dataset is a subset of the 1987 
National Indonesia Contraceptive Prevalence Survey. 
The samples are married women who either were 
not pregnant or did not know if they were at the 
time of interview. The problem is to predict the 
choice of current contraceptive method (no use has 
629 objects, long-term methods have 334 objects, 
and short-term methods have 510 objects) of a woman 
based on her demographic and socioeconomic 
characteristics. 

6.1.7 Breast Tissue (n = 106, d = 9, k = 6): These 
data, consisting of 106 objects characterized by 9 
such features as impedivity (ohm) at zero 
frequency (IO), phase angle at 500 KHz, high-
frequency slope of phase angle, impedance distance 
between spectral ends (DA), area under spectrum, 
area normalized by DA, maximum of the spectrum, 
distance between IO and real part of the maximum 
frequency point and length of the spectral curve. 
There are six categories in the data: carcinoma (21 
objects), fibro-adenoma (15 objects), mastopathy 

http://archive.ics.uci.edu/ml/datasets.html
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(18 objects), glandular (16 objects), connective (14 
objects) and adipose (22 objects). 

The characteristics of such medical data 
sets are summarized in Table 1. 
 
6.2 Experimental results 

The experimental results are averages of 
10 cross-validation runs. The algorithms are 
implemented using MATLAB R2010a and executed 
on an Intel (R) Core(TM)2 Quad CPU 2.40 GHz 

with 4.00 GB RAM. The quality of the respective 
clustering are compared, where the quality is 
measured by the following two criteria: 

6.2.1 The objective functions FCM and KHM: the 
sum over all data points of respectively arithmetic 
and harmonic average of the distance from a data 
point to all the centers, as defined consecutively in 
Eq. (1) and (4). Clearly, the smaller the sum is, the 
higher the quality of clustering. 

6.2.2 Adjusted rand index (ARI): suppose T is the 
true clustering of a data set based on domain 
knowledge and R a clustering result given by some 
clustering algorithm. Let a, b, c, and d, 
respectively, denote the number of pairs belonging  
to the same cluster in both T and R, the number of 
pairs belonging to the same cluster in T but to 
different clusters in R, the number of pairs 
belonging to differrent clusters in T but to the same 
cluster in R and the number of pairs belonging to 

different clusters in both T and R. The ARI(T,R) is 
then defined as follows:   

 

  

 

The value of ARI(T,R) lies between zero 

and one and higher value indicates that R is more 

similar to T. In addition, ARI(T,T) = 1. 

 

Table 1  Characteristics of data sets considered 
Name of data set No. of classes No. of features Size of data set (size of classes in parentheses) 

Pima Indians Diabetes 2 8 768 (500, 268) 
Parkinson 2 22 195 (48, 147) 
Lymphography 4 18 148 (2, 67, 46, 33) 
Hepatitis 2 19 155 (32, 123) 
Dermatology 6 34 366 (112, 61, 72, 49, 52, 20) 
Contraceptive 3 9 1473 (629, 333, 511) 
Breast Tissue 6 9 106 (21, 15, 18, 16, 14, 22) 

    

6.2.3 Runtimes: the runtimes of the related 
clustering algorithms is shown in seconds. 

All of these measurement criteria are 
com- puted as means and standard deviations over 
10 independent runs. The results in terms of 
FCM/KHM objective functions, ARI and runtime 
are shown in Table 2 and Table 3. Such results 
indicate most of superiority of PCAFCM and 
PCAKHM over the others related. A visual analysis 
of ARI and runtime comparisons can be achieved 
by determining them in a form of bar graphs. 
Figure 2 provides a complement to the visual 
analysis.  

In addition, in Table 4 and Table 5, the 
increase of ARI in percentage, as well as the ratio 
of runtime based on FCM and KHM are compared 

between a pair of DEFCM, PCAFCM and that of 

DEKHM, PCAKHM. The comparison shows the 

unrivaled improvement of ARI and runtime, yielded 

by PCAFCM and PCAKHM. The prominent 

decrease of runtime, belonging to PCAFCM and 

PCAKHM is explicitly caused by the dimension 

reduction of the data sets. Contrarily, an abundant 

multiplication of runtimes is produced by DEFCM 

and DEKHM. In Figure 3, the dimension reduction 

is described in a form of bar graph. The stripped 

and gray bars respectively represent the original 

number of data dimensions and those of the 

reduced. The percentages of dimension reduction 

for each data set are pointed above the gray bars as 

well. 
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(a)                 (b) 
Figure 2  The measurement (a) ARI value of FCM, DEFCM and PCAFCM, (b) ARI value of KHM, DEKHM and 

PCAKHM. 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

(c)                      (d) 

Figure 2  (Continued) The measurement (c) Runtime of FCM,DEFCM and PCAFCM, and (d) Runtime of KHM, 

DEKHM and PCAKHM. 
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Figure 3  The dimension reduction on seven medical data sets, yielded from PCA as preprocessing for FCM and KHM.  

The stripped and gray bars represent the original number of data dimensions and those of the reduced. The percentages 

of dimension reduction for each data set are shown on the gray bars. 

