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Abstract 

This paper presents the synchronizations of chaotic nonlinear systems.  With the help of a passivity-based 

control design [interconnection and damping assignment passivity-based control (IDA-PBC)] method, a nonlinear 

control strategy is proposed to achieve the chaotic synchronization.  In particular, there are two chaotic systems of 

interest, Genesio system and Chua's circuit system, which are employed as two examples for illustration.  The 

simulations indicate the effectiveness and feasibility of the proposed method to synchronize the chaotic systems of 

interest.  In addition, the performances of the proposed control scheme are evaluated and compared with an existing 

nonlinear control, in particular, backstepping controller.  

 
Keywords:  chaotic synchronization, nonlinear control, interconnection and damping assignment passivity-based 
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บทคัดย่อ 
บทความนีน้ าเสนอการประสานกันของระบบไม่เป็นเชิงเส้นท่ีไม่เป็นระเบียบ  จากการใช้การออกแบบการควบคุมท่ีอาศัยการไม่มีปฏิกริยา 

(การควบคุมท่ีไม่มีปฏิกริยาท่ีอาศัยการเชื่อมระหว่างกันและการก าหนดการหน่วง) เราจะได้ตัวควบคุมท่ีสามารถบรรลุถึงการประสานกันของระบบท่ี
ไม่เป็นระเบียบ  ระบบของ Genesio และระบบวงจรของ Chua เป็น 2 ตัวอย่างของระบบท่ีไม่เป็นระเบียบท่ีถูกน ามาใช้งานเพื่อแสดงถึงการประยุกต์
ของวิธี IDA-PBC ท่ีน าเสนอ  ผลการจ าลองระบบชี้ให้เห็นถึงประสิทธิภาพและความเป็นไปไดข้องวิธีการท่ีน าเสนอเพื่อให้เกิดการประสานกันของ
ระบบไม่เป็นระเบียบข้างต้น  นอกจากน้ีสมรรถนะของวิธีการควบคมุท่ีน าเสนอจะถูกประเมินค่าและถูกเปรียบเทียบกับการควบคุมแบบก้าวถอยหลัง 
 
ค ำส ำคัญ: การประสานท่ีไม่เป็นระเบียบ, การควบคุมไม่เป็นเชิงเส้น, การควบคุมท่ีไม่มีปฏิกริยาท่ีอาศัยการเชื่อมระหว่างกันและการก าหนดการหน่วง,
ระบบของ Genesio, ระบบวงจรของ Chua 

 

1.  Introduction 

After Pecora and Carroll (Pecora & 

Carroll, 1990) introduced a method for chaotic 

synchronization, there have recently been 

considerable interests in investigating the 

synchronization of a variety of chaotic systems.  

Chaotic synchronization has a number of potential 

applications in laser physics, chemical reactor, 

secure communication, biological network, power 

systems, etc. It is well-known that the key idea of 

synchronization becomes the use of the master 

system output to control the slave system so that 

the output of the response system is capable of 

asymptotically tracking the master system output. 

In the past two decades, a number of control 

design techniques have been developed for the 

chaotic control and synchronization.  Of particular 

interest is the use of nonlinear control technique to 

achieve synchronization of chaotic systems.  To 

the best of our knowledge, the synchronization 

problem with the help of nonlinear control 

strategies has attracted a great deal of attention 

such as variable structure control (Wang & Su, 

2004), OGY method (Ott, Grebogi, & Yorke, 

1990), adaptive control (Chen & Lu, 2002; Yu & 

Zhang, 2004), backstepping control (Park, 2006; 

Yassen, 2007; Krstic, Kanellakopoulos, & 

Kokotovic, 1995), observer-based control 
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(Mahboobi, Shahrokhi, & Pishkenari, 2006), 

dynamic surface control (Li, 2012), immersion and 

invariance control (Xie, Han, & Zhang, 2012; Xie, 

Han, & Chen, 2013), sliding mode control (Zhang, 

Ma, & Liu, 2004), and so on. 

Although considerable research has 

addressed the chaotic synchronization via the 

above-mentioned nonlinear control approaches, 

less attention has been devoted to synchronization 

of chaotic systems via the interconnection and 

damping assignment passivity-based control (IDA-

PBC) scheme.  There have not recently been any 

research works addressing the synchronization 

problem based on the IDA-PBC strategy. 

