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Abstract  

Human activities have significantly contributed to greenhouse gas (GHG) emissions, escalating global temperatures 

and exacerbating extreme weather events, which pose serious agricultural threats by disrupting crop growth. Climate 

researchers employ Representative Concentration Pathways (RCPs) to forecast future GHG scenarios. Downscaling techniques 

have improved predictions of Growing Season Lengths (GSL) predictions and mean temperatures (Tmean), both of which are 

crucial for agricultural planning. This study evaluated Support Vector Regression (SVR) and Quantile Delta Mapping (QDM) 

for projecting Tmean and its impact on GSL under RCP 2.6 and RCP 8.5. Bias correction was applied to historical Tmean data 

using both methods, based on ERA5 data. SVR showed a lower Root Mean Square Error (RMSE) (0.6 vs 1.1) and a slightly 

higher correlation (0.6 vs. 0.5) than QDM. However, QDM was chosen for Tmean projection due to its superior data 

homogeneity and better alignment of standard deviation with observed values. Projections indicated a significant Tmean increase 

after 2026 under both RCPs, with Tmean under RCP 8.5 expected to exceed 30°C between 2050 and 2100, necessitating heat-

resistant crop varieties. Greater increases in GSL under RCP 2.6 underscored the need for effective mitigation strategies. This 

study emphasizes adaptive farming practices and recommends integrating quantile-based and machine learning methods into 

future climate projections to enhance agricultural resilience. 

 

Keywords: bias correction; SVR; QDM; mean temperature; GSL; RCP 2.6; RCP 8.5. 

 

 

1.  Introduction 

Greenhouse gases (GHGs) and climate change 

are complex research topics and have been the focus 

of scientific studies for the past few decades. 

Anthropogenic activities, such as fossil fuel 

combustion, deforestation, and industrial processes, 

have significantly increased atmospheric GHG 

concentrations since the Industrial Revolution 

(Largeau et al., 2024). This phenomenon leads to 

rising global temperatures and climate change, 

resulting in extreme weather events such as higher air 

temperature, intensified tropical cyclones, floods, 

droughts, and other extreme events (Petchchedchoo et al., 

2024; Khairulbahri, 2022). The impacts of these 

extreme climate changes can be severe to the 

agricultural sector (Cech et al., 2022; Liu et al., 2022). 

Temperature, as a climate variable, significantly 

influences food crop productivity (Qi et al., 2022). 

Extreme temperature conditions can physically and 

chemically affect crop growth and quality (Fernie et al., 



MIFTAHURROHMAH ET AL. 

JCST Vol. 15 No. 2, April - June 2025, Article 100 

2 

2022). Extreme and fluctuating temperature conditions 

can also impact the development of weeds and 

herbicide efficacy in managing weed populations 

(Kumar et al., 2023). This can have a direct impact on 

crop productivity, including food crops (Kumari et al., 

2022; Qi et al., 2022; Villa-Falfán et al., 2023; Zare  
et al., 2023). Climate change affects crop species 

differently, creating barriers to sustainable crop 

production, depending on the climate in each location 

(Kumari et al., 2022; Montero-martínez, & Andrade-

velázquez, 2022; Villa-Falfán et al., 2023). In addition 

to negative impacts, temperature can also positively 

impact agricultural productivity (Gouveia et al., 2023). 

Therefore, climate projections, especially temperature, 

must be conducted for the near future to predict and 

schedule agricultural crop potential (Hinze et al., 2023). 

Modeling scenarios for predicting future 

climate based on GHG atmospheric concentrations 

and emissions, air pollution, and land use have been 

developed. Such climate modeling scenarios are 

Representative Concentration Pathways (RCPs) used 

to assess the costs associated with emissions 

reductions consistent with a given concentration 

pathway. RCPs refer to the concentration pathways 

utilized in the IPCC AR5. The defining characteristic 

of the pathway is its radiative forcing in the late 21st 

century. In this context, the radiative forcing denotes 

the additional heat trapped in the lower atmosphere 

due to increased GHG, measured in Watts per square 

meter (W/m²) (Jubb et al., 2013). The four RCPs 

represent different greenhouse gas emission levels: 

RCP 2.6 (low), RCP 4.5 and RCP 6.0 (medium), and 

RCP 8.5 (high) (National Climate Change Adaptation 

Research Facility, 2017; IPCC, 2015). In this study, 

the scenarios used are RCP 2.6 and RCP 8.5 to assess 

the impact of GHG emissions on future agricultural 

productivity and food quality. The U.S. Department 

of Agriculture applied both scenarios to assess food 

systems and food security in the context of climate 

change (Brown et al., 2015). Hinze et al., (2023) also 

successfully projected the climate regarding changes 

in vegetation potential with the RCP 8.5 future model. 

As a global framework for modeling climate 

change, RCP scenarios often have a coarse resolution 

and inaccurate representation of local conditions. 

Therefore, a downscaling process is required to 

generate data with finer resolution and accuracy. This 

process enables a more comprehensive understanding 

of climate change on a local or regional scale. 