 
  
Table 2  Results of KHM, DEKHM, and PCAKHM clustering on seven medical data sets when m = 2. The quality of 
clustering is evaluated using KHM objective function and ARI. Runtimes (seconds) are additionally provided. The table 
shows means and standard deviations (in brackets) for 10 independent cross-validation runs. The subscript [a x b], 
attached with each data sets equivalents to [(size of the data set) x (no. of original dimensions)].  Bold face indicates the 
best result out of the three algorithms. 
 

Source KHM DEKHM PCAKHM 

Pima Indians Diabetes [8x768] 
KHM 8.24E+06(3.79E+05) 8.82E+06(4.03E+05) 7.28E+01 (4.45E+00) 
ARI 0.732220(0.006228) 0.739340(0.005492) 0.742667(0.009799) 
Runtime 0.241481(0.002027) 9.75E+01(3.366258) 0.234806(0.008729) 
Parkinson [22x195] 
KHM 1.94E+06(7.11E+04) 2.10E+06(7.80E+04) 1.79E+01(3.63E+00) 
ARI 0.762732(0.009739) 0.772957(0.010167) 0.831224(0.039765) 
Runtime 0.061537(0.000327) 2.62E+01(0.304307) 0.059834(0.000143) 
Lymphography [18x148] 
KHM 1.85E+03(1.55E+01) 1.87E+03(1.67E+01) 5.71E+01(3.55E-02) 
ARI 0.751757(0.007302) 0.762347(0.007152) 0.765476(0.007262) 
Runtime 0.053220(0.000383) 2.41E+01(0.105682) 0.052691(0.003550) 
Hepatitis [19x155] 
KHM 2.03E+06(1.04E+05) 2.15E+06(1.15E+05) 7.40E+00(0.00E+00) 
ARI 0.751643(0.024252) 0.792138(0.024214) 0.818666(0.000000) 
Runtime 0.049371(0.000213) 2.06E+01(0.091276) 0.053893(0.004582) 
Dermatology [34x366] 
KHM 4.35E+04(1.41E+03) 4.37E+04(1.48E+03) 9.17E+01(1.67E+00) 
ARI 0.839052(0.002650) 0.841695(0.002639) 0.890813(0.003983) 
Runtime 0.151916(0.001581) 6.46E+01(0.065226) 0.145047(0.003396) 
Contraceptive [9x1473] 
KHM 3.35E+04(1.62E+03) 5.39E+04(1.66E+03) 1.46E+02(1.48E+01) 
ARI 0.747069(0.001669) 0.748767(0.001589) 0.748210(0.006695) 
Runtime 0.516299(0.003731) 1.98E+02(0.196091) 0.489418(0.003203) 
Breast Tissue [9x106] 
KHM 2.73E+10(1.92E+09) 3.09E+10(2.33E+09) 4.12E+00(5.66E-01) 
ARI 0.815894(0.041366) 0.836069(0.040231) 0.880558(0.007862) 
Runtime 0.048622(0.000405) 1.93E+01(0.103529) 0.042208(0.003567) 

 

 
Table 3  Results of FCM, DEFCM, and PCAFCM clustering on seven medical data sets when m = 2. The quality of 
clustering is evaluated using FCM objective function and ARI. Runtimes (seconds) are additionally provided. The table 
shows means and standard deviations (in brackets) for 10 independent cross-validation runs. The subscript [a x b], 
attached with each data sets equivalents to [(size of the data set) x (no. of original dimensions)]. Bold face indicates the 
best result out of the three algorithms. 
 

Source FCM DEFCM PCAFCM 

Pima Indians Diabetes [8x768] 

FCM 1.77E+06(1.19E+05) 1.68E+06(2.89E+04) 2.62E+02(1.38E+00) 

ARI 0.725371(0.005467) 0.738265(0.005410) 0.775219(0.018962) 

Runtime 0.005733(0.000324) 2.237780(0.012194) 0.004801(0.000645) 

Parkinson [22x195] 

FCM 3.78E+05(1.13E+04) 3.70E+05(1.65E+02) 6.11E+01(3.16E+00) 

ARI 0.758036(0.015851) 0.758806(0.002230) 0.801960(0.016747) 
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Runtime 0.002048(0.000089) 1.391502(0.003675) 0.001593(0.000034) 

Lymphography [18x148] 

FCM 6.11E+01(9.94E-02) 6.09E+01(1.56E-02) 3.22E+01(1.52E-03) 

ARI 0.741849(0.004615) 0.751416(0.007600) 0.762226(0.003660) 

Runtime 0.002878(0.000164) 2.028351(0.009952) 0.002337(0.000111) 

Hepatitis [19x155] 

FCM 3.83E+05(7.20E+03) 3.76E+05(6.05E+03) 1.89E+01(1.80E+00) 

ARI 0.740921(0.013361) 0.754764(0.013297) 0.776110(0.009413) 

Runtime 0.001731(0.000019) 1.172003(0.005808) 0.001280(0.004808) 

 

