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Abstract  
Image denoising algorithms are one of the most crucial processes for improving image quality; therefore, a 

number of denoising algorithms have been proposed.  One of the most effective denoising filters is the bilateral filter.  The 

efficiency of the bilateral filter depends on the window size, spatial variance and radiometric variance.  In this paper, the 

impact of the three parameters on the quality of the denoising is investigated.  In our experiment, the bilateral filter was 

applied to suppress the noise of eight standard test images corrupted by five different levels of Gaussian noise.  The optimal 

parameters with regard to the PSNR of the denoised images were then determined. 
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1.  Research literature review 

In digital image processing (DIP) and 

digital signal processing, the filter is a crucial and 

elementary mathematical process (Gonzalez & 

Woods, 2002).  Since 1998, the bilateral filter (BF) 

(Tomasi & Manduchi, 1998) has been one of the 

most popular tools for various applications such as 

noise suppression (Garnett, Huegerich, Chui, & He, 

2005; Tomasi & Manduchi, 1998), super resolution 

(Elad, 2002; Farsiu, Elad, & Milanfar, 2006; Farsiu, 

Robinson, Elad, & Milanfar, 2004; Wang, Hu, Dong, 

& Yan, 2013), and video processing (Garnett et al., 

2005; Lie, Chen, & Chen, 2011; Lu & Fang, 2013; 

Shi, Wei, & Pang, 2014).  When a bilateral filter is 

applied, the noise can be effectively removed while 

the edge or the high frequency component is 

preserved.  There has been a steady improvement on 

the usage of the bilateral filter.  Garnett et al. (2005) 

proposed the modified bilateral filter, called the 

trilateral filter, for removing Gaussian noise, impulse 

noise and the mixture of Gaussian and impulse noise.  

Lin et al. (2010) integrated the sorted quadrant 

median vector (SQMV) and the bilateral filter 

together for removing Gaussian and impulse noise 

(Lin, Tsai, & Chin, 2010).  For the next 

improvement, Chang et al. (2014) proposed the 

trilateral filter for removing Rician noise in MR 

images (Chang, Hsiehy, Tingy, & Chu, 2014).  Later, 

Zhang et al (2011) proposed the bilateral filter for 

removing speckle noise in SAR images (Zhang, 

Zhang, & Yang, 2011).  In 2011, two groups 

expanded the usefulness of the bilateral filter for 

mesh denoising (Zheng, Fu, Au, & Tai, 2011) and 

preserving image edge in image restoration (Yu, 

Zhao, & Wang, 2011). 

Next, Pinto (Pinto, Costa, Miguel, & 

Moreira, 2014) implemented the bilateral filtering 

for image enhancement in surveillance video in 2013 

and Wang et al. (2010) implemented trilateral 

filtering, a modified bilateral filtering, for up-

conversion frame rate in video in 2010 (Wang, 

Zhang, He, & Tan, 2010).  Later, Bae (2013) 

implemented the bilateral filtering for enhancing the 

infrared small target in 2013.  That same year, Hondt 

et al. (2013) proposed the bilateral filtering for image 

enhancement in polarimetric SAR image. (Hondt, 

Guillaso, & Hellwich, 2013).  Subsequently, Jung 

(2013) proposed trilateral filtering for image 

enhancement in depth map image in 2013.  Later, 

Peng et al. (2014) proposed bilateral filtering for 

image denoising in multispectral images (Peng, Rao, 

& Dianat, 2014); and Onuki and Tanaka (Onuki & 

Tanaka, 2014) proposed trilateral filtering in graph 

spectral domain.  Next, Anantrasirichai et al. (2014) 
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proposed the bilateral filtering for image 

enhancement in optical coherence tomography 

image.  Next two groups proposed the adaptive 

bilateral filtering for image denoising and speckle 

denoising. (Yu et al., 2011; Zhang, Tian, & Ren, 

2014).  In 2014, Lin et al. (Lin, Chen, Kuo, & Lie, 

2014) proposed the multi-lateral filter (extended 

bilateral filtering) with adaptive support-window. 

Later, Yang (2015), proposed a complete 

mathematical proof of the bilateral filter in a 

recursive mathematical framework. 