However, downscaling results are also susceptible to 

biases during the data transformation. To overcome 

this, bias correction methods are needed to reduce 

errors. A study showed that applying bias correction 

methods to RCP 2.6, RCP 4.5, and RCP 8.5 scenarios 

positively impacted daily precipitation and temperature 

and improved model performance in most observed 

cases and scenarios (Tan et al., 2020). The Quantile 

Delta Method (QDM) has proven to be one of the 

effective approaches in correcting the bias of 

downscaling results. Earlier research indicates that 

QDM typically achieves stronger correlations and lower 

mean square errors than conventional bias correction 

methods when matching downscaled results with 

observations (Fauzi et al., 2020; Kuswanto et al., 2022; 

Rajulapati, & Papalexiou, 2023; Xavier et al., 2022). In 

this context, our research also implements the Support 

Vector Regression (SVR) method as an alternative in 

the bias correction process. As one of the robust 

algorithms for handling non-linearity cases in data, 

SVR showed satisfactory performance in improving 

the downscaling results of temperature extremes in the 

Seoul city area, South Korea (Cho et al., 2020). 

The importance of using observational data in 

the downscaling and bias correction process cannot be 

ignored. Observation data is the dependent variable, 

while RCP scenario data is the independent variable. 

In this study, we use observational data from the 

ERA5 reanalysis. ERA5 is superior to other global 

reanalysis, especially in predicting low wind speeds 

over the UK (Potisomporn et al., 2023). Research 

findings show high consistency between ERA5 trends 

and observations, suggesting that they are reliable 

surrogates for observational data (Yilmaz, 2023). 

While ERA5 offers valuable climate data for areas 

lacking gauges, it is advisable to apply bias correction 

before utilizing it, particularly in tropical regions (Tan 

et al., 2023). In addition, the accuracy of ERA5 has 

also been shown to be higher than that of MERRA-2 

(Huang et al., 2023). Therefore, a thorough understanding 

of the significance and reliability of observational data 

and the selection of appropriate bias correction 

techniques is essential to ensure the precision and 

reliability of downscaling outcomes, particularly in 

local or regional climate change studies. 

Growing Season Length (GSL) is a key 

ecological factor influencing vegetation productivity 

(Arslantaş, & Yeşilırmak, 2020; Barnard et al., 2018; 

Park et al., 2016; Wang et al., 2020; Zhou, 2020). GSL 

is considered crucial for enhancing crop productivity. 

A study was conducted to verify this hypothesis (Chen 

et al., 2016). Various studies in different countries 

have involved the GSL index in improving crop 

productivity (Calinger, & Curtis, 2023; Hudson et al., 

2022; Ngongondo et al., 2014). GSL can be an 
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important indicator in determining the timing of crop 

planting, maintenance, and harvesting. The optimal 

length of the growing season can increase agricultural 

yields and crop productivity. Precise GSL data 

enables farmers to schedule planting and harvesting 

effectively, optimize resource use, such as water and 

fertilizer, and minimize crop failure risks caused by 

severe weather conditions. Government and relevant 

agencies can use GSL to plan agricultural activities, 

formulate policies, and manage natural resources 

sustainably. GSL information can also assist in 

mitigating the risk of agricultural disasters such as 

droughts or floods. GSL is pivotal in comprehending 

crop growth dynamics, identifying influential regional 

climate patterns, and predicting how climate change 

will affect agriculture in the future. 

Mean temperature (Tmean) data is essential for 

obtaining Growing Season Length (GSL) 

information. In addition to being a key variable for 

calculating GSL, Tmean is also an important 

agrometeorological variable (Amien & Runtunuwu, 

2009; Brown et al., 2015; Chancellor et al., 2021). 

Therefore, this study applied downscaling and bias 

correction to historical GCM Tmean data, comparing 

the Quantile Delta Mapping (QDM) and Support 

Vector Regression (SVR) methods to identify the 

most accurate approach for future Tmean prediction. 

The optimal method will then be used to project future 

Tmean under the RCP 2.6 and RCP 8.5 scenarios. 

Finally, the anomalies and differences in Tmean and 

GSL between these scenarios will be analyzed to 

assess future climate conditions. 

 

2.  Objectives 

  This research aims to compare the effectiveness 

of the SVR and QDM methods in correcting bias in 

mean temperature (Tmean). Evaluation criteria included 

RMSE, correlation, and standard deviation to assess 

each method's performance in maintaining data 

consistency. Additionally, the study aimed to forecast 

future Tmean and GSL under the RCP 2.6 and RCP 8.5 

scenarios for Indonesia. Based on historical data and 

climate projections, the study analyzed fluctuations in 

Tmean and GSL, emphasizing how climate change 

impacts agricultural methods and food security 

throughout Indonesia. The study aims to provide 

insights into climate dynamics and support adaptation 

strategies for future food security. 