In the past decade, the IDA-PBC 

methodology has been  one of the most popular 

design methods for nonlinear control (Ortega, 

Castanos, & Astolfi, 2008; Ortega, Van der Schaft, 

Maschke, & Escoba, 2002) and synchronization 

(Zhu, Zhou, Zhou, & Teo, 2012).  This method has 

numerous advantages: it is a systematic 

methodology that ensures closed-loop stability, 

improves transient performance for underactuated 

mechanical systems (Zhu et al., 2012) and multi-

machine power systems (Kanchanaharuthai, 

Chankong, & Loparo, 2015), and facilitates the 

determination of controller parameters as 

compared with the conventional control design 

strategies that include iterative tuning approaches.  

For example, the IDA-PBC design strategy 

facilitates any additional damping to the system via 

the selection of appropriate matrices, where each 

matrix includes the coupling between the electrical 

damping and the mechanical damping, thereby 

mitigating and suppressing the heavy oscillations 

in the multi-machine power systems 

(Kanchanaharuthai et al., 2015).  

The paper continues this line of 

investigation and uses a technique based on the 

IDA-PBC scheme for the design of a nonlinear 

control law to accomplish chaotic synchronization.  

The proposed control law obtained is simple but 

efficient and easy to implement in practical 

applications.  Besides, one can use only a single 

control to achieve chaotic synchronization.  To 

evaluate the effectiveness of the proposed 

approach for chaotic synchronization, simulation 

studies are carried out on the Genesio system 

(Park, 2004) and Chua's circuit system (Zhou & 

Er, 2007), respectively. 

The rest of this paper is organized as 

follows.  The IDA-PBC method applied to 

synchronize the chaotic systems is provided in 

Section 2.  In Section 3, two chaotic systems of 

particular interest are mentioned and the controller 

design for each chaotic system is given. In Section 

4, simulation results are given.  Finally, we 

conclude in Section 5. 

 

2.  IDA-PBC method 

Interconnection and damping assignment 

- a formulation of Passivity-Based Control (PBC) - 

introduced by Ortega (Ortega & Garcia-Canseco, 

2004) is a general method for the design of a high 

performance nonlinear controller for systems 

which can be described by a port-Hamiltonian 

model.  This method not only assigns suitable 

dynamics to the closed-loop system, but being a 

Hamitonian formulation.  It is also capable of 

providing a control design which achieves 

stabilization by rending the system passive with 

respect to a desired storage function and the 

injection of a suitable level of damping.  

In this section, we present a brief 

recapitulation of the IDA-PBC method applied to 

the control of chaotic synchronization.  The 

interested reader is referred to the survey and 

tutorial paper (Ortega & Garcia-Canseco, 2004) for 

more details, and in particular, (Kanchanaharuthai 

et al., 2015; Ortega, Galaz, Astolfi, Sun, & Shen, 

2005; Galaz, Oreta, & Bazanella, 2003) for 

applications to transient stability of power systems, 

(Zeng, Zhang, Qiao, 2013) for power electronics 

applications, and so on. 

Consider a nonlinear system that is affine 

in the control input u  and whose dynamics is 

given by the following set of differential equations:  

 ( ) ( ) ( ) ( )x t f x g x u x  ,  (1) 

with the state variables 
nx R  and the control 

input 
mu R . ( )f x

 
and  g x are the smooth 

vector functions in the appropriate dimensions.  

The idea of IDA-PBC is to make the closed-loop 

system with a stabilizing (static) feedback control 

( )u x  as an explicit port-Hamiltonian system 

in the form:  

 

( ) ( ( ) ( )) ( ),d d dx t J x R x H x    (2) (2) 

where the matrices ( ) ( )d dJ x J x   and 

( ) ( ) 0T

dR x R x   denote the desired closed-

loop interconnection structure and dissipation, 
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respectively, which are determined by the 

designer, and a Hamiltonian function 

( ) : n

d xH R R  is the desired total storage 

function for the closed-loop system that satisfies an 

equilibrium point argmin ( )e dx H x .  

( ) ( )d dH x H x
x


 


 is the gradient of ( )dH x . 

In order to make (1) equal to (2), a 

solution of the so-called matching equation needs 

to be determined as shown below: 

( ) ( ) ( ) ( ( ) ( )) ( )d d df x g x x J x R x H x   

 (3) 

with the matrices    ,  ,d dJ x R x  and ( )dH x  

as design variables.  The equilibrium point of the 

closed-loop system is stable at the origin if the 

desired Hamiltonian ( )dH x  is positive definite.  