For application of SRR (Super Resolution 

Reconstruction) algorithms, Elad (2002) first 

explored a methodical association between bilateral 

filtering and three other mathematical techniques 

(robust estimation (RE), anisotropic diffusion (AD), 

and weighted least squares (WLS)) under the 

regularized stochastic framework.  Later, Farsiu et al. 

(2004) proposed bilateral filtering for the SRR 

algorithm based on bilateral regularization and L1 

norm.  Next, Farsiu et al. (2006) proposed the 

bilateral filtering for the SRR algorithm based on 

bilateral regularization and L1 norm in color images.  

Subsequently, Wang et al. (2013) proposed the SRR 

algorithm based on trilateral filter (Garnett et al., 

2005) (the modified bilateral filter) reconstruction. 

For fast computation and real-time 

applications, Chaudhury et al. (2011) proposed the 

fast computation technique for bilateral filtering 

based on trigonometric range kernels (Chaudhury, 

Sage, & Unser, 2011).  Later, Dai et al. (2014) 

proposed the fast computation technique for Bilateral 

filtering based on Hermite polynomials (Dai, Yuan, 

& Zhang, 2014).  Subsequently, Gabiger-Rose et al. 

(2014) implemented the bilateral filter on FPGA for 

real-time denoising (Gabiger-Rose, Kube, Weigel, & 

Rose, 2014); and Yang (2014) implemented the 

bilateral filtering based on efficient hardware for 

stereo matching in 2014.  In 2015, Yang et al. (Yang, 

Zhao, & Deng, 2015) proposed the fast computation 

technique for bilateral filtering based on DCT 

(Discrete Cosine Transform) with a recursive 

technique; and Chen et al. (2015) proposed the fast 

trilateral filter (Garnett et al., 2005) based on the 

adaptive support weight method (Chen, Ardabilian, 

& Chen, 2015). 

For the application of digital video 

processing, Lie et al. (2011) proposed the trilateral 

filter for 2D to 3D video conversion based on key-

frame propagation (Lie, Chen, & Chen, 2011).  

Later, Lu and Fang (2013) proposed the trilateral 

filter (proposed earlier by Garnett et al., 2005) for 

motion estimation based on bidirectional motion 

compensation.  Next, Shi et al. (2014) proposed a 

modified optical flow algorithm the bilateral filter. 

For the application on upsampling 

operation, Yang, et al. (2013) proposed the bilateral 

filtering for range image upsampling.  Next, 

Joohyeok Kim et al. (2014) proposed the bilateral 

filtering for depth map upsamping (Kim, Jeon, & 

Jeong, 2014); and Hung and Siu (2012) proposed the 

bilateral filtering for fast upsamping. 

From the literature review, it can be 

concluded that the bilateral filter is among the most 

researched filter since 1989.  Its performance 

depends on its three parameters: spatial variance, 

radiometric variance and window size but each 

research in this literature sets these bilateral filtering 

parameters (spatial variance, radiometric variance 

and window size) for each experiment by using full 

searching in all possible parameter range and there is 

no research on the estimation of these bilateral 

filtering parameters.  Hence, this research 

investigates the effect of the three parameters to the 

denoising performance and provides the optimal 

parameter values with regards to the PSNR of 

denoised images. From the preliminary result 

(Patanavijit, 2015), which is examined from only 

three tested images, the optimized range of the three 

parameter values for each AWGN ambiance can be 

concluded.  Subsequently, when this research is 

applied on eight standard images and statistical 

analysis is applied on these results, consequently, the 

obviously optimized values of the three parameters 

for each AWGN ambiance can be concluded from 

extensively simulation experiments for the future 

implemented propose.  The main contribution of this 

research is not only to reduce the possible parameter 

range for each AWGN ambiance but also reduce the 

simulation computation and time consuming because 

the full searching in all possible parameter range has 

high computation and time consuming. 

 

2.  Philosophy review of bilateral fitler 

For the additive Gaussian noise, the noisy 

image Y , is the original ideal image X , corrupted 

by the noise, N , according to the following equation 

 

 Y X N    (1) 

 

In 1998, Tomasi and Manduchi introduced 

the philosophy of bilateral filter, which can be 

classified as the nonlinear filter for removing 

Gaussian noise N  from the noisy signal Y  whereas 
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the edge and/or the high-frequency components are 

preserved.   