 

3.  Materials and Methods 

3.1 Data Collection  

This study uses daily data from the Global 

Climate Model (GCM), including historical records, 

RCP 2.6, and RCP 8.5 scenarios, specifically focusing 

on temperature variables derived from the BNU-ESM 

model. These data were obtained from the DKRZ 

website, with historical data from 1950 to 2005, and 

RCP data covering the period from 2006 to 2100. The 

BNU-ESM model, developed by Beijing Normal 

University, has a resolution of 2.8° × 2.8°. The 

historical dataset from 1950 to 2005 spans 20,453 

days, with 152 location points per day, comprising 19 

longitudes and eight latitudes, leading to a total of 

3,104,488 data points. Meanwhile, the RCP data, 

consisting of RCP 2.6 and RCP 8.5, covers the period 

from 2006 to 2100 for 34,697 days, with the same 

number of location points, resulting in a total of 

4,055,632 data. ERA5, developed by ECMWF as the 

latest generation of atmospheric reanalysis, provides 

comprehensive global climate data from 1950 to 

2022. On the other hand, the ERA5 data from 1950 to 

2022 covers 26,662 days, with 12,512 location points 

(variables) per day, consisting of 184 longitudes and 

68 latitudes, resulting in a total of 333,592,544 data.  

 

3.2 Data Historical Downscaling 

Data downscaling was performed using 

historical and reanalysis data from the same period, 

applying "Climate Imprints" to each variable. These 

data were accessible at https://cera-www.dkrz.de 

(GCM BNU-ESM) and https://cds.climate.copernicus.eu/ 

(ERA5 Reanalysis). Downscaling techniques improve the 

resolution of larger climate data to a smaller resolution, 

making it more detailed and relevant for local or 

regional studies. Climate Imprints, developed by 

Hunter and Meentemeyer (2005), is available in the 

"ClimDown" package in R. This step produces 

historical data with a smaller resolution, corresponding to 

the resolution of the ERA5 reanalysis. Thus, the 

number of location points for BNU-ESM data, 

historical scenarios and RCP, becomes 12,512 

location points (variables) per day, consisting of 184 

longitudes and 68 latitudes. Thus, the number of 

location points for historical and RCP’s scenarios 

becomes 12,512 location points (variables) per day, 

consisting of 184 longitudes and 68 latitudes. 

 

3.3 Bias Correction of Historical Data with QDM 

and SVR 

The downscaled data was then bias-corrected 

using two methods: QDM and SVR. QDM adjusts the 

quantile distribution of the data to the reference, while 

SVR improves the prediction with a more accurate 
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regression model. The SVR model used default 

parameters from the scikit-learn library to minimize 

computational burden due to the large dataset. The 

kernel function is the radial basis function (RBF) 

because it is generally better at handling non-linear 

datasets. Both approaches were examined to identify 

the most efficient method for minimizing inaccuracies 

and discrepancies in the data. For training the SVR 

model, the number of data points used is 255,907,936 

(corresponding to 20,453 days from 1950 to 2005 and 

12,512 location points) for each type of data: 

historical data serving as independent variables and 

ERA5 data as dependent variables. The training 

process was conducted separately for each variable 

and location. The results from this stage helped select 

the most suitable method to produce more accurate 

data for further analysis. 

 

3.4 Evaluation of Method Performance 

The next step involved evaluating the best 

method using Taylor diagrams, which incorporating 

three key metrics: Standard Deviation (SD), 

correlation coefficient (r), and Root Mean Square 

Error (RMSE). Taylor diagrams are a useful visual 

tool to compare the performance of different methods 

or models in predicting or improving data. The 

formulas of SD, r, and RMSE are as follows: 

SD=
SDb

SDo

=

√∑ (bi-b̄)
2n

i=1

n

√∑ (oi-ō)2n
i=1

n

 (1) 

RMSE=√
∑ (bi-oi)

2n
i=1

n
 (2) 

r=
∑ (bi-b̄)n

i=1 (oi-ō)

√∑ (bi-b̄)
2n

i=1 ∑ (oi-ō)2n
i=1

 
(3) 

where n represents the quantity of data points, b 

denotes the output from the bias correction and o 

refers to the ERA5 data (observational data). �̄� and �̄� 

are the averages of the bias-corrected output and 

observational data. The criteria for selecting the best 

method are as follows. Standard Deviation (SD) 

measures the data spread from the mean value, with a 

normalized range from 0 to 1 by min max scaler 

feature (0,1) methods with Scikit-Learn Python. 

SDnorm, SD normalized, can be calculated using 

SDnorm=
(SD- min(SD))

(max(SD)- min(SD))
 where max (SD) is 0 and 

min (SD) is 1. Results closer to 1 indicate a distribution 

closer to the reference distribution, suggesting better 

accuracy. The use of normalized standard deviation in 

this study ensures a uniform scale in calculations, 

facilitating easier comparisons between predictive 

models. Using normalized values also minimizes the 

impact of extreme data points that may exhibit 

significant variability in distribution. While it is 

acknowledged that employing actual standard 

deviation could provide a more comprehensive 

overview, the authors are considering incorporating 

this approach in a revised study version. Root Mean 

Square Error (RMSE) quantifies the discrepancy 

between predicted and reference values, where a 

lower RMSE signifies more accurate estimations by 

the model or method. The Correlation Coefficient (r) 

evaluates the linear alignment between predicted and 

reference values on a scale from 0 to 1. A stronger 

correlation, approaching 1, indicates more precise 

bias correction results, showcasing the method's 

effectiveness. 