Consequently, the time derivative of ( )dH x  

along closed-loop trajectories becomes in the form 

( ) ( ) ( ) ( ) 0.T

d d d d

d
H x H x R x H x

dt
    (4) 

Therefore, ( )dH x  serves as a Lyapunov function 

for the closed-loop system and the origin is a stable 

equilibrium point. In (4), asymptotic stability can 

be guaranteed in a case that ( )dR x  is also strictly 

positive definite. In order to solve the matching 

equation in (3), we split (3) into two parts: a fully 

actuated part and an un-actuated part.  Let ( )Q x  

be 
†( ) ( )

T

g x g x    where ( )g x
 denotes a 

full-rank left annihilator of ( )g x , i.e. 

( ) ( ) 0, rank( ( )) ,g x g x g x n m     while 

†( )g x  denotes a left inverse of ( )g x , i.e. 

†( ) ( )g x g x I .  After multiplying (3) from the 

left by ( )Q x , we obtain a partial differential 

equation (PDE) and an algebraic equation, 

respectively, as follows. 

( ) ( ) ( ( ) ( )) ( )d d dg x f x g J x R x H x    (5) 

†( ) ( )[( ( ) ( )) ( ) ( )]d d dx g x J x R x H x f x    

 (6) 

From the PDE in (5), it is noted that  dJ x and 

 dR x  are free to be chosen by the designer with 

the constraint of skew-symmetry and positive 

semi-definiteness, respectively.  ( )dH x  may be 

totally or partially fixed, if we can ensure that the 

Lyapunov stability conditions are satisfied: 

namely, (i) ( ) 0d eH x  , (ii) 2 ( ) 0d exH  .  

Thus, the functions    ,  ,d dJ x R x  and 

( )dH x  need to be determined such that (5) is 

satisfied with the Hamiltonian having an isolated 

minimum at the desired equilibrium point ex R  

so that the equilibrium is stable and the Lyapunov 

stability conditions are also satisfied. In addition, 

ex  is in the largest invariant set under the closed-

loop dynamics (2) which is contained 

in{ | 0}n T

d d dx R H R H    .  An estimate of 

the attraction domain for this closed-loop system is 

then given by the largest bounded level 

set{ | }n

dx R H c  . 

As a result, the control law ( )u x  

can be directly computed from (6) as follows. 
1( ) [ ( ) ( )] ( )

           {[ ( ) ( )] ( ) ( )}

T T

d d d

x g x g x g x

J x R x H x f x

 

  
   (7) 

The key step in this design method is the 

solution of the PDE that guarantees stability of the 

closed-loop system.  This technique relies on the 

concept of exact model matching of the closed-

loop system with a certain desired behavior that is 

determined by the pre-specified interconnection 

structure and dissipation matrices.  Roughly 

speaking, the control objective of this technique is 

to find a stabilizing control law which can ensure 

that this closed-loop system behaves exactly like 

the pre-specified target system achieving exact 

model matching. In order to solve the matching 

equation above, there are different approaches to 

solve the PDE (5) as follows. 

 Algebraic IDA: when the desired energy 

function is assigned and selected a priori, 

then PDE (3) becomes an algebraic equation 

in  dJ x and  dR x .  Eventually, the 

controller is designed using (7). 

 Non-parameterized IDA:  dJ x and 

 dR x  are selected to accomplish the 

desired structure of the closed-loop system; 

subsequently, all assignable energy 

functions compatible with that structure are 

characterized.  This characterization is 
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provided in terms of a solution of the PDE 

(3). In addition, among the family of 

solutions, we choose the one with an 

equilibrium point ex . 

The overview of these and other 

approaches (Ortega & Garcia-Canseco, 2004) 

along with the applications to different examples 

(Dorfler, Jonhsen, & Allgower, 2009) can be 

investigated further in details. 

 

3.  Synchronization of chaotic systems  

Consider the drive chaotic system as 

follows: 

( ),x f x   (8) 

where 
nx R  denotes the state vector and ( )f x  

is an 1n  matrix.  In contrast, the response 

system is in the form of 

( ) ,y g y u   (9) 

where 
ny R  denotes the state vector and ( )g y  

is an 1n  matrix. Let e y x   be the 

synchronization error vector.  

 

The aim of this section is to show how to 

design a state-feedback controller via an 

interconnection and damping assignment 

passivity-based control (IDA-PBC) method 

(Ortega & Garcia-Canseco, 2004; Ortega et. al., 

2005; Galaz et al., 2003) for chaotic 

synchronization such that the trajectory of the 

response system (9) with an initial condition 0y  

can approach the drive system (8) with an initial 

condition 0x  and eventually achieve the following 

synchronization requirement:  

0 0lim | ( ) | lim | ( , ) ( , ) | 0,t te t y t y x t x   

 (10) 

where | |  denotes the Euclidean norm. 

