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Abstract 

The Go programming language, or Go, plays a critical role in developing concurrent programs because it provides 

features such as goroutines and channels that support program concurrency. Even though concurrency makes programs 

efficient, verification is required to ensure their correctness. This paper proposes a novel approach to verifying concurrent Go 

programs using timed trace theory. The proposed approach is specifically designed to verify concurrent systems. Verifying a 

Go program using timed trace theory is divided into two tasks: modeling and verification. Modeling involves transforming a 

Go program into time Petri nets using a proposed algorithm. Verification involves checking the conformance between the Go 

program and its specification. This can be done automatically by the timed trace theoretic verification tool, which supports a 

partial order reduction technique to mitigate the state explosion problem. We demonstrate the verification of the Philosopher 

problem using both the total order method and the partial order reduction method. Experiments with the Go program of the 

Philosopher problem demonstrate the effectiveness of the proposed method. 
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1.  Introduction 

Due to the advent of multicore processors, a 

program should be developed using a programming 

language that supports multithreading to take 

advantage of such processors. Go programming 

language or Go is one of the alternative languages for 

coding to meet this requirement. It provides features 

known as goroutines and channels for implementing 

concurrent programs (Meyerson, 2014). A goroutine 

is a lightweight thread and a channel is a pipe for 

communicating between goroutines, enabling them to 

send and receive values from each other. Although 

developing a Go program with concurrency makes the 

system efficient, i.e., (Fu, & Zhang, 2023; Gao et al., 

2023; Hu, & Zhang, 2023), a verification of the Go 

program is needed for detecting failures to ensure that 

the Go program satisfies its specification. Verifying a 

concurrent Go program is challenging because its 

behavior is nondeterministic. 

Typically, model checking is a popular method 

for verification. It is applied to verify several works, 

i.e., (Ghosh, & Karsai, 2023; Kitahara et al., 2022; 

Pang et al., 2024; Zhu, & Wang, 2023). It has been 

also proposed to verify Go programs, e.g., (Dilley, & 

Lange, 2021; Gabet, & Yoshida, 2020; Lange et al., 

2018; Prasertsang, & Pradubsuwun, 2016). Model 

checking is a general-purpose verifier. However, a 

timed trace theoretic verification (Zhou et al., 2001), 

which is an extension of trace theory (Dill, 1988), was 

introduced. It was specifically designed to verify pure 

concurrent systems, e.g., asynchronous microprocessors. 

Applying timed trace theory to verify a system consists 

of two tasks. The first task is to convert the system and 

its specifications into time Petri nets, which is a 

formal model representing the concurrent system. 
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Secondly, the verification is done by an automatic tool 

based on timed trace theory, which is called a timed 

trace theoretic verification tool. Behind the tool, 

conformance checking is a technique for detecting 

failures. Likely, verifying the system may cause state 

explosion problems because the number of states is 

too large to handle. The timed trace theoretic 

verification tool also provides a partial order reduction 

(Pradubsuwun et al., 2005) to minimize the number of 

states for keeping away from the state explosion 

problems. On the other hand, the verification with all 

possible events is called the total order method. 

In this paper, we propose a novel approach to 

verifying concurrent Go programs using timed trace 

theory. We also introduce an algorithm to transform a 

Go program into time Petri nets, which serve as input 

to the timed trace theoretic verification tool. We 

performed verification using both the total order 

method and the partial order reduction method. 

 

2.  Objectives  

Our work proposes a novel approach to 

verifying concurrent Go programs using timed trace 

theory. To verify a concurrent Go program, two tasks 

must be performed: modeling and verification. 

Modeling involves transforming a Go program and its 

specification into time Petri nets. We propose an 

algorithm to perform this task. Verification involves 

checking the conformance between a Go program and 

its specification using timed trace theory. This 

verification can be performed automatically by the 

timed trace theoretic verification tool. The time Petri 

nets, which represent the Go program and its 

specification, serve as input to the timed trace theoretic 

verification tool. This tool also supports verification 

using partial order reduction. An overview of the 

proposed method is shown in Figure 1. We demonstrate 

the verification of a concurrent Go program for the 

Philosopher problem (Gabet, & Yoshida, 2020). The 

Philosopher problem involves a scenario in which 

multiple philosophers attempt to eat spaghetti 

simultaneously. The experiment is conducted by 

increasing the number of philosophers by one in each 

iteration, starting from two and ending with eight. 

Furthermore, both the total order method and the partial 

order reduction method are applied to verify the Go 

program for the Philosopher problem, allowing for a 

comparison of their efficiencies.