 

3.5 Downscaling and Bias Correction of RCP 2.6 

and RCP 8.5 

Downscaling and bias correction of RCP 2.6 

and RCP 8.5 data were done using the best method 

obtained. The next step in this research is to perform 

downscaling and bias correction on RCP 2.6 and RCP 8.5 

data. Downscaling uses the Climate Imprint method to 

increase the resolution of RCP 2.6 and RCP 8.5 data to 

the matching grid resolution as ERA5, the observation 

data, to make climate projections more accurate. The 

downscaling results were then bias-corrected using 

the best-evaluated method to reduce systematic errors 

and produce more reliable climate data. 

 

3.6 Calculating the Growing Season Length (GSL) 

The Growing Season Length (GSL) is determined 

by calculating the number of days between two key 

periods within a calendar year. In the Northern 

Hemisphere (1 January to 31 December), it is the 

number of days between the first period of at least six 

consecutive days with a daily Tmean above 5°C and the 

first period after 1 July with at least six consecutive 

days with Tmean below 5°C. In the Southern 

Hemisphere (1 July to 30 June), it is the number of 

days between the first period of at least six 

consecutive days with Tmean above 5°C and the first 

period after 1 January with at least six consecutive 

days with Tmean below 5°C. The GSL is calculated 

using Tmean from two climate scenarios, RCP 2.6 and 

RCP 8.5, using R software with the library 

climdex.pcic. 
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3.7 Performing the Wilcoxon test 

The Wilcoxon rank sum test was used in this 

study to assess differences in daily Tmean between RCP 

2.6 and RCP 8.5 scenarios, as well as between each 

scenario and historical data. This non-parametric test 

was chosen due to potential deviations from normal 

distribution assumptions. A significance level (α) of 

0.05 is applied, where a P-value less than α provides 

evidence to reject the null hypothesis, indicating 

significant differences between the compared 

conditions. This approach helps ascertain variations in 

GSL between scenarios RCP 2.6 and RCP 8.5, and 

between these scenarios and historical data, 

contributing to a comprehensive analysis of climate 

change impacts. The Wilcoxon sign rank test formula 

is shown in equations (4) and (5). 

 

W=R-
1

2
n2(n2+1) (4) 

Z=
W-

n1n2

2

√n1n2

(n1+n2+1)
12

 (5) 

 

 The sum of the ranks of observations from 

population II (n2) is denoted as R, where the values in 

population II (n2) are greater than those in population 

I (n1). 

 

4.  Results  

4.1 Performance Comparison Between QDM and 

SVR methods  

Figure 1(a) presents the comparative outcomes 

of bias correction methods, specifically utilizing SVR 

and QDM. The projection results showed that the 

correlation between projection and SVR (0.6) was 

higher than with QDM (0.55), indicating a stronger 

correlation with observations. In addition, the error 

rate measured using RMSE was also smaller for SVR 

(approximately 0.6) compared to QDM (approximately 

1.1), indicating a better accuracy rate with SVR. 

RMSE serves as a critical metric, reflecting the 

average magnitude of prediction errors, while 

correlation signifies the degree of linear relationship 

between predictions and observations. However, the 

homogeneity of the bias correction results using SVR 

was not comparable to QDM, as reflected in the 

standard deviation value. The standard deviation of 

bias correction with QDM closely approximated that 

of the observations, whereas bias correction with SVR 

generally resulted in a lower standard deviation. The 

results indicate that the SVR method produced more 

consistent results across the dataset, which is vital for 

ensuring reliable long-term climate projections. 

Evidence of the homogeneity of the SVR approach 

was also seen in Figure 1(c), where the bias correction 

results tended to be centered around zero. In contrast, 

QDM results were more closely aligned with 

observations, suggesting that despite SVR’s higher 

statistical performance, QDM may offer more 

relevant outputs for practical applications. In Figure 

1(b), the average Tmean per year from all regions of 

Indonesia, the results from QDM were closer to 

observations compared to SVR. Although correlation 

and RMSE showed better results for SVR, the chosen 

bias correction method for projecting temperatures 

from 2023 to 2100 was QDM, due to its ability to 

align more closely with observed data, thus offering 

greater reliability for future projections. 