In two chaotic system applications of 

interest, the non-parameterized IDA approach and 

the algebraic IDA approach are used to find the 

proposed controllers that are capable of achieving 

the desired chaotic synchronization requirement, 

namely the synchronization between the chaotic 

drive (master) system and the controlled response 

(slave) system as well as leading to the closed-

loop error signals converging to zero.  Throughout 

this work, our investigation is under the following 

assumption: all parameters of drive and controlled 

response systems are precisely known and the 

proposed controllers are designed based on those 

known ones.  

To show the effectiveness of the IDA-

PBC approach applied on a wide variety of chaotic 

systems, the Genesio system and the Chua's circuit 

system are used as case studies with the details as 

follows. 

3.1  Genesio system 

Consider the drive Genesio system as 

follows. 

1 2

2 3

2

3 1 2 3 1

x x

x x

x cx bx ax x





     

 (11) 

where  ( 1,2,3)i ix   are the state variables.  

, ,a b c  denote the positive real constants.  In 

addition, the aim of this section is to design a state 

feedback controller u such that the controlled 

response systems of the forms: 

 

1 2

2 3

2

3 1 2 3 1

y y

y y

y cy by ay y u





      

 (12) 

is asymptotically synchronized with the drive 

Genesio system (11).  By subtracting (11) from 

(12), we have the error dynamics as 

1 2

2 3

2 2

3 1 2 3 1 1

 

e e

e e

e ce be ae y x u





       

(13) 

where , 1,2,3i i ie y x i   .  Therefore, our 

objective is to design an IDA-PBC controller u  

for the closed-loop error dynamics (13) such that 

the error signals between drive system (11) and the 

controlled response system (12) converge to zero 

and thus both systems are asymptotically 

synchronized. 

In order to apply the IDA-PBC method, 

we can write the system (13) in the general form 

(1), i.e., ( ) ( )e f e g e u   as follows. 

1 2

2 3

2 2

3 1 2 3 1 1

0

0

1

 

e e

e e u

e ce be ae y x

     
     

 
     
              

 

 

Proposition 1: For any initial values, the drive 

chaotic system (11) can asymptotically 
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synchronize with the controlled response system 

(12) and the equilibrium point ex  of the closed-

loop error dynamics (13) is asymptotically stable 

with the static state feedback controller in a form: 

23 2 3 1 1 3

2 2

1 2 3 1 1

( ( , ))

    , 

u J e r e e e

ce be ae y x

   

    
  (14) 

where 
2

1 3 3 1 23

1
( , ) ( )

2
e e e e J   . 23J  

and 3 0r   are an arbitrary constant and a free 

parameter, respectively.  In addition, for the 

Hamiltonian form (2) the desired interconnection 

matrix ( )dJ e  and the damping matrix ( )dR e  are 

selected as shown in (13) along with the following 

energy function in a form: 

2 2

23 31 3 1 21

1 1
)

2
,( ) (

2
d e e e e JH e e e     (15) 

Proof: Based on non-parameterized IDA 

approach, we fix the interconnection matrix 

( )dJ e  and the damping matrix ( )dR e  as 

23

23

3

0 1 0

( ) ( ) 1 0 ,

0 0

0 0 0

( ) 0 0 0 0,

0 0

d d

d

J e J e J

J

R e

r

 
 

   
 
  

 
 

 
 
  

  (16) 

where 23J  with 3 0r   are free parameters. 

Following an idea given in (Shen, Sun, 

Ortega, & Mei, 2005), we can show that the 

energy function can be determined using the 

matrix structures in (16).  

From this choice of those matrices, it is 

obvious that the PDE (5) characterizing the 

admissible energy functions are in the form: 

2

2

23 3

1 3

                d

d d

H
e

e

H H
J e

e e


 


   

  

 (17) 

By using a commercial symbolic 

language software, e.g. Maple, all admissible 

functions ( )dH x  are obtained as in (17) where 

1 3( , )e e  is an arbitrary differentiable function 

and has to be selected such that each energy 

function ( )dH x has an isolated minimum at the 

desired equilibrium point  0,0,0ex  .  This 

implies from LaSalle's invariance principle that 

 
1 1 1 2 2 2

3 3 3

0 , 0 ,

0

e y x e y x

e y x

     

  
.   

Also, the controlled response system (12) 

synchronize the drive system (11) by the proposed 

controller, u .  Thus, the resulting control law 

u can be straightforwardly obtained from 

Proposition 1.  This completes the proof.  

 

3.2  Chua's circuit system 

 

Consider the Chua's circuit system as follows. 

