
Journal of Current Science and Technology, April - June 2025 Vol. 15 No. 2, Article 94

Copyright ©2018-2025, Rangsit University ISSN 2630-0656 (Online)

Cite this article: Pradubsuwun, D. (2025). Verification of Concurrent Go Programs using Timed Trace Theory. Journal of

Current Science and Technology, 15(2), Article 94. https://doi.org/10.59796/jcst.V15N2.2025.94

Verification of Concurrent Go Programs using Timed Trace Theory

Denduang Pradubsuwun

Department of Computer Science, Faculty of Science and Technology, Thammasat University,

Pathum Thani 12120, Thailand

E-mail: denduang@tu.ac.th

Received 6 August 2024; Revised 10 October 2024; Accepted 31 October 2024; Published online 25 March 2025

Abstract

The Go programming language, or Go, plays a critical role in developing concurrent programs because it provides

features such as goroutines and channels that support program concurrency. Even though concurrency makes programs

efficient, verification is required to ensure their correctness. This paper proposes a novel approach to verifying concurrent Go

programs using timed trace theory. The proposed approach is specifically designed to verify concurrent systems. Verifying a

Go program using timed trace theory is divided into two tasks: modeling and verification. Modeling involves transforming a

Go program into time Petri nets using a proposed algorithm. Verification involves checking the conformance between the Go

program and its specification. This can be done automatically by the timed trace theoretic verification tool, which supports a

partial order reduction technique to mitigate the state explosion problem. We demonstrate the verification of the Philosopher

problem using both the total order method and the partial order reduction method. Experiments with the Go program of the

Philosopher problem demonstrate the effectiveness of the proposed method.

Keywords: concurrent program; conformance checking; Go program; goroutine; time Petri net; timed trace theory; verify

1. Introduction

Due to the advent of multicore processors, a

program should be developed using a programming

language that supports multithreading to take

advantage of such processors. Go programming

language or Go is one of the alternative languages for

coding to meet this requirement. It provides features

known as goroutines and channels for implementing

concurrent programs (Meyerson, 2014). A goroutine

is a lightweight thread and a channel is a pipe for

communicating between goroutines, enabling them to

send and receive values from each other. Although

developing a Go program with concurrency makes the

system efficient, i.e., (Fu, & Zhang, 2023; Gao et al.,

2023; Hu, & Zhang, 2023), a verification of the Go

program is needed for detecting failures to ensure that

the Go program satisfies its specification. Verifying a

concurrent Go program is challenging because its

behavior is nondeterministic.

Typically, model checking is a popular method

for verification. It is applied to verify several works,

i.e., (Ghosh, & Karsai, 2023; Kitahara et al., 2022;

Pang et al., 2024; Zhu, & Wang, 2023). It has been

also proposed to verify Go programs, e.g., (Dilley, &

Lange, 2021; Gabet, & Yoshida, 2020; Lange et al.,

2018; Prasertsang, & Pradubsuwun, 2016). Model

checking is a general-purpose verifier. However, a

timed trace theoretic verification (Zhou et al., 2001),

which is an extension of trace theory (Dill, 1988), was

introduced. It was specifically designed to verify pure

concurrent systems, e.g., asynchronous microprocessors.

Applying timed trace theory to verify a system consists

of two tasks. The first task is to convert the system and

its specifications into time Petri nets, which is a

formal model representing the concurrent system.

PRADUBSUWUN

JCST Vol. 15 No. 2, April - June 2025, Article 94

Secondly, the verification is done by an automatic tool

based on timed trace theory, which is called a timed

trace theoretic verification tool. Behind the tool,

conformance checking is a technique for detecting

failures. Likely, verifying the system may cause state

explosion problems because the number of states is

too large to handle. The timed trace theoretic

verification tool also provides a partial order reduction

(Pradubsuwun et al., 2005) to minimize the number of

states for keeping away from the state explosion

problems. On the other hand, the verification with all

possible events is called the total order method.

In this paper, we propose a novel approach to

verifying concurrent Go programs using timed trace

theory. We also introduce an algorithm to transform a

Go program into time Petri nets, which serve as input

to the timed trace theoretic verification tool. We

performed verification using both the total order

method and the partial order reduction method.