 

 

Specification Go program

Transform 

specification into 

time Petri net

Transform 

Go program into 

time Petri net

time Petri net time Petri net 

timed trace theoretic 

verification tool

yes
no with 

counterexample
 

Figure 1 Overview of the proposed method 
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3.  Materials and Methods 

3.1 Modeling a Go Program 

This subsection describes an algorithm to 

transform a Go program into time Petri nets. To 

understand the algorithm, we briefly describe a Go 

program and a time Petri net, respectively. A Go 

program (Go, 2019) may contain one or more 

functions. However, it must contain at least the main 

function, i.e., func main (). Each function is composed 

of a sequence of statements. There are several kinds 

of statements in Go. Since we are interested in the 

concurrent behavior of the Go program, we focus on 

control statements, e.g., if-else, for, select, and 

especially goroutines.  

Goroutines are the important feature of Go. It 

is used to support the concurrent execution of 

functions in Go. For example, consider “go func()”. 

The “go” keyword preceding a function call indicates 

that the function is executed concurrently. Moreover, 

Go provides a channel type, i.e., chan, for sending and 

receiving values between goroutines. This is 

accomplished using the channel operator. Before 

using the channel, it must be created using the make 

instruction. If there are multiple communication 

operations, the select statement is used to block until 

one of them can execute. Figure 2 shows an example 

of the Go program containing the philosopher 

function, i.e., “func phil()” and fork function, i.e., 

“func fork()” (Gabet, & Yoshida, 2020). The for {} 

statement is used in the body of both functions, 

representing an infinite loop.It represents an infinite 

loop. The func fork() function assigns a value of 1 to 

the variable fork and sends a value of 0 to the channel 

ch. The func phil() function sends the value of the 

fork1 parameter to the channel ch1 and the value of 

the fork2 parameter to the channel ch2 

simultaneously.

 

 
Figure 2 An example of the Go program 
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Next, let us briefly explain the definition of a 

time Petri net. The behavior of concurrent systems can 

be represented by a time Petri net. A time Petri net 

consists of a six-tuple N = (P, T, F, lb, ub, u0), where 

P is a set of places, T is a set of transitions, F is a set 

of flow relations specifying a binary relation between 

places and transitions (F ⊆ (P × T) ∪ (T × P)), lb and 

ub are functions representing the earliest and latest 

firing times of transitions (i.e., lb: T → R⁺, ub: T → 

R⁺ ∪ {∞}), satisfying lb(t) ≤ ub(t) for all t ∈ T, and u0 

is an initial marking of the net. The time Petri net 

allows us to model both sequential and non-sequential 

behaviors of a system (i.e., conflicting and concurrent 

behaviors). The structure of a time Petri net differs 

depending on the behavior. This is illustrated in 

Figure 3: (a) sequential, (b) conflict, and (c) 

concurrent. Places are drawn as circles, transitions as 

bars, markings as solid circles, and flow relations as 

directed arcs. If every input place of a transition t 

contains a token, then t is enabled; otherwise, it is 

disabled. Each enabled transition t must fire within the 

time bounds lb(t) and ub(t). The firing of transitions 

represents the execution of the time Petri net, which is 

characterized by a state space defined by a set of 

inequalities. 

Creating a time Petri net from a Go program is 

straightforward. We focus solely on the control flow 

of the Go program. Algorithm 1, shown in Figure 4, 

is proposed to transform a Go program into time Petri 

nets. The input of Algorithm 1 is a Go program and its 

output is a time Petri net implemented as a script file. 

Using the mapping file in Table 1, the control 

statements in the Go program are extracted as the flow 

relations of the time Petri net. The mapping file 

defines a correspondence between the control 

statements in Go (if-else, for, select, func, go) and the 

structure of the time Petri net. Similarly, when 

synthesizing the time Petri net for goroutines, we must 

take into account the channel, as the behavior of 

goroutines may be driven by it. Eventually, we obtain 

the time Petri net of the given Go program. Figure 5 

shows the time Petri net of the GO program in Figure 

2, which is derived by Algorithm1. Note that, 

according to the select statement in “func phil()”, 

there are two cases. Both exhibit the same behavior, 

i.e., sending a value to channels ch1 and ch2 

simultaneously. Thus, the time Petri net of “func 

phil()” is generated in only one case. 