1 1 2 1 1

2 1 2 3

3 2 2

( ( ))z p z z f z

z z z z

z p z

  


  
  

 (18) 

where   ( 1,2,3)iz i   are the state variables. 

1 4 1 3 4 1 1

1
( ) ( )(| 1| | 1|)

2
f z p z p p z z     

.  It is obvious that the circuit considered is not the 

strict feedback form (Krstic et al., 1995; Zhou, & 

Er, 2007); thus, it can be transformed into the 

desired feedback form from selecting new 

variables (Zhou & Er, 2007) as follows. 

1 3 2 2,  ,x z x z   and 3 1x z  (19) 

Subsequently, we obtain the drive Chua's circuit 

system in the strict feedback form, which allows 

us to directly employ the IDA-PBC technique as 

follows. 

1 2 2

2 3 1 2

3 ( )

x p x

x x x x

x f x

 


  
 

 (20) 

where

1 2 1 4 3

1 3 4 3 3          

( ) (1 )

1
( )(| 1| | 1|).

2

f x p x p p x

p p p x x

  

    
 

Similarly, the aim of this section is to design a 

state feedback controller u  such that the 

controlled response system of Chua's circuit 

system of the form: 
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1 2 2

2 3 1 2

3 ( )

y p y

y y y y

y f y u



 


 
  

  (21) 

with 

1 2 1 4 3

1 3 4 3 3          

( ) (1 )

1
( )(| 1| | 1|),

2

f y p y p p y

p p p y y

  

    
 

is asymptotically synchronized with the drive 

system of Chua's circuit (20). By subtracting (20) 

from (21), we obtain the error system as 

1 2 2

2 3 1 2

3 ( , , )

e p e

e e e e

e f x y e u

 


  
  

  (22) 

where  ( 1,2,3)i i ie y x i    and  

1 2 1 4 3 1 3 4

3 3 3 3

1
( , , ) (1 ) ( )

2

                 (| 1| | 1|) | 1| | 1|)

f x y e p e p p e p p p

y y x x

    

       

.   

Therefore, our objective is to design an 

IDA-PBC controller u  for the system (22) such 

that the error signals between the drive system and 

the controlled response system of Chua's circuit 

eventually approaches zero, leading to the fact that 

both systems are asymptotically synchronized.  

For this system, the Algebraic IDA approach is 

utilized to show the effectiveness of IDA-PBC 

strategy as described below. 

 

Proposition 2: With the aid of the Algebraic IDA 

approach, the chaotic drive system (20) can be 

asymptotically synchronized by the controlled 

response system (21) for any initial values and the 

equilibrium point ex of the error system (22) is 

asymptotically stable with the static state feedback 

controller 

23 2 2 3 3 3 ( , , ).u J p e r e f x y e      (23) 

Moreover, for the Hamiltonian form (2), the 

desired interconnection and damping matrices 

( ( )dJ e  and ( ))dR e  in (25) can be determined 

using the following energy function: 

2 2 2

1 1 2 2 3 3

1
( ) ( ),

2

                           0,  1,2,3.

d

i

H e e e e

i

  



  

 

  (24) 

Proof: Based on the Algebraic IDA approach, we 

firstly choose the desired energy function as 

( )dH x in (24); subsequently, the PDE in (5) 

becomes an algebraic equation in ( )dJ e  and 

( )dR e  with the following structure: 

23

23

0 1 0

( ) ( ) 1 0 ,

0 0

d dJ e J e J

J

 
 

  
 
  

 

2

3

0 0 0

( ) 0 0 0

0 0

dR e r

r

 
 

 
 
  

  (25) 

where 23J  are directly calculated from (5) and 

0,  2,3.ir i   

After some simple calculation, we obtain 

a PDE that becomes the algebraic equation of the 

form: 

 

2 2 2 2

2

2 23 1 1 2 2 2 23 3 3 1 2

1 2 3

                                                       d

d d d

H
e p e

e

H H H
r J e r e J e e e e

e e e



 


     


          

   

    (26) 

Therefore, it is easy to obtain the following results. 

2 2 2 2 2 2

1 1 1 1    1 

 e p e p

e e

 

 

    

  
 

2 2 2 2 2 2

23 3 3 3 23

3

1

1

r e e r

J e e J

 




    

  
  (27) 

 From the analysis above, it follows that 

from selecting ( )dJ e  and ( )dR e  in (25), the 

closed-loop error system consisting of (25) and 

(23) matches the model (2). Consequently, the time 

derivative of the energy function along the 

trajectories of (3) satisfies the following equality: 

2 2

2 2 3 3         

( ) ( ) ( )

0.