Initially, the  w i  is delineated as the 

weighting function for 1-dimensional digital signals 

or the  ,w i j  for 2-dimensional digital signals and 

the weighting function is constructed for smoothing 

in regions of identical magnitude (where the 2 1N  

numbers of pixels are a neighborhood of i ) but for 

leaving the high-frequency components unchanged. 

In this article, i  is delineated as the position of the 

pixel element under consideration and   i N  is 

delineated as the 2 1N  neighborhood of i .  Next, 

for the bilateral filter, the weighting function  w i  

can be decomposed to the multiplication of the 

spatial weighting function  Sw i  and radiometric 

weighting function  Rw i  whereas the  w i ,  Sw i  

and  Rw i  can be delineated as the following 

equation 

      S Rw i w i w i    (1) 

   2 2

0exp 2  S n Sw i i i   (2) 

      2 2

0exp 2  R n Rw i y i y i   (3) 

where 

 
0i  is the location of the pixel element for the 

filter computation. 

 
ni  is the location of the neighborhood of that 

pixel element for the filter computation.  

(  n ii N ) 

  0y i  is the intensity of the pixel element at 

position 
0i .  

  ny i  is the intensity of the neighbor pixels.  

By this weighting function  w i  or    S Rw i w i , 

the noisy signal  x̂ i  is filtered according to the 

following equation 

       ˆ
i N i N

n i N n i N

x i w i y i w i
 

   

     or             

           ˆ
i N i N

S R S R

n i N n i N

x i w i w i y i w i w i
 

   

                (4) 

For the  Sw i  (spatial weighting function), 

when the spatial difference or the distance between 

the pixel at 
0i  and pixel at 

ni  increases, the  Sw i  

decreases according to the Gaussian function as 

shown in Eq.(2). The function of  Sw i  is not 

strictly defined as Gaussian. It can be any 

nonnegative and zero decreasing functions. 

However, the original bilateral filter uses Gaussian 

function for  Sw i . The principle concealing the 

function of spatial weighting is motivated from that 

fact that both pixels are contiguous to one another; 

hence, the intensity value of both pixels should have 

high association to one another. Conversely, when 

the displacement between the two pixels is high, 

their intensities have little association. 

For the  Rw i  (radiometric weighting function), 

when the radiometric difference or the intensity 

difference between the pixel at 
0i  and pixel at 

ni  

increases, the  Rw i  decreases according to 

Gaussian function as shown in Eq.(3) for the 

preservation of edges and high frequency 

components. 

For two dimension signals, the computational 

example of both  ,Sw i j  (spatial weighting 

function) and  ,Rw i j  (radiometric weighting 

function) are shown in Figure1. The filtering 

processes on the smoot and edge regions are shown 

in the left and the right subfigures, respectively. 

From this example,  ,1 ,Sw i j  is identical to  ,2 ,Sw i j  

even though both of the intensities of this pixel 

group are different. However,  ,1 ,Rw i j  and 

 ,2 ,Rw i j  are different due to the different intensity 

distribution in the neighborhood. 

From Eq. (4), the feature of the bilateral filter is 

managed and defined by three major parameters ( N , 

 S
 and  R

) ;therefore, the choosing of N ,  S
 and 

 R
 parameters is crucial, for operating the bilateral 

filter at the maximum efficiency. 
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2, 0exp 2 ;if 5    R n R Rw i y i y i

 
 
Figure 1  The Computational example of both  Sw i   (spatial weighting function) and the  Rw i   (radiometric weighting 
function) for a smooth region (left) and an edge region (right) 
 
 

 

 
 
 
Figure 2  The Original group constitutes of eight standard testing images, from left to right , then down: Lena (256x256), 
Mobile Frame 10 (352x240), Pentagon (512x512), Peppers (256x256), Girl (Tiffany) (256x256), Resolution (128x128), 
Baboon (256x256), House (128x128) 
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3.  Impact of N ,  S
 and  R

  

The eight standard test images are corrupted 

by 5 levels of Gaussian noise (SNR = 35dB, 30dB, 

25dB, 20dB and 15dB). The test images are Lena 

(256x256), Mobile Frame 10 (352x240), Pentagon 

(512x512), Peppers (256x256), Girl (Tiffany) 

(256x256), Resolution (128x128), Baboon 

(256x256) and House (128x128). These images 

(Figure 2) were chosen for investigating the efficient 

influence consequence of the bilateral filter in image 

denoising algorithm, which is influenced by three 

main parameters: window size, spatial variance and 

radiometric variance. Later, for image denoising 

purposes, these noisy images were processed by the 

bilateral filter in order to eradicate and overcome 

noise for retrieving the original image in all cases. 