 

3.2 Timed Trace Theoretic Verification 

Here, we explain the concept of timed trace 

theory (Zhou et al., 2001) for verifying systems. A 

system is represented as a module. The module M is 

defined as a tuple (I, O, N) where I is a set of input 

transitions, O is a set of output transitions, and N is a 

time Petri net. Its timed trace structure is denoted by 

T(M) = (I, O, S, F), where S is a success trace set, and 

F is a failure trace set. A trace y(w, t) is not in S (i.e., 

y(w, t) ∉ S), for w ∈ I ∪ O and where t is the firing 

time of transition w, if and only if either (a) y ∈ F, or 

(b) y ∈ S, t ≤ TL(y, N), and w ∈ I, or (c) y ∈ S, t > 

TL(y, N) and limit(y, N) ⊆ I, where TL(y, N) denotes 

the latest time until which the firing of all enabled 

transitions in N can be postponed after y, and limit(y, 

N) is the set of enabled transitions that determine 

TL(y, N). A specification is represented as a 

semimodule, Ms. The semimodule is the same as the 

module, except for the definition of its timed trace 

structure. 

To verify whether a system satisfies its 

specification, a conformation between the module M 

and the semimodule Ms must be checked. Let us 

consider T(M) = (I, O, S, F) and T(Ms) = (Is, Os, Ss, 

Fs), where Is = O and Os = I, representing the timed 

trace structure of the module M and the semimodule 

Ms, respectively. The intersection of T(M) and T(Ms) 

denoted by T(M) ∩ T(Ms), is a timed trace structure 

defined as (I ∩ Is, O ∪ Os, S ∩ Ss, (P ∩ Fs) ∪ (F ∩ Ps)) 

where P = S ∪ F and Ps = Ss ∪ Fs. If (P ∩ Fs) ∪ (F ∩ 

Ps) = ∅, then the module M conforms to the 

semimodule Ms. This implies that the system behaves 

in accordance with its specification in any failure-free 

environment. Here, the semimodule Ms serves as a 

maximum environment. In practice, conformance 

checking is performed by traversing the state space of 

T(M) ∩ T(Ms) to determine whether a failure exists. 

If the output produced by a (semi)module is not 

accepted by another (semi)module, a safety failure 

exists. If the input expected by the (semi)module is 

not provided on time by another (semi)module, a 

timing failure exists. This is a subset of liveness 

failures.  
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Figure 3 The structure of the time Petri net (a) sequential (b) conflict (c) concurrent 

 

Algorithm1 Transform the Go program into the time Petri net. 

Input: the Go program 

Output: the time Petri nets N=(P,T,F,lb,ub,u0) or TPN file 

1: begin 

2:    Initialize a TPN file as an empty file. 

3:    Perform token analysis with the Go program and store a result in an   

                 intermediate code file. 

4:    for each token in the intermediate code file do 

5:  if token is in {func,go} then 

6:   M[i]=CreatetimePetrinet(token,M[i]) 

7:    Merge all M[i] to TPN file. 

8:    return the TPN file 

9: end. 

10: CreatetimePetrinet(token,TPN file) 

11: begin 

12:    for each token in the intermediate code file do 

13:  if token is not in {func,go} then 

14:  begin 

15:     Apply a mapping file to extract the flow relation F  

                                corresponding to token. 

16:     Add places P, transitions T, and the flow relation F to the  

                               TPN file. 

17:  end 

18:    Set the initial marking u0 of TPN. 

19:    return the TPN file 

20: end.  
Figure 4 An algorithm to transform the Go program into time Petri nets 

 

 
Figure 5 The time Petri net of the Go program in Figure 2 
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Table 1 A mapping from the Go statement to the time Petri net 

Go statement time Petri net Go statement time Petri net 

sequential 

 

Func 

 

If-else 

 

Go func a () { } 

func main () 

{ 

      go a () 

} 

 

For { } 

 

Select 

 

 

3.3 Partial Order Reduction for Timed Trace 

Theoretic Verification 

The timed trace theoretic verification tool 

provides an additional option for verification: a partial 

order reduction. It minimizes the number of states, 

thereby avoiding the state explosion problem. The 

idea of partial order reduction is to generate a subset 

of states in such a way that correctness remains 

unaffected. A state space constructed using partial 

order reduction is called a reduced state space, 

Gr=(Sr,Rr), where Sr is a set of states and Rr is a set of 

transition relations between states. Note that (s,t1,s1) is 

a transition relation, meaning that s1 is obtained from 

s by firing transition t1. When the reduced state space 

Gr is constructed from the full state space Gf=(Sf,Rf ) 

where Sf is a set of states and Rf is a set of transition 

relations between states, it must satisfy the following 

three conditions (Pradubsuwun et al., 2005).  