2. Objectives

Our work proposes a novel approach to

verifying concurrent Go programs using timed trace

theory. To verify a concurrent Go program, two tasks

must be performed: modeling and verification.

Modeling involves transforming a Go program and its

specification into time Petri nets. We propose an

algorithm to perform this task. Verification involves

checking the conformance between a Go program and

its specification using timed trace theory. This

verification can be performed automatically by the

timed trace theoretic verification tool. The time Petri

nets, which represent the Go program and its

specification, serve as input to the timed trace theoretic

verification tool. This tool also supports verification

using partial order reduction. An overview of the

proposed method is shown in Figure 1. We demonstrate

the verification of a concurrent Go program for the

Philosopher problem (Gabet, & Yoshida, 2020). The

Philosopher problem involves a scenario in which

multiple philosophers attempt to eat spaghetti

simultaneously. The experiment is conducted by

increasing the number of philosophers by one in each

iteration, starting from two and ending with eight.

Furthermore, both the total order method and the partial

order reduction method are applied to verify the Go

program for the Philosopher problem, allowing for a

comparison of their efficiencies.

Specification Go program

Transform

specification into

time Petri net

Transform

Go program into

time Petri net

time Petri net time Petri net

timed trace theoretic

verification tool

yes
no with

counterexample

Figure 1 Overview of the proposed method

PRADUBSUWUN

JCST Vol. 15 No. 2, April-June 2025, Article 94

3. Materials and Methods

3.1 Modeling a Go Program

This subsection describes an algorithm to

transform a Go program into time Petri nets. To

understand the algorithm, we briefly describe a Go

program and a time Petri net, respectively. A Go

program (Go, 2019) may contain one or more

functions. However, it must contain at least the main

function, i.e., func main (). Each function is composed

of a sequence of statements. There are several kinds

of statements in Go. Since we are interested in the

concurrent behavior of the Go program, we focus on

control statements, e.g., if-else, for, select, and

especially goroutines.

Goroutines are the important feature of Go. It

is used to support the concurrent execution of

functions in Go. For example, consider “go func()”.

The “go” keyword preceding a function call indicates

that the function is executed concurrently. Moreover,

Go provides a channel type, i.e., chan, for sending and

receiving values between goroutines. This is

accomplished using the channel operator. Before

using the channel, it must be created using the make

instruction. If there are multiple communication

operations, the select statement is used to block until

one of them can execute. Figure 2 shows an example

of the Go program containing the philosopher

function, i.e., “func phil()” and fork function, i.e.,

“func fork()” (Gabet, & Yoshida, 2020). The for {}

statement is used in the body of both functions,

representing an infinite loop.It represents an infinite

loop. The func fork() function assigns a value of 1 to

the variable fork and sends a value of 0 to the channel

ch. The func phil() function sends the value of the

fork1 parameter to the channel ch1 and the value of

the fork2 parameter to the channel ch2

simultaneously.

Figure 2 An example of the Go program

PRADUBSUWUN

JCST Vol. 15 No. 2, April - June 2025, Article 94

Next, let us briefly explain the definition of a

time Petri net. The behavior of concurrent systems can

be represented by a time Petri net. A time Petri net

consists of a six-tuple N = (P, T, F, lb, ub, u0), where

P is a set of places, T is a set of transitions, F is a set

of flow relations specifying a binary relation between

places and transitions (F ⊆ (P × T) ∪ (T × P)), lb and

ub are functions representing the earliest and latest

firing times of transitions (i.e., lb: T → R⁺, ub: T →

R⁺ ∪ {∞}), satisfying lb(t) ≤ ub(t) for all t ∈ T, and u0

is an initial marking of the net. The time Petri net

allows us to model both sequential and non-sequential

behaviors of a system (i.e., conflicting and concurrent

behaviors). The structure of a time Petri net differs

depending on the behavior. This is illustrated in

Figure 3: (a) sequential, (b) conflict, and (c)

concurrent. Places are drawn as circles, transitions as

bars, markings as solid circles, and flow relations as

directed arcs. If every input place of a transition t

contains a token, then t is enabled; otherwise, it is

disabled. Each enabled transition t must fire within the

time bounds lb(t) and ub(t). The firing of transitions

represents the execution of the time Petri net, which is

characterized by a state space defined by a set of

inequalities.