T

d d d de e R x H

e

H H

e 

 

   
 

It can be concluded from using LaSalle’s 

invariance principle that the equilibrium point ex  

of the error system (19) is asymptotically stable. 

Consequently, the controlled response and drive 

systems will approach synchronization for any 

initial values.  This completes the proof.  
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4.  Simulation results 

In this section, the IDA-PBC controller 

methodology is applied on the Genesio system as 

well as Chua's circuit system to verify and 

demonstrate the effectiveness of the proposed 

method.  To evaluate the effectiveness of the 

proposed controller, the simulation results using 

the proposed (IDA-PBC) controller are compared 

with an existing nonlinear (BSP-backstepping) 

control scheme, which is explained partially in the 

Appendix (Krstic et al., 1995).  

Additionally, the closed-loop 

performances of the systems are evaluated by 

using computer simulations.  The complete system 

dynamics are obtained by solving the differential 

equations (11)-(13) and (20)-(22) in the MATLAB 

environment.  The time domain simulations are 

carried out to investigate the performances of the 

designed controllers ( u ) for such systems. 

 Genesio system: for the simulation, we 

assume that the initial conditions,  

 1 2 3( (0), (0), (0)) 2, 3,1x x x    and 

 1 2 3( (0), (0), (0)) 2,3, 5y y y     are 

used.  Consequently, the initial value 

1 2 3( (0), (0), (0))e e e  of the error dynamics 

is ( 4,6, 6)  .  In order to investigate a 

chaotic behavior, three parameters are selected 

as 1.2,  2.92,  6a b c    and the 

parameters of the control law as 

323 1.5,  1.8J r  .  With the proposed 

IDA-PBC scheme the chaotic synchronization 

of the system (9) and (8) as well as the 

resulting error system (10) are shown in 

Figures 1 and 2 where both Figures illustrate 

the synchronization errors and the state 

trajectories of this system, respectively.  

 Chua's circuit system: in the simulation, we 

assume that the initial conditions, 

 1 2 3( (0), (0), (0)) 0.2,0.5,0.3x x x   and 

 1 2 3( (0), (0), (0)) 2,0.3,0.4 ,y y y   are 

employed. Thus, the initial 

value 1 2 3( (0), (0), (0))e e e  of the error 

dynamics is (1.8, 0.2,0.1) .  In order to 

show a chaotic behavior, four parameters of 

the circuit 

are 1 2 4 30.5, 1, 5p p p p      and the 

parameters of the control law as 

323 31/ 1.5, 1.8rJ    . With the 

proposed IDA-PBC technique the chaotic 

synchronization of the system (21) and (20) as 

well as the resulting error system (22) are 

illustrated in Figures 3 and 4, showing the 

system errors and the system state variables, 

respectively. 

From the simulation results above, it is 

obvious that the IDA-PBC design technique is 

capable of not only achieving the synchronizations 

of two chaotic systems (the synchronization errors 

converge to zeros), but also accomplishing better 

dynamic performances (the transient responses for 

the closed-loop error dynamics of two chaotic 

systems can be improved) as compared to 

backstepping control (BSP) methods. 

 

5. Conclusions 

In this paper, the synchronization 

problems for some chaotic systems, in particular 

Genesio and Chua's circuit systems, have been 

investigated.  With the aid of the IDA-PBC 

scheme, a nonlinear control law for asymptotic 

chaotic synchronization has been proposed.  Even 

if the proposed control law is easy to implement in 

practical applications, it is still effective.  Finally, 

the simulations of two chaotic systems are 

presented to illustrate the effectiveness, feasibility, 

and validity of our proposed scheme.  Besides, 

they provide better transient responses and 

synchronization errors than the backstepping 

control strategy. 

  

6. References 

Chen, S., & Lu, J. (2002). Synchronization of an 

uncertain unified chaotic system via 

adaptive control. Chaos, Solitons & 

Fractrals, 14(4), 643-647. DOI: 

10.1016/S0960-0779(02)0006-1 

Dorfler, F., Johnsen, J. K., & Allgower, F. (2009). 

An introduction to interconnection and 

damping assignment passivity-based 

control in process engineering. Journal of 

Process Control, 19(9), 1413-1426. DOI: 

10.1016/j.jprocont.2009.07.015 

Galaz, M., Ortega, R., Bazanella, A. S., & 

Stankovic, A. M. (2003). An energy-

shaping approach to the design of 

excitation control of synchronous 

generators. Automatica, 39(1), 111-119. 