Table 3  (continued)    

Source FCM DEFCM PCAFCM 

Dermatology [34x366]    

FCM 7.64E+02(1.36E+01) 7.51E+02(1.41E+01) 1.65E+01(1.52E-01) 

ARI 0.840308(0.002782) 0.841562(0.002628) 0.958336(0.015957) 

Runtime 0.025276(0.037031) 5.778450(0.150970) 0.004810(0.004928) 

Contraceptive [9x1473] 

FCM 5.03E+03(1.86E+02) 4.88E+03(1.57E+02) 1.71E+02(2.76E+00) 

ARI 0.747943(0.001083) 0.748656(0.000630) 0.747891(0.001881) 

Runtime 0.010990(0.001211) 3.334728(0.015674) 0.008319(0.004156) 

Breast Tissue [9x106] 

FCM 3.16E+08(1.96E+07) 3.81E+07(1.27E+07) 1.65E+00(4.72E-02) 

ARI 0.844279(0.020612) 0.861057(0.013693) 0.900135(0.009301) 

Runtime 0.002773(0.000065) 1.767047(0.003042) 0.002344(0.000059) 

 

 

Table 4  Percentage increase of ARI base on FCM 

Source 
% increase of ARI based on FCM Ratio of Runtime based on FCM 

DEFCM PCAFCM DEFCM PCAFCM 

Pima Indians Diabetes[8x768]  1.78   6.87   390.33   0.84  

Parkinson[22x195]  0.10   5.79   679.44   0.78  

Lymphography[18x148]  1.29   2.75   704.78   0.81  

Hepatitis[19x155]  1.87   4.75   677.07   0.74  

Dermatology[34x366]  0.15   14.05   228.61   0.19  

Contraceptive[9x1473]  0.10  -0.01  303.43   0.76  

Breast Tissue[9x106]  1.99   6.62   637.23   0.85  

 
 
Table 5  Percentage increase of ARI base on KHM 

Source 
% increase of ARI based on KHM Ratio of Runtime based on KHM 

DEKHM PCAKHM DEKHM PCAKHM 

Pima Indians Diabetes[8x768]  0.97   1.43   0.97   1.43  

Parkinson[22x195]  1.34   8.98   1.34   8.98  

Lymphography[18x148]  1.41   1.82   1.41   1.82  

Hepatitis[19x155]  5.39   8.92   5.39   8.92  

Dermatology[34x366]  0.31   6.17   0.31   6.17  

Contraceptive[9x1473]  0.23   0.15   0.23   0.15  

Breast Tissue[9x106]  2.47   7.93   2.47   7.93  
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7.  Conclusion 

This paper proposes a performance 

comparison using principal component analysis 

(PCA) and differential evolution (DE) on fuzzy 

clustering. PCA, the feature reduction method, is 

employed as a preprocessing of FCM and KHM. 

The feature reduction relieves the curse of high-

dimensional, noisy data. DE, on the other hand 

optimizes the initial clusters of FCM and KHM. 

The aim of such an optimization is to alleviate 

local optima. This leads to improved FCM and 

KHM clustering. The comparison on the  consequences 

of feature reduction and those of optimization on 

the clustering environment is the focus. DEFCM 

and DEKHM are consecutive manner of outcome 

is shown in this paper references of DE that 

optimizes FCM as well as KHM; whereas, FCM 

and KHM with PCA preprocessing is referred by 

PCAFCM and PCAKHM. The results, shown in 

this paper are consistent with those shown in the 

related works. (Kao, Lin, & Huang, 2008) denoted 

better performance of FCM optimized by DE over 

FCM; the same manner is denoted in this paper.  

In addition, this paper as well as (Tian, Liu, & Qi, 

2009) point out the better quality yielded by KHM 

with DE optimization compared to KHM. The 

application of library evaluation (Wei & Li, 2009) 

shows the superior results of the algorithm based 

on PCA and FCM over FCM. Likewise, the same 

manner of outcome is shown in this paper.  

However a comparison study using principal 

component analysis (PCA) and differential 

evolution (DE) on fuzzy clustering has not yet 

been explored in this paper. For this reason, here 

PCAFCM and PCAKHM are compared with 

DEFCM and DEKHM. Comparison tests are 

performed on 7 well-known benchmark real-world 

data sets. The performance measurements for each 

method are based on three criteria, FCM / KHM 

objective functions, ARI and runtime. All of these  

criteria are calculated with means and standard 

deviations over 10 independent runs. The results 

indicate most of superiority of the PCAFCM and 

PCAKHM over both of DEFCM and DEKHM. 

The latter optimized algorithms are more complicate 

and time consuming. Within the scope of this 

study, one can indicate the superiority of the 

feature reduction using PCA over DE optimization 

on FCM and KHM. There still exists some 

drawbacks to PCAFCM and PCAKHM.   

They require a priori known number of 

clusters, since both of the algorithms are instances 

of a partitional clustering class. It is not applicable 

when the number of clusters is unknown. Thereby, 

other ways of clustering such as agglomerative or 

divisive should be include in the future. 
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