Creating a time Petri net from a Go program is

straightforward. We focus solely on the control flow

of the Go program. Algorithm 1, shown in Figure 4,

is proposed to transform a Go program into time Petri

nets. The input of Algorithm 1 is a Go program and its

output is a time Petri net implemented as a script file.

Using the mapping file in Table 1, the control

statements in the Go program are extracted as the flow

relations of the time Petri net. The mapping file

defines a correspondence between the control

statements in Go (if-else, for, select, func, go) and the

structure of the time Petri net. Similarly, when

synthesizing the time Petri net for goroutines, we must

take into account the channel, as the behavior of

goroutines may be driven by it. Eventually, we obtain

the time Petri net of the given Go program. Figure 5

shows the time Petri net of the GO program in Figure

2, which is derived by Algorithm1. Note that,

according to the select statement in “func phil()”,

there are two cases. Both exhibit the same behavior,

i.e., sending a value to channels ch1 and ch2

simultaneously. Thus, the time Petri net of “func

phil()” is generated in only one case.

3.2 Timed Trace Theoretic Verification

Here, we explain the concept of timed trace

theory (Zhou et al., 2001) for verifying systems. A

system is represented as a module. The module M is

defined as a tuple (I, O, N) where I is a set of input

transitions, O is a set of output transitions, and N is a

time Petri net. Its timed trace structure is denoted by

T(M) = (I, O, S, F), where S is a success trace set, and

F is a failure trace set. A trace y(w, t) is not in S (i.e.,

y(w, t) ∉ S), for w ∈ I ∪ O and where t is the firing

time of transition w, if and only if either (a) y ∈ F, or

(b) y ∈ S, t ≤ TL(y, N), and w ∈ I, or (c) y ∈ S, t >

TL(y, N) and limit(y, N) ⊆ I, where TL(y, N) denotes

the latest time until which the firing of all enabled

transitions in N can be postponed after y, and limit(y,

N) is the set of enabled transitions that determine

TL(y, N). A specification is represented as a

semimodule, Ms. The semimodule is the same as the

module, except for the definition of its timed trace

structure.

To verify whether a system satisfies its

specification, a conformation between the module M

and the semimodule Ms must be checked. Let us

consider T(M) = (I, O, S, F) and T(Ms) = (Is, Os, Ss,

Fs), where Is = O and Os = I, representing the timed

trace structure of the module M and the semimodule

Ms, respectively. The intersection of T(M) and T(Ms)

denoted by T(M) ∩ T(Ms), is a timed trace structure

defined as (I ∩ Is, O ∪ Os, S ∩ Ss, (P ∩ Fs) ∪ (F ∩ Ps))

where P = S ∪ F and Ps = Ss ∪ Fs. If (P ∩ Fs) ∪ (F ∩

Ps) = ∅, then the module M conforms to the

semimodule Ms. This implies that the system behaves

in accordance with its specification in any failure-free

environment. Here, the semimodule Ms serves as a

maximum environment. In practice, conformance

checking is performed by traversing the state space of

T(M) ∩ T(Ms) to determine whether a failure exists.

If the output produced by a (semi)module is not

accepted by another (semi)module, a safety failure

exists. If the input expected by the (semi)module is

not provided on time by another (semi)module, a

timing failure exists. This is a subset of liveness

failures.

PRADUBSUWUN

JCST Vol. 15 No. 2, April-June 2025, Article 94

(a) (b) (c)

t1[0,]

p1

p2

p1

p3p2

p1

p2

p3

p4

t1[0,] t1[0,]t2[0,] t2[0,]

Figure 3 The structure of the time Petri net (a) sequential (b) conflict (c) concurrent

Algorithm1 Transform the Go program into the time Petri net.

Input: the Go program

Output: the time Petri nets N=(P,T,F,lb,ub,u0) or TPN file

1: begin

2: Initialize a TPN file as an empty file.

3: Perform token analysis with the Go program and store a result in an

 intermediate code file.