DOI: 10.1016/S0005-1098(02)00177-2 

http://dx.doi.org/10.1016/j.jprocont.2009.07.015
http://dx.doi.org/10.1016/j.jprocont.2009.07.015
http://dx.doi.org/10.1016/S0005-1098(02)00177-2


KANCHANAHARUTHAI ET AL 

RJAS Vol. 5 No. 2 Jul.-Dec. 2015, pp. 187-197 

194 

Kanchanaharuthai, A., Chankong, V., & Loparo, 

K. A. (2015). Transient stability and 

voltage regulation in multi-machine 

power systems vis-á-vis STATCOM and 

battery energy storage. IEEE 

Transactions on Power Systems, 30(5), 

2404-2416. DOI: 

10.1109/TPWRS.2014.2359659 

Khalil, H. K. (2002). Nonlinear Systems, New 

Jersey, USA: Prentice-Hall. 

Krstic, M., Kanellakopoulos I., & Kokotovic, P. 

(1995). Nonlinear and Adaptive Control 

Design, New York, USA: John Wiley & 

Son. 

Li, D. J. (2012). Adaptive output feedback control 

of uncertain nonlinear chaotic systems 

based on dynamic surface control 

technique. Nonlinear Dynamics, 68(1/2), 

235-243. DOI: 10.1007/S1107-011-0222-

0 

Mahboobi, S. H., Shahrokhi, M., & Pishkenari, H. 

N. (2006). Observer-based control design 

for three well-known chaotic systems. 

Chaos, Solitons & Fractrals, 29(2), 381-

392. DOI: 10.1016/j.chaos.2005.08.042 

Ortega, R., Van der Schaft, A., Maschke, B., & 

Escobar, G. (2002). Interconnection and 

damping assignment passivity-based 

control of port-controlled Hamiltonian 

systems. Automatica, 38(4), 585-596. 

DOI: 10.1016/S0005-1098(01)00278-3 

Ortega, R., & Garcia-Canseco, E. (2004). 

Interconnection and damping assignment 

passivity-based control: a survey. 

European  Journal of Control, 10(5), 432-

450.  DOI: 10.3166/ejc.10.432-450 

Ortega, R., Galaz, M., Astolfi, A., Sun, Y., & 

Shen, T. (2005). Transient stabilization of 

multi-machine power systems with 

nontrivial transfer conductances. IEEE 

Transaction on Automatic Control, 50(1), 

60-75. DOI: 10.1109/TAC.2004.840477 

Ortega, R., Castanos, F., & Astolfi, A. (2008). 

Control by interconnection and standard 

passivity-based control of Port-

Hamiltonian systems. IEEE Transactions 

on Automatic Control, 53(11), 2527-2542. 

DOI: 10.1109/TAC.2008.2006930 

Ott, E., Grebogi, C., & Yorke, J. A. (1990). 

Controlling chaos. Physical Review 

Letters, 64, 1196-1199. DOI: 

http://dx.doi.org/10.1103/PhysRevLett.64.

1196 

Park, J. H. (2006). Synchronization of Genesio 

chaotic via backstepping approach. Chao, 

Solitons & Fractrals, 27(5), 1369-1375. 

DOI: 10.1016/j.chaos.2005.05.001 

Pecora, L. M., & Carroll, T. L. (1990). 

Synchronzation in chaotic systems. 

Physical Review Letters, 64, 821-824. 

DOI: 

http://dx.doi.org/10.1103/PhysRevLett.64.

821 

Shen, T., Sun, Y., Oretga, R., & Mei, S. (2005). 

Energy-shaping control of synchronous 

generators with exciter-governor dual 

control loop. International Journal of 

Control, 78(2), 100-111.                                   

DOI: 10.1080/00207170500032315 

Wang, C. C., & Su, J. P. (2004). A new adaptive 

variable structure control for chaotic 

synchronization. Chaos, Solitons & 

Fractrals, 20(5), 967-977. DOI: 

10.1016/j.chaos.2003.10.026 

Xie, Q., Han, Z., & Zhang, W. (2012). 

Chaotification via system immersion. 