The PSNR of the filter images is used to measure the 

performance of the bilateral filter. 

 

3.1  Impact of window size 

The objective of this experimental section is 

to determine the optimal window size, which makes 

the maximum PSNR therefore the performance, 

when the window size (N) is set differently, is 

investigated. Six window sizes (3x3, 5x5, 7x7, 9x9, 

11x11 and 21x21) were used in this experiment.  S
 

is varied between and including 0.1 to 10.0 with 

increments of 0.1 and  R
 is varied between and 

including 0.5 to 60.0 with increments of 0.5. Tables 

I-VIII show the highest PSNR for the different 

window sizes at different noise levels. From the 

results, regarding the PSNR of the denoised image, 

the optimal window size is either 5x5 or 7x7. 

 
Table 1  The experimental products of window size impact for Lena 

LENA Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 29.0249 29.6253 29.6376 29.6333 29.6326 29.6325 

20 32.4718 32.7607 32.7669 32.7663 32.7662 32.7661 

25 35.7103 35.8720 35.8805 35.8810 35.8811 35.8811 

30 39.0939 39.1264 39.1272 39.1271 39.1272 39.1272 

35 42.8089 42.8819 43.0502 42.8867 43.0502 43.0502 

 

Table 2  The experimental products of window size impact for Mobile 

Mobile Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 24.4093 24.5900 24.6020 24.6025 24.6025 24.6025 

20 28.2548 28.4225 28.4430 28.4449 28.4450 28.4450 

25 32.3315 32.4235 32.3315 32.4385 32.4386 32.4386 

30 32.4386 36.6758 36.6773 36.6775 36.6775 36.6775 

35 41.2157 41.1962 41.2216 41.2016 41.2216 41.2216 

 

Table 3  The experimental products of window size Impact for Pentagon 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 26.6205 27.2907 27.2974 27.2884 27.2865 27.2863 

20 29.8971 30.0772 30.0672 30.0666 30.0666 30.0666 

25 33.2721 33.3753 33.3721 33.3718 30.0666 33.3717 

30 36.8274 36.8586 36.8605 36.8606 36.8605 36.0019 

35 40.9274 40.9279 40.9279 40.9279 40.9279 40.9279 

 

Table 4  The experimental products of window size impact for Peppers 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 26.4238 27.5731 27.6464 27.6270 27.6154 27.6125 

20 30.6659 31.0357 31.0463 31.0464 29.6611 29.6538 

25 34.0093 34.1143 34.1169 34.1170 34.1170 34.1170 

30 37.2741 37.2995 37.2999 37.2999 37.2999 37.2999 

35 40.9865 40.9889 40.9889 40.7639 40.9889 40.9889 
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Table 5  The experimental products of window size impact for Girl (Tiffany) 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 22.7640 23.7854 23.9716 23.9647 23.9436 23.9209 

20 27.7637 28.2253 28.2479 28.2389 28.2365 28.2360 

25 31.7661 32.0321 32.0362 32.0333 32.0327 32.0327 

30 37.2741 35.5397 35.5470 35.5468 35.5467 35.5467 

35 39.2566 39.3567 39.3654 39.3657 39.3569 39.3569 

 

Table 6  The experimental products of window size impact for Resolution 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 20.7602 20.9712 21.0134 21.0232 21.0270 21.0274 

20 25.7869 26.0790 26.0173 26.1423 26.1522 26.1524 

25 30.7922 31.1407 31.1764 31.2070 31.2195 31.2221 

30 35.6976 36.0983 36.1443 36.1711 36.1855 36.1879 

35 40.9149 41.3076 41.3833 41.4018 41.3955 41.3971 

 

Table 7  The experimental products of window size impact for Baboon 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 24.3077 24.6048 24.6321 24.6343 24.6345 24.6345 