Condition 1: For s ∈ Sr, if s has successors in 

Gf, then s must have at least one successor in Gr. 

Condition 2: For s ∈ Sr, if (s,t1,s1) and (s,t2,s2) 

are in conflict, and t2 is not enabled in s then (s,t1,s1) 
∈ Rr implies that (s,t2,s2) ∈ Rr. 

Condition 3: For s ∈ Sr, if (s,t1,s1) and (s,t2,s2) 

are concurrent, and the latest firing time of t1 is greater 

than that of other transitions, then (s,t1,s1) ∈ Rr implies 

that (s,t2,s2) ∈ Rr. 

Condition 1 prevents the creation of a new 

deadlock state in Gr. Condition 2 handles conflict 

transitions. Since t1 and t2 are indirect conflict, the 

firing of t2 may be missed if Gr contains only the firing 

of t1. Therefore, the firing of t2 must be included in Gr. 

Condition 3 addresses transitions that might conceal a 

timing failure. If, among concurrent transitions, t1 has 

a later firing time than the others and relying solely on 

the firing of t1 would mask a timing failure, then Gr 

must also include the firing of t2.  

 
3.4 Verifying the Go Program 

Here, we demonstrate the verification of a Go 

program for the Philosopher problem, which is  

a concurrency-control problem. It involves philosophers 

eating spaghetti while sitting around a circular table. 

Each philosopher has his or her own plate. There is  

a fork between each plate. Philosophers can eat 

spaghetti only when both their left and right forks are 
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available. These forks are not available when adjacent 

philosophers are eating. Thus, we must design a 

program that allows each philosopher to eat spaghetti 

continuously without a deadlock. Originally, five 

philosophers ate spaghetti concurrently. In this work, 

we verify the Go program for the Philosopher problem 

with a range of two to eight philosophers. We begin by 

verifying the Go program with two philosophers, then 

increase the number of philosophers by one in each 

iteration until there are eight philosophers. 

The initial step is to model the Go program for 

the Philosopher problem as time Petri nets, as 

described in Section 3.1. Figure 6 shows the main 

function of the Go program with five philosophers 

(Gabet, & Yoshida, 2020), and Figure 7 shows the 

time Petri net of all “go phil()” statements from Figure 

6 that are derived from Algorithm 1. The specification 

of the Go program shown in Figure 6 is illustrated in 

Figure 8. Note that the lower and upper bounds of time 

are considered to be 0 and ∞, respectively. In the next 

step, the time Petri nets of the Go program for the 

Philosopher problem and its specification are verified 

using the timed trace theoretic verification tool. Both 

the total order method and the partial order reduction 

method are applied to verify the Go program for the 

Philosopher problem. The verification results are 

presented and discussed in the next section.

 

func main(){ 

 var fork1,fork2,fork3,fork4,fork5 int 

 ch1:=make(chan int) 

ch2:=make(chan int) 

ch3:=make(chan int) 

ch4:=make(chan int) 

ch5:=make(chan int) 

go phil(&fork1,&fork2,ch1,ch2,0) 

go phil(&fork2,&fork3,ch2,ch3,1) 

go phil(&fork3,&fork4,ch3,ch4,2) 

go phil(&fork4,&fork5,ch4,ch5,3) 

go phil(&fork5,&fork1,ch5,ch1,4) 

go fork(&fork1,ch1) 

go fork(&fork2,ch2) 

go fork(&fork3,ch3) 

go fork(&fork4,ch4) 

go fork(&fork5,ch5) 

time.Sleep(10*time.Second) 

} 

Figure 6 A main function of the Go program with five philosophers 

 

p1

fork1

[0, ]
p2

p3

p4

getboth

[0, ]

func phil ()

p1

p2

p3

p4

getboth

[0, ]

func phil ()

p1

p2

p3

p4

getboth

[0, ]

func phil ()

p1

p2

p3

p4

getboth

[0, ]

func phil ()

p1

p2

p3

p4

getboth

[0, ]

func phil ()

fork2

[0, ]

fork2

[0, ]

fork3

[0, ]

fork3

[0, ]

fork4

[0, ]

fork4

[0, ]

fork5

[0, ]

fork5

[0, ]

fork1

[0, ]

 
Figure 7 The time Petri net of all go phil() statements in Figure 6 
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Figure 8 A specification of the Go program in Figure 6 
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Figure 9 (a) CPU times and (b) memory usage for verification of the Go program of the Philosopher problem  
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4.  Results and Discussion 

We verify the Go program for the Philosopher 

problem from two to eight philosophers. Initially, we 

transformed the Go program for the Philosopher 

problem into time Petri nets. Then, time Petri nets of 

the Go program and its specification are verified using 

the timed trace theoretic verification tool. We apply 

the total order method and the partial order reduction 

method to verify the Go program for the Philosopher 

problem. The experiments were conducted on a 2.6 

GHz Intel Core i7 with 8 gigabytes of memory. 