 

4.2 Projection of Future Mean Temperature Based 

on RCP 2.6 and RCP 8.5 Scenarios  

Tmean projections using the QDM method were 

applied to global data with the RCP 2.6 and RCP 8.5 

emission scenarios from 2023 to 2100. The climate 

projection results from these two scenarios are 

presented in Figure 2. The figure showed that the 

average Tmean per year of the two scenarios was 

relatively similar from 2023 to 2026, but significant 

differences were seen between 2027 and 2029. This 

unpredictable phenomenon continued until 2036 

when there was a significant difference between the 

two scenarios from 2037 to 2100. Additionally, in 

2024, 2033, and 2036, the annual average Tmean of the 

RCP 2.6 scenario appeared to be higher than RCP 8.5, 

a scenario with a higher average Tmean. Both scenarios 

indicate that the projected average Tmean from 2023 to 

2100 tended to increase compared with the historical 

average from 1950 to 2005. The fluctuations in RCP 

2.6 tended to stabilize, while RCP 8.5 showed a 

significant increase, reaching the average temperature 

of 30°C daily. Based on the Tmean prediction for the 

RCP 2.6 scenario, Indonesian society was expected to 

transition to food crop commodities that could 

withstand high-temperature from 2050 to 2100.  
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(a) 

  

(b) (c) 

Figure 1 Evaluation method performed using (a) Taylor diagram; (b) Yearly time-series comparison of QDM and SVR of 

average Tmean Yearly; (c) Time Series Plot Comparison Performance of QDM and SVR of average Tmean Daily. 

 

 
Figure 2 Yearly Average Tmean Time Series: Historical Data and Bias Correction Results for RCP 2.6 and RCP 8.5 Scenarios 
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Tmean projections using QDM for the RCP 2.6 

and RCP 8.5 scenarios (2023–2100) are shown in 

Figure 2. The figure showed that the average Tmean per 

year of the two scenarios was relatively similar from 

2023 to 2026, but significant differences were seen 

between 2027 and 2029. This unpredictable 

phenomenon continued until 2036 before there was a 

significant difference between the two scenarios from 

2037 to 2100. Additionally, in 2024, 2033, and 2036, 

the annual average Tmean of the RCP 2.6 scenario 

appeared to be higher than RCP 8.5, a scenario with a 

higher average Tmean. Both scenarios showed that the 

projected average Tmean from 2023 to 2100 tended to 

increase compared with the historical average from 

1950 to 2100. RCP 2.6 projections indicate relatively 

stable temperature fluctuations, whereas RCP 8.5 

shows a significant upward trend, with daily average 

temperatures exceeding 30°C. Based on the Tmean 

prediction for the RCP 2.6 scenario, Indonesian 

society was expected to transition to food crop 

commodities that could withstand high-temperature 

conditions from 2050 to 2100. 

Figure 2 shows a notable discrepancy between 

RCP 2.6 and RCP 8.5. This difference arises from 

each scenario's fundamentally distinct assumptions 

regarding future greenhouse gas emissions. RCP 2.6 

reflects a low emissions trajectory to limit global 

warming, leading to more stable climatic conditions 

that may yield a moderate GSL. Conversely, RCP 8.5 

represents a high-emission scenario with minimal 

mitigation efforts, predicting significant temperature 

increases and alterations in precipitation patterns that 

could extend the growing season length in some 

regions, particularly in areas like Kalimantan and 

Papua. These regional differences emphasize the 

necessity of considering both scenarios when 

planning for agricultural adaptation and resilience in 

the face of climate change. 

Meanwhile, East Nusa Tenggara (NTT), 

currently the driest and poorest province, was 

projected to have a relatively lower Tmean increase than 

other provinces in the future, from the RCP 2.6 and 

RCP 8.5 scenarios. NTT's mainstay agricultural 

commodities included rice and corn. Even though the 

Tmean increase in NTT was estimated to be lower than 

in other provinces, factors such as air humidity, 

rainfall, and soil type remained important factors in 

optimal growth and production. Fertile and well-

drained soil, with a tropical climate and even rainfall, 

continued to support the development of rice and corn. 

Therefore, a holistic and scientifically based adaptation 

strategy must be implemented to maintain food and 

agricultural security in NTT. Overall, the stippling 

pattern seen across Indonesia showed a significant 

change before and after both climate scenarios, RCP 

2.6 and RCP 8.5, were implemented. 

Examination of the notable Tmean differences 

between the RCP 2.6 (Figure 3(c)) and RCP 8.5 

(Figure 3(d)) scenarios revealed a pattern of 

similarities indicated by stippling. Significant 

differences were observed in most provinces in 

Kalimantan, Java, West Nusa Tenggara, and East 

Nusa Tenggara. On the island of Sumatra, only the 

Special Region of Aceh and North Sumatra 

experienced insignificant differences in most areas. 

Meanwhile, the islands of Sulawesi and Papua 

showed a similar pattern, where only a few small parts 

of the region did not show significant differences, 

such as North Sulawesi, Gorontalo, Mountainous 

Papua, and Central Papua. The islands of Bangka 

Belitung, Bali, Maluku, and North Maluku did not 

show any areas with significant differences in Tmean 

between the two scenarios. However, the difference in 

average Tmean from 2023 to 2050 between the two 

scenarios tended to be low, with almost all regions of 

Indonesia showing a difference of less than 0.6 

degrees Celsius. However, there was a tendency for 

the difference to increase from 2051 to 2100, reaching 

2.1 degrees Celsius. Based on these results, 

communities were recommended to plan crop 

commodity management strategies by considering 

both scenarios, including which plants were likely to 

grow and survive in these conditions. This knowledge 

could become the basis for making more sustainable 

decisions in dealing with the impacts of climate 

change. 
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(a) (b) 

(c) (d) 

 

Figure 3 Anomaly of average daily Tmean from 2023 to 2073 (a) RCP 2.6 – historical and (b) RCP 8.5 – historical; 

Differencing of average Tmean between RCP 2.6 and RCP 8.5 (c) 2023 to 2050 and (d) 2051 to 2100 

 

  
(a) (b) 

  
(c) (d) 

Figure 4 Anomaly of average GSL from 2023 to 2073 (a) RCP 2.6 – historical and (b) RCP 8.5 – historical; Differencing of 

average GSL between RCP 2.6 and RCP 8.5 (c) 2023 to 2050 and (d) 2051 to 2100 

 

4.3 Projection of Future GSL Based on RCP 2.6 

and RCP 8.5 Scenarios  

The subsequent analysis examined variations 

in GSL across Indonesia under two climate change 

scenarios: RCP 2.6 and RCP 8.5. Figure 4(a) 

illustrates GSL comparisons between the historical 

period (1950-2005) and the future projection (2023-

2100) for the RCP 2.6 scenario. The findings 

indicated a notable trend towards an increased GSL 

across much of Indonesia's terrestrial regions in the 

future compared to the historical period. Particularly 

striking increases were observed on the islands of 

Kalimantan and Papua, notably in North and East 

Kalimantan, where GSL could extend by up to 58 

days. However, there was a decline in GSL in several 

regions, such as East Nusa Tenggara (NTT), South 

Sulawesi, Bengkulu, Nias, Siberut, and parts of the 

southern region of South Papua province. This 

analysis underscores the importance of considering 

GSL changes in formulating future climate change 

adaptation and mitigation policies, particularly 

regarding planting cycles, harvest schedules, and food 

resource availability. Steps were needed to monitor 

and adjust agricultural strategies, identify crops by 
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GSL changes, and prepare adaptation plans involving 

farmers and stakeholders. 

Meanwhile, a separate analysis compared GSL 

conditions between historical and future periods under 

the RCP 8.5 scenario, as depicted in Figure 4(b). The 

comparison illustrated differences in the projected 

increase of GSL between RCP 8.5 and RCP 2.6 

scenarios, with the most substantial increase 

anticipated under RCP 8.5 primarily observed in the 

northern regions of Sumatra. Even though there was 

an increase in GSL in most of mainland Indonesia in 

the future, the increase was not as large as in the RCP 

2.6 scenario. Significant differences, especially in the 

Indian Ocean waters, occurred. The findings indicated 

that under RCP 8.5, the growth in GSL on Kalimantan 

Island was not substantial compared to RCP 2.6. This 

conclusion suggested that mitigation policy choices 

about climate change might influence the impacts of 

future changes in growing seasons. This analysis 

provided in-depth insight into the dynamics of GSL 

change in Indonesia under two different climate 

change scenarios and the implications for climate 

change adaptation and mitigation policies. These 

results highlighted the need for additional research to 

discover enhanced adaptation strategies and cultivate 

crop varieties that exhibit greater resilience to climate 

change, ensuring future food security. 

This study examined the average GSL between 

2023-2050 and 2051-2100 under the RCP 8.5 and 

RCP 2.6 scenarios in Indonesia, using the 2.5 degrees 

South latitude as a demarcation point for comparison. 

From 2023 to 2050, Figure 4(c) showed that the 

average GSL in the RCP 8.5 scenario appeared higher 

than RCP 2.6 in most parts of Indonesia above 2.5 

degrees South Latitude. This difference reached 

almost 70 days. However, in the range from 2051 to 

2100, as shown in Figure 4(d), the opposite occurred 

where the RCP 8.5 scenario showed a lower average 

GSL compared to RCP 2.6, with a difference of up to 

46 days. The conditions diverged in areas of Indonesia 

situated south of the 2.5 degrees latitude. In this 

region, the RCP 8.5 scenario appeared higher than 

RCP 2.6, with an average GSL of 30 days. Significant 

differences existed between the RCP 8.5 and RCP 2.6 

scenarios in most areas of Kalimantan and Java from 

2023 to 2050. However, from 2051 to 2100, there 

were no significant differences in all regions of 

Indonesia. 

 

5.  Discussion 

Several bias correction methodologies have 

been devised across different studies. One research 

effort evaluated the effectiveness of deep learning 

models in climate downscaling and bias correction 

processes. It used daily Tmean, Tmin, and Tmax data from 

20 advanced GCMs sourced from the Coupled Model 

Intercomparison Project phase 6 (CMIP6). Machine 

learning models combined univariate and multivariate 

techniques aimed at effectively correcting for bias and 

preserving intervariable dependencies among 

different GCMs regarding observations. Findings 

showed that machine learning models notably reduced 

temperature bias compared to conventional methods 

such as QDM (Wang, & Tian, 2022). However, this 

study relied solely on residuals in its evaluation. 