Journal of Computational and Applied 

Mathematics, 236, 1775-1782. DOI: 

10.1016/j.cam.2011.10.008 

Xie, Q., Han, Z., & Chen, Z. (2013). Adaptive 

synchronization of unified chaotic system 

via system immersion. Journal of 

Information and Computational Science, 

10(9), 2693-2701. DOI: 

10.12733/jics20101839 

Yassen, M. T. (2007). Controlling, synchronization 

and tracking chaotic Liu system using 

active backstepping design. Physics 

Letters A, 360(4/5), 582-587. DOI: 

10.1016/j.physleta.2006.08.067 

Yu, Y., & Zhang, S. (2004). Adaptive 

backstepping synchronization of uncertain 

chaotic system. Chaos, Solitons & 

Fractrals, 21(3), 643-649. DOI: 

10.1016/j.chaos.2003.12.067 

Zeng, J., Zhang, Z., & Qiao, W. (2013). An 

interconnection and damping assignment 

passivity-based controller for a DC-DC 

boost converter with a constant power 

load. IEEE Transactions on Industrial 

Applications, 50(4), 2314-2322. DOI: 

10.1109/IAS.2012.6374043 

http://dx.doi.org/10.1016/j.chaos.2005.08.042
http://dx.doi.org/10.1016/S0005-1098(01)00278-3
http://dx.doi.org/10.3166/ejc.10.432-450
http://dx.doi.org/10.1109/TAC.2004.840477
http://dx.doi.org/10.1109/TAC.2008.2006930
http://dx.doi.org/10.1016/j.chaos.2005.05.001
http://dx.doi.org/10.1016/j.chaos.2003.10.026
http://dx.doi.org/10.1016/j.chaos.2003.10.026
http://dx.doi.org/10.1016/j.cam.2011.10.008
http://dx.doi.org/10.1016/j.cam.2011.10.008
http://dx.doi.org/10.1016/j.physleta.2006.08.067
http://dx.doi.org/10.1016/j.physleta.2006.08.067
http://dx.doi.org/10.1016/j.chaos.2003.12.067
http://dx.doi.org/10.1016/j.chaos.2003.12.067
http://dx.doi.org/10.1109/IAS.2012.6374043


RJAS Vol. 5 No. 2 Jul.-Dec. 2015, pp. 187-197 

ISSN 2229-063X (Print)/ISSN 2392-554X (Online) 

195 

Zhang, H., Ma, X-K., & Liu, W-Z. (2004). 

Synchronization of chaotic systems with 

parametric uncertainty using active 

sliding mode control. Chaos, Solitons & 

Fractrals, 21(5), 1249-1257. DOI: 

10.1016/j.chaos.2003.12.073 

Zhou, J., & Er, M. J. (2007). Adaptive output 

control of a class of uncertain chaotic 

systems. Systems and Control Letters, 

56(6), 452-460. DOI: 

10.1016/j.sysconle.2006.12.002 

Zhu, D., Zhou, D., Zhou, J., & Teo, K. L. (2012). 

Synchronization control for a class of 

underactuated mechanical systems via 

energy shaping. Journal of Dynamic 

Systems, Measurement, and Control, 

134(4), 041007. DOI: 10.1115/1.4006073 

 

 

7. Appendix 

A. Genesio system with a backstepping 

controller 

For any initial values, the chaotic drive 

system (11) can be asymptotically synchronized 

by the controlled response system (12) and the 

equilibrium point ex  of the closed-loop error 

dynamics (13) is asymptotically stable with the 

backstepping (BSP) controller in the form: 

2 2
2 3 3 1 2

1 2

2 2

1 2 3 1 1      

u w c w w w
w w

ce be ae y x

  
    

 
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  (A.1) 

where  

1 1 2 2 1 1

3 3 2 1 2

1 1 1 1

1
2 1 2 1 1 2 2
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w e w e w
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
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


    



  (A.2) 

In this system the tuning parameters are chosen as 

1 2 30.1, 1,c c c    so that the closed-loop 

error system is asymptotically stable. 

B. Chua’s circuit system with a backstepping 

controller 

For any initial values, the chaotic drive 

system (20) can be asymptotically synchronized 

by the controlled response system (21) for any 

initial values and the equilibrium point ex of the 

error system (22) is asymptotically stable with the 

backstepping (BSP) controller in the form: 

2 2
2 3 3 1 2

1 2

( , , )      f

u w c w w w
w

x

w

y e

  
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

,  (B.1)  

where  
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1 1 1 1
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  (B.2) 

In this system, the tuning parameters are 

chosen as 1 2 30.25,  0.5, 1,c c c    so that 

the closed-loop error system is asymptotically 

stable. 
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Figure 1  Synchronization errors 1 2 3( ( ), ( ), ( ))e t e t e t  of Genesio system 
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Figure 2  State trajectories of ( )iy t and ( )ix t  1,2,3i   of Genesio system   
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Figure 3  Synchronization errors 1 2 3( ( ), ( ), ( ))e t e t e t  of Chua’s circuit system  
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 Figure 4  State trajectories of ( )iy t and ( )ix t  1,2,3i   of Chua’s circuit system  