4: for each token in the intermediate code file do

5: if token is in {func,go} then

6: M[i]=CreatetimePetrinet(token,M[i])

7: Merge all M[i] to TPN file.

8: return the TPN file

9: end.

10: CreatetimePetrinet(token,TPN file)

11: begin

12: for each token in the intermediate code file do

13: if token is not in {func,go} then

14: begin

15: Apply a mapping file to extract the flow relation F

 corresponding to token.

16: Add places P, transitions T, and the flow relation F to the

 TPN file.

17: end

18: Set the initial marking u0 of TPN.

19: return the TPN file

20: end.
Figure 4 An algorithm to transform the Go program into time Petri nets

Figure 5 The time Petri net of the Go program in Figure 2

PRADUBSUWUN

JCST Vol. 15 No. 2, April - June 2025, Article 94

Table 1 A mapping from the Go statement to the time Petri net

Go statement time Petri net Go statement time Petri net

sequential

Func

If-else

Go func a () { }

func main ()

{

 go a ()

}

For { }

Select

3.3 Partial Order Reduction for Timed Trace

Theoretic Verification

The timed trace theoretic verification tool

provides an additional option for verification: a partial

order reduction. It minimizes the number of states,

thereby avoiding the state explosion problem. The

idea of partial order reduction is to generate a subset

of states in such a way that correctness remains

unaffected. A state space constructed using partial

order reduction is called a reduced state space,

Gr=(Sr,Rr), where Sr is a set of states and Rr is a set of

transition relations between states. Note that (s,t1,s1) is

a transition relation, meaning that s1 is obtained from

s by firing transition t1. When the reduced state space

Gr is constructed from the full state space Gf=(Sf,Rf)

where Sf is a set of states and Rf is a set of transition

relations between states, it must satisfy the following

three conditions (Pradubsuwun et al., 2005).

Condition 1: For s ∈ Sr, if s has successors in

Gf, then s must have at least one successor in Gr.

Condition 2: For s ∈ Sr, if (s,t1,s1) and (s,t2,s2)

are in conflict, and t2 is not enabled in s then (s,t1,s1)
∈ Rr implies that (s,t2,s2) ∈ Rr.

Condition 3: For s ∈ Sr, if (s,t1,s1) and (s,t2,s2)

are concurrent, and the latest firing time of t1 is greater

than that of other transitions, then (s,t1,s1) ∈ Rr implies

that (s,t2,s2) ∈ Rr.

Condition 1 prevents the creation of a new

deadlock state in Gr. Condition 2 handles conflict

transitions. Since t1 and t2 are indirect conflict, the

firing of t2 may be missed if Gr contains only the firing

of t1. Therefore, the firing of t2 must be included in Gr.

Condition 3 addresses transitions that might conceal a

timing failure. If, among concurrent transitions, t1 has

a later firing time than the others and relying solely on

the firing of t1 would mask a timing failure, then Gr

must also include the firing of t2.

3.4 Verifying the Go Program

Here, we demonstrate the verification of a Go

program for the Philosopher problem, which is

a concurrency-control problem. It involves philosophers

eating spaghetti while sitting around a circular table.

Each philosopher has his or her own plate. There is

a fork between each plate. Philosophers can eat

spaghetti only when both their left and right forks are

PRADUBSUWUN

JCST Vol. 15 No. 2, April-June 2025, Article 94

available. These forks are not available when adjacent

philosophers are eating. Thus, we must design a

program that allows each philosopher to eat spaghetti

continuously without a deadlock. Originally, five

philosophers ate spaghetti concurrently. In this work,

we verify the Go program for the Philosopher problem

with a range of two to eight philosophers. We begin by

verifying the Go program with two philosophers, then

increase the number of philosophers by one in each

iteration until there are eight philosophers.