The verification results are illustrated in Figure 

9. The CPU time and memory usage are measured 

because we focus on the resources used for verifying. 

The CPU time indicates how fast the verification is 

performed and the memory usage indicates the 

amount of memory required for verification. Figure 

9(a) shows CPU times, and Figure 9(b) shows 

memory usage for verifying the Go program for n 

philosophers where 2 ≤ n ≤ 8. In Figure 9(a), the x-

axis represents the number of philosophers eating 

spaghetti simultaneously, and the y-axis represents 

the CPU time for verification. In Figure 9(b), the x-

axis represents the number of philosophers eating 

spaghetti simultaneously, and the y-axis represents 

the memory usage for verifying. The solid line 

represents the verification using the total order 

method, the dashed line represents the verification 

using the partial order reduction method. The CPU 

time and memory usage increase dramatically when 

verifying the Go program using the total order 

method. Note that verifying with n > 6 by the total 

order method resulted in an out-of-memory condition. 

However, the CPU time and memory usage exhibit a 

scalable, non-explosive increase when verifying the 

Go program using the partial order reduction method. 

The CPU time and memory usage for 

verification using the total order method increase 

significantly due to the increasing number of 

philosophers. This means that the greater the number 

of philosophers, the higher the level of concurrency. 

Verifying the Go program for the Philosopher 

problem using the total order method tends to cause a 

state explosion. On the other hand, the verification 

results show that verifying the Go program for the 

Philosopher problem using the partial order reduction 

method is far more effective. This is because the 

partial order reduction technique decreases the 

number of interleaving transitions in time Petri nets 

that must be checked by the timed trace theoretic 

verification tool. As a result, the number of states 

required for verifying is reduced. Verification using 

the partial order reduction method is an effective 

approach to handle such nondeterministic behavior in 

concurrent systems.  
In comparison with the results of Gabet, & 

Yoshida (2020) for verifying the Go program for the 

Philosopher problem, their approach presents a model 

based on concurrent behavioral types and applies 

type-level model checking to detect failures. They do 

not address the state explosion problem, which is a 

critical issue in verifying concurrent systems. However, 

our work introduces a novel verification method for 

concurrent Go programs and demonstrates the efficiency 

of the partial order reduction method compared to the 

total order method. The timed trace theoretic 

verification using the partial order reduction method 

distinguishes our approach from theirs. It reduces the 

state space required for verification, thereby helping 

to avoid the state explosion problem. This represents 

a key advantage of our approach. 

Moreover, the state explosion problem still 

persists due to the complexity of Go programs. When 

the number of philosophers increases, it adversely 

affects the overall performance of the verification 

method. Therefore, scalability emerges as a significant 

limitation of this work. Furthermore, since we 

demonstrate our verification method solely on the 

Philosopher problem, the generalizability of our 

findings is limited. Extending the method to more 

complex case studies is necessary. Hence, our 

approach can be applied to verify applications 

involving timed systems in concurrent environments, 

ensuring their correctness and compliance with time 

constraints. 

  

5.  Conclusions 
In this work, we propose a novel approach to 

verifying Go programs using timed trace theory. The 

verification process is divided into two tasks. Firstly, 

we introduce an algorithm to transform a Go program 

into time Petri nets. A time Petri net is an appropriate 

formal model for representing goroutines that support 

the concurrent execution of the Go program. Secondly, 

the timed trace theoretic verification tool is applied to 

check the conformance between the Go program and 

its specification. This tool also supports the partial 

order reduction technique to minimize the number  

of states during verification. We demonstrated the 

verification of the Go program for the Philosopher 

problem using both the total order method and the 

partial order reduction method. We verified the Go 

program for the Philosopher problem with the number 
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of philosophers eating spaghetti concurrently ranging 

from two to eight.  

The experimental results demonstrate the 

superior efficiency of the partial order reduction 

method compared to the total order method. However, 

this work is limited in terms of scalability and 

generalizability. In the future, we plan to extend our 

verification method to more nontrivial case studies. 

These case studies may include more complex Go 

programs with intricate structures or programs with a 

variety of time bounds. This will help us address the 

limitations of this work. 
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