Kuswanto et al., (2022) evaluated three traditional bias 

correction techniques: Bias Correction Constructed 

Analogues with Quantile Mapping (BCCAQ), QDM, 

and Inter-Sectoral Impact Model Intercomparison 

Project (ISIMIP) for temperature variables (Tmean, 

Tmin, and Tmax) in GCM models under RCP 4.5 and G4 

scenarios. 

The study demonstrated that the QDM method 

outperformed other approaches in bias correction. 

Traditional bias correction methods were evaluated 

based on RMSE, correlation, and standard deviation, 

whereas machine learning methods primarily assessed 

performance using error values alone. To address this, 

Miftahurrohmah et al. (2024) compared the 

performance of QDM and SVR in Tmean bias 

correction, incorporating RMSE, correlation, and 

standard deviation in the evaluation process. Their 

findings revealed that the SVR method was more 

effective than QDM in reducing bias, particularly in 

terms of error reduction and correlation improvement. 

(QDM was better than machine learning methods 

based on standard deviation because it could better 

capture pattern variations from observational data. 

This research demonstrated that the SVR method 

outperformed QDM regarding bias correction 

effectiveness, as evidenced by error and correlation 

metrics. QDM was better than machine learning 

methods based on standard deviation because it could 

better capture pattern variations from observational data. 

This research supported the statement that QDM was 

better than machine learning and SVR methods in 

maintaining the standard deviation of data. The 

comparison of bias correction approaches using SVR 

and QDM methods revealed insightful findings 

regarding temperature projection accuracy and 

homogeneity. Despite SVR showing a higher correlation 

(0.6) and lower RMSE (approximately 0.6) compared 

to QDM, QDM demonstrated better homogeneity in 

bias correction results, aligning closely with 
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observations. Although SVR yielded homogeneous 

correction results, its deviation from observations 

suggested a lack of fit. 

Consequently, QDM, despite its slightly inferior 

correlation and RMSE, was deemed more suitable for 

projecting Tmean from 2023 to 2100. Other research 

also supported QDM's ability to maintain data 

homogeneity. However, the data used in this research 

was rainfall data, which had a high level of 

heterogeneity compared to temperature. This research 

compared bias correction without QDM and with 

QDM, showing that with QDM, the results were better 

as measured by the RMSE, MAE, and Pearson 

correlation values. This research did not directly 

calculate the standard deviation value, but the time 

series plot results showed that the standard deviation 

was close to the actual data (Xavier et al., 2022). 

By considering data homogeneity, further 

research could be carried out by bias correction using 

the SVR method. Bias correction could be started by 

compiling an algorithm based on the QDM concept 

and the SVR method. Combining Quantile Delta 

Mapping (QDM) with Support Vector Regression 

(SVR) resulted in notably more accurate projections 

than using each method in isolation. This synergy is 

particularly beneficial in correcting biases, as QDM 

effectively captures the distribution of the observed 

data. At the same time, SVR enhances the model's 

predictive accuracy through its robust handling of 

non-linear relationships. The collaborative approach 

improved the model's performance metrics, such as 

RMSE and correlation coefficients, and provided a 

more comprehensive understanding of the underlying 

climate patterns affecting GSL in Indonesia. Future 

studies should explore integrating these methods 

further to optimize bias correction strategies and 

enhance predictive capabilities in climate modeling. 

The research could compare bias correction 

results using other machine learning methods, 

whether considering data homogeneity or not. QDM 

and other quantile-based bias correction methods 

could also be applied to achieve better results. 

Previous research had compared bias correction using 

Quantile Mapping and machine learning methods, 

especially Long Short-Term Memory (LSTM), for 

summer daily rainfall (Seo, & Ahn, 2023). The results 

showed that Quantile Mapping (QM) was superior to 

LSTM in bias correction, with correlation, RMSE, 

and standard deviation metrics showing better 

performance for QM. The QM method explained that 

the standard deviation was almost perfect, and the 

performance evaluation of each method was carried 

out every group of months, consisting of daily data. 

The QM method has been proven to maintain the 

stability of data homogeneity (Cannon et al., 2015). 

Deep learning methods and their customization could 

also be considered in this research. Deep learning 

customization had been tested for precipitation data's 

downscaling and bias correction process. The test 

results showed that customized deep learning was 

better than regular deep learning and statistical 

methods for downscaling and bias correction. 

However, this evaluation was based only on error 

rates such as RMSE and MAE (Wang et al., 2023). 

Evaluation to measure the homogeneity of data also 

needed to be implemented. Furthermore, investigations 

into the scalability and transferability of bias correction 

methods across diverse geographical regions and 

climate scenarios were warranted. Understanding how 

these methods perform under varying environmental 

conditions and emission scenarios would be crucial 

for robust climate impact assessments and adaptation 

planning on a global scale. Future research could 

include a comparison with the Random Forest 

algorithm to evaluate predictive performance further. 