The initial step is to model the Go program for

the Philosopher problem as time Petri nets, as

described in Section 3.1. Figure 6 shows the main

function of the Go program with five philosophers

(Gabet, & Yoshida, 2020), and Figure 7 shows the

time Petri net of all “go phil()” statements from Figure

6 that are derived from Algorithm 1. The specification

of the Go program shown in Figure 6 is illustrated in

Figure 8. Note that the lower and upper bounds of time

are considered to be 0 and ∞, respectively. In the next

step, the time Petri nets of the Go program for the

Philosopher problem and its specification are verified

using the timed trace theoretic verification tool. Both

the total order method and the partial order reduction

method are applied to verify the Go program for the

Philosopher problem. The verification results are

presented and discussed in the next section.

func main(){

 var fork1,fork2,fork3,fork4,fork5 int

 ch1:=make(chan int)

ch2:=make(chan int)

ch3:=make(chan int)

ch4:=make(chan int)

ch5:=make(chan int)

go phil(&fork1,&fork2,ch1,ch2,0)

go phil(&fork2,&fork3,ch2,ch3,1)

go phil(&fork3,&fork4,ch3,ch4,2)

go phil(&fork4,&fork5,ch4,ch5,3)

go phil(&fork5,&fork1,ch5,ch1,4)

go fork(&fork1,ch1)

go fork(&fork2,ch2)

go fork(&fork3,ch3)

go fork(&fork4,ch4)

go fork(&fork5,ch5)

time.Sleep(10*time.Second)

}

Figure 6 A main function of the Go program with five philosophers

p1

fork1

[0,]
p2

p3

p4

getboth

[0,]

func phil ()

p1

p2

p3

p4

getboth

[0,]

func phil ()

p1

p2

p3

p4

getboth

[0,]

func phil ()

p1

p2

p3

p4

getboth

[0,]

func phil ()

p1

p2

p3

p4

getboth

[0,]

func phil ()

fork2

[0,]

fork2

[0,]

fork3

[0,]

fork3

[0,]

fork4

[0,]

fork4

[0,]

fork5

[0,]

fork5

[0,]

fork1

[0,]

Figure 7 The time Petri net of all go phil() statements in Figure 6

PRADUBSUWUN

JCST Vol. 15 No. 2, April - June 2025, Article 94

p1

p2

p3

p4

getboth@1

[0,]

p5

p6

getboth@2

[0,]

p7

p8

getboth@3

[0,]

p9

p10

getboth@4

[0,]

getboth@5

[0,]

fork1

[0,]

fork2

[0,]

fork3

[0,]

fork4

[0,]

fork5

[0,]

Figure 8 A specification of the Go program in Figure 6

(a)

(b)

Figure 9 (a) CPU times and (b) memory usage for verification of the Go program of the Philosopher problem

0

5000

10000

15000

20000

25000

30000

2 3 4 5 6 7 8

C
P

U
 T

im
e

(s
ec

.)

Number of philosophers

total order partial order

0

100

200

300

400

2 3 4 5 6 7 8

M
em

o
ry

 u
sa

g
e

(M
B

.)

Number of philosophers

total order partial order

PRADUBSUWUN

JCST Vol. 15 No. 2, April-June 2025, Article 94

4. Results and Discussion

We verify the Go program for the Philosopher

problem from two to eight philosophers. Initially, we

transformed the Go program for the Philosopher

problem into time Petri nets. Then, time Petri nets of

the Go program and its specification are verified using

the timed trace theoretic verification tool. We apply

the total order method and the partial order reduction

method to verify the Go program for the Philosopher

problem. The experiments were conducted on a 2.6

GHz Intel Core i7 with 8 gigabytes of memory.

The verification results are illustrated in Figure

9. The CPU time and memory usage are measured

because we focus on the resources used for verifying.

The CPU time indicates how fast the verification is

performed and the memory usage indicates the

amount of memory required for verification. Figure

9(a) shows CPU times, and Figure 9(b) shows

memory usage for verifying the Go program for n

philosophers where 2 ≤ n ≤ 8. In Figure 9(a), the x-

axis represents the number of philosophers eating

spaghetti simultaneously, and the y-axis represents

the CPU time for verification. In Figure 9(b), the x-

axis represents the number of philosophers eating

spaghetti simultaneously, and the y-axis represents

the memory usage for verifying. The solid line

represents the verification using the total order

method, the dashed line represents the verification

using the partial order reduction method. The CPU

time and memory usage increase dramatically when

verifying the Go program using the total order

method. Note that verifying with n > 6 by the total

order method resulted in an out-of-memory condition.

However, the CPU time and memory usage exhibit a

scalable, non-explosive increase when verifying the

Go program using the partial order reduction method.

The CPU time and memory usage for

verification using the total order method increase

significantly due to the increasing number of

philosophers. This means that the greater the number

of philosophers, the higher the level of concurrency.

Verifying the Go program for the Philosopher

problem using the total order method tends to cause a

state explosion. On the other hand, the verification

results show that verifying the Go program for the

Philosopher problem using the partial order reduction

method is far more effective. This is because the

partial order reduction technique decreases the

number of interleaving transitions in time Petri nets

that must be checked by the timed trace theoretic

verification tool. As a result, the number of states

required for verifying is reduced. Verification using

the partial order reduction method is an effective

approach to handle such nondeterministic behavior in

concurrent systems.
In comparison with the results of Gabet, &

Yoshida (2020) for verifying the Go program for the

Philosopher problem, their approach presents a model

based on concurrent behavioral types and applies

type-level model checking to detect failures. They do

not address the state explosion problem, which is a

critical issue in verifying concurrent systems. However,

our work introduces a novel verification method for

concurrent Go programs and demonstrates the efficiency

of the partial order reduction method compared to the

total order method. The timed trace theoretic

verification using the partial order reduction method

distinguishes our approach from theirs. It reduces the

state space required for verification, thereby helping

to avoid the state explosion problem. This represents

a key advantage of our approach.

Moreover, the state explosion problem still

persists due to the complexity of Go programs. When

the number of philosophers increases, it adversely

affects the overall performance of the verification

method. Therefore, scalability emerges as a significant

limitation of this work. Furthermore, since we

demonstrate our verification method solely on the

Philosopher problem, the generalizability of our

findings is limited. Extending the method to more

complex case studies is necessary. Hence, our

approach can be applied to verify applications

involving timed systems in concurrent environments,

ensuring their correctness and compliance with time

constraints.

5. Conclusions
In this work, we propose a novel approach to

verifying Go programs using timed trace theory. The

verification process is divided into two tasks. Firstly,

we introduce an algorithm to transform a Go program

into time Petri nets. A time Petri net is an appropriate

formal model for representing goroutines that support

the concurrent execution of the Go program. Secondly,

the timed trace theoretic verification tool is applied to

check the conformance between the Go program and

its specification. This tool also supports the partial

order reduction technique to minimize the number

of states during verification. We demonstrated the

verification of the Go program for the Philosopher

problem using both the total order method and the

partial order reduction method. We verified the Go

program for the Philosopher problem with the number

PRADUBSUWUN

JCST Vol. 15 No. 2, April - June 2025, Article 94

of philosophers eating spaghetti concurrently ranging

from two to eight.

The experimental results demonstrate the

superior efficiency of the partial order reduction

method compared to the total order method. However,

this work is limited in terms of scalability and

generalizability. In the future, we plan to extend our

verification method to more nontrivial case studies.

These case studies may include more complex Go

programs with intricate structures or programs with a

variety of time bounds. This will help us address the

limitations of this work.

6. References

Dill, D. L. (1988). Trace theory for automatic

hierarchical verification of speed-independent

circuits. Advanced Research in VLSI:

Proceedings of the 5th MIT Conference. MIT

Press.

https://doi.org/10.7551/mitpress/1102.001.0001

Dilley, N., & Lange, J. (2021). Automated verification

of Go programs via bounded model checking

[Conference presentation]. 36th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), November 15-19, 2021,

Melbourne, Australia.

https://doi.org/10.1109/ASE51524.2021.9678571

Fu, S., & Zhang, K. (2023). Network asset sensitive

information management system based on

Golang [Conference presentation]. International

Conference on Algorithms, Computing and Data

Processing (ACDP), June 23-25, 2023, Qingdao,

China.

https://doi.org/10.1109/ACDP59959.2023.00030

Gabet, J., & Yoshida, N. (2020). Static race

detection and mutex safety and liveness for Go

programs (extended version) [Conference

presentation]. European Conference on

Object-Oriented Programming, Online

Conference, November 15-17, 2020, Berlin,

Germany.