20 27.2345 27.5042 27.5116 27.5120 27.5120 27.5120 

25 31.1099 31.1151 31.1151 31.1151 31.1151 31.1151 

30 35.2914 35.1391 35.1453 35.1531 35.1599 35.1621 

35 39.9324 39.9324 39.9324 39.9324 39.9324 39.9324 

 

Table 8  The experimental products of window size impact for House 

Pentagon Window Size 

SNR (dB) 3x3 5x5 7x7 9x9 11x11 21x21 

15 26.2516 26.9059 26.9374 26.9382 26.9374 26.9372 

20 30.1673 30.5078 30.5303 30.5326 30.5328 30.5328 

25 33.7763 34.0650 34.0883 34.0901 34.0901 34.0901 

30 37.3987 37.4997 37.5081 37.5082 37.5082 37.5083 

35 41.1310 41.2060 41.2130 41.2793 41.2131 41.2132 

 

 

 

3.2  Impact of radiometric variance ( R
) 

In this section, the objective of this 

experimental section is to determine the optimal 

radiometric variance, which makes the maximum 

PSNR therefore the effect of  R
 is investigated when 

the window size is fixed at the optimal sizes 5x5 and 

7x7.  S
 is varied between and including 0.1 to 10.0 

with increments of 0.1. Note that the graphs in this 

section show the filter results when  S
 is set such 

that it provides the highest PSNR for the given  R
. 

3.2.1  Impact of  R
 for the bilateral filter with 5x5 

window size 

Figures 3.1-3.5 show the highest PSNR for 

the different  R
 and the window size of 5x5.  The 

noise level is varied for each Figure. 

 

3.2.2  Impact of  R
 for the bilateral filter with 7x7 

window size 

Figures 4.1-4.5 show the highest PSNR for 

the different  R
 and the window size of 7x7.  The 

noise level is varied for each Figure. 
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Figure 3.1  Comprehensive investigation consequence of radiometric variance consequence (SNR=15dB) 

 

Figure 3.2  Comprehensive investigation consequence of radiometric variance consequence (SNR=20dB) 

 

Figure 3.3  Comprehensive investigation consequence of radiometric variance consequence (SNR=25dB) 
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Figure 3.4  Comprehensive investigation consequence of radiometric variance consequence (SNR=30) 
 

 
Figure 3.5  Comprehensive investigation consequence of radiometric variance consequence (SNR=35dB) 

 

 

Figure 4.1  Comprehensive investigation consequence of radiometric variance consequence (SNR=15dB) 
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Figure 4.2  Comprehensive investigation consequence of radiometric variance consequence (SNR=20dB) 

 

Figure 4.3  Comprehensive investigation consequence of radiometric variance consequence (SNR=25dB) 
 

 

Figure 4.4  Comprehensive investigation consequence of radiometric variance consequence (SNR=30) 
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Figure 4.5  Comprehensive investigation consequence of radiometric variance consequence (SNR=35dB) 
 

 

3.2.3  Discussion 

Figures 5.1-5.3 show the relation of 
S  and 

 R
 providing the highest PSNR for the window size 

of 5x5, 7x7 and 9x9, respectively.  The comparison 

of the average radiometric variances giving the 

highest PSNR for different window size is shown in 

Figure 5.4.  From the four figures, it can be 

concluded that:  

 For window size 5x5, the Radiometric 

Variance, which makes the highest 

performance (or highest PSNR) is 

57.8±3.7, 35.7±9.3, 20.4±5.4, 12.4±3.8, 

10.9±3.6 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 5.1). 

 For window size 7x7, the Radiometric 

Variance, which makes the highest 

performance (or highest PSNR) is 

57.4±4.1, 39.4±12.4, 20.6±4.8, 12.1±3.9, 

9.7±3.5 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 5.2). 

 For window size 9x9, the Radiometric 

Variance, which makes the highest 

performance (or highest PSNR) is 

57.3±4.2, 35.4±10.0, 20.2±5.4, 15.3±6.0, 

10.4±3.4 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 5.3). 

 The Radiometric Variance, which makes 

the highest performance (or highest PSNR), 

will decrease when the SNR of image 

increases (or the noise power in that image 

decreases) as shown in Figure 5.1-5.3. The 

average value (from three window sizes: 

5x5, 7x7 and 9x9) of these Radiometric