Applying the QDM method to project Tmean 

under RCP 2.6 and RCP 8.5 scenarios unveiled significant 

temporal differences, particularly beyond 2026. While 

both scenarios anticipated rising Tmean compared to 

historical averages, RCP 8.5 exhibited more pronounced 

fluctuations and an eventual surge, surpassing 30°C. 

This escalation prompted recommendations for 

transitioning to heat-resistant food crop commodities 

by 2050-2100. Provincial Tmean projections under 

RCP 2.6 and RCP 8.5 scenarios underscored diverse 

regional impacts. Papua experienced substantial 

temperature anomalies, urging adaptation strategies 

for agriculture. 

Conversely, East Nusa Tenggara foresaw 

comparatively minor Tmean increases, emphasizing the 

importance of holistic adaptation plans considering 

local conditions. Analysis of Tmean differences 

between RCP 2.6 and RCP 8.5 scenarios revealed 

nuanced regional disparities. Kalimantan, Java, and 

certain islands exhibited significant variations, 

necessitating meticulous crop management strategies 

tailored to scenario-specific conditions. Further 

analysis of GSL under RCP 2.6 and RCP 8.5 scenarios 

elucidated contrasting temporal trends. While RCP 

2.6 implied substantial GSL increases, RCP 8.5 

forecasted a more modest rise, emphasizing the 

pivotal role of mitigation policies in shaping future 

growing seasons. Overall, this study elucidated the 

multifaceted impacts of climate change on Tmean 
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patterns and GSL in Indonesia. The findings 

underscored the urgency of implementing adaptive 

measures and fostering resilient agricultural practices 

to mitigate the adverse effects of climate change and 

ensure food security in the future. Future research 

endeavors should prioritize identifying effective 

adaptation strategies and developing climate-resilient 

crop varieties to safeguard Indonesia's agricultural 

sustainability amidst evolving climatic conditions. 

In our future work, we anticipate leveraging AI 

technologies to enhance the accuracy and efficiency 

of climate modeling and bias correction methodologies. 

Specifically, we aim to explore the integration of 

advanced machine learning algorithms, such as deep 

learning and ensemble methods, to capture complex 

relationships within climate data better. These AI 

approaches will facilitate improved predictive 

capabilities, allowing for more precise projections of 

temperature and GSL trends. Furthermore, we hope to 

develop user-friendly tools that enable practitioners to 

apply these AI methods easily in their research, 

thereby fostering broader adoption and collaboration 

in climate science. By harnessing the power of AI, we 

envision significant advancements in our understanding 

of climate dynamics and more effective strategies for 

adaptation of climate change. 

 

6.  Conclusion 

The SVR method outperformed QDM in terms 

of RMSE and correlation. Although the correlation 

between SVR and QDM was insignificant (0.6 and 

0.5, respectively), SVR exhibited a clearer advantage 

in RMSE, with a value of 0.6 compared to 1.1 for 

QDM. However, in terms of homogeneity or deviation, 

QDM was superior, as its results were closer to the 

homogeneity of observations. Based on these findings,  
the preferred method for Tmean projection was QDM 

due to its ability to maintain data homogeneity. 

Projections of future Tmean and GSL under RCP 2.6 

and RCP 8.5 scenarios indicated a significant increase 

in Tmean after 2026, with RCP 8.5 predicting spikes in 

Tmean exceeding 30°C. The results underscore the need 

for using heat-resistant food commodities by 2050-

2100. Meanwhile, GSL under RCP 2.6 increased 

more than under RCP 8.5, highlighting the importance 

of mitigation policies. 

This study demonstrated the urgency of 

implementing adaptive and resilient agricultural 

practices to address climate change and maintain food 

security in Indonesia. Future research should focus on 

effective adaptation strategies and developing 

climate-resilient crop varieties. It is anticipated that 

bias correction can utilize SVR or other machine 

learning methods, considering data consistency with 

observations. The combination of QDM and SVR 

could also be explored for bias correction. Other 

quantile-based methods, including their combination 

with machine learning techniques, may be employed 

to identify the best bias correction approach. Further 

research is also needed on the scalability and 

transferability of bias correction methods across 

different geographical regions and climate scenarios. 

Understanding the performance of these methods 

under various environmental conditions and emission 

scenarios is crucial for accurate climate impact assessments 

and effective adaptation planning globally. 

Future research could involve applying this 

combined approach to historical climate data to 

validate further our methodology and the cooperation 

between the SVR and QDM methods. By analyzing 

past datasets, we aim to assess the accuracy and 

effectiveness of our criteria and techniques in replicating 

observed temperature and GSL trends. This validation 

would reinforce our methods' reliability and provide 

insights into their applicability in various climatic 

conditions. Additionally, it would allow for a 

comprehensive evaluation of how well our model can 

capture historical patterns, thereby strengthening the 

foundation for its application in future climate 

projections. 
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