https://doi.org/10.48550/arXiv.2004.12859

Gao, C., Lv, H., & Tan, Y. (2023). Multithreading

technology based on Golang implementation

[Conference presentation]. 3rd Asia-Pacific

Conference on Communications Technology

and Computer Science (ACCTCS), February

25-27, 2023, Shenyang, China.

https://doi.org/10.1109/ACCTCS58815.2023.00

116

Ghosh, P., & Karsai, G. (2023). Distributed cyber

physical systems software model checking

using timed automata [Conference

presentation]. IEEE 26th International

Symposium on Real-Time Distributed

Computing (ISORC), May 23-25, 2023,

Nashville, TN, USA.

https://doi.org/10.1109/ISORC58943.2023.00030

Go. (2019). Documentation. Retrieved July 2, 2024,

from https://go.dev/doc

Hu, J., & Zhang, Y. (2023). Design of remote

monitoring system for ventilator based on

Golang and MongoDB [Conference

presentation]. 6th International Conference on

Artificial Intelligence and Big Data

(ICAIBD), May 26-29, 2023, Chengdu,

China.

https://doi.org/10.1109/ICAIBD57115.2023.1

0206318

Kitahara, Y., Nakamura, M., & Sakakibara, K.

(2022). An investigation of formal verification

of control policy of multi-car elevator systems

using statistical Model checking [Conference

presentation]. International Conference on

Machine Learning and Cybernetics (ICMLC),

September 9-11, 2022, Japan.

https://doi.org/10.1109/ICMLCp6445.2022.99

41319

Lange, J., Ng, N., Toninho, B., & Yoshida, N.

(2018). A static verification framework for

message passing in Go using behavioural

types [Conference presentation]. IEEE/ACM

40th International Conference on Software

Engineering (ICSE), May 27-June 3, 2018,

Gothenburg, Sweden.

https://doi.org/10.1145/3180155.3180157

Meyerson, J. (2014). The Go Programming

Language. IEEE Software, 31(5), 101-104.

https://doi.org/10.1109/MS.2014.127

Pang, S., Bian, Z., Zhang, Z., Meng, L., & Jiao, J.

(2024). A safety analysis method based on

model checking [Conference presentation].

10th International Symposium on System

Security, Safety, and Reliability (ISSSR),

March 16-17, 2024, Xiamen, China.

https://doi.org/10.1109/ISSSR61934.2024.00014

Pradubsuwun, D., Yoneda, T., & Myers, C. (2005).

Partial order reduction for detecting safety and

timing failures of timed circuits. IEICE

transactions on information and systems,

88(7), 1646-1661.

https://doi.org/10.1093/ietisy/e88-d.7.1646

Prasertsang, A., & Pradubsuwun, D. (2016). Formal

verification of concurrency in Go [Conference

file:///E:/วารสาร%20JCST/JCST%20V15N2%202025%20FINAL%20CONTENTS/6072-Denduang%20Pradubsuwun/Berlin,%20Germany
file:///E:/วารสาร%20JCST/JCST%20V15N2%202025%20FINAL%20CONTENTS/6072-Denduang%20Pradubsuwun/Berlin,%20Germany
https://doi.org/10.1109/ISORC58943.2023.00030
https://go.dev/doc
https://doi.org/10.1109/MS.2014.127

PRADUBSUWUN

JCST Vol. 15 No. 2, April-June 2025, Article 94

presentation]. 13th International Conference on

Computer Science and Software Engineering

(JCSSE), July 13-15, 2016, Khonkaen,

Thailand.

https://doi.org/10.1109/JCSSE.2016.7748882

Zhou, B., Yoneda, T., & Myers, C. (2001).

Framework of timed trace theoretic

verification revisited [Conference

presentation]. Proceedings of the 10th Asian

Test Symposium, November 19-20, 2001,

Kyoto Japan.

https://doi.org/10.1109/ATS.2001.990323

Zhu, W., & Wang, Y. (2023). Model checking for

scheduling on flight decks of aircraft carriers

[Conference presentation]. IEEE 6th

Information Technology, Networking,

Electronic and Automation Control

Conference (ITNEC), February 24-26, 2023,

Chongqing, China.

https://doi.org/10.1109/ITNEC56291.2023.10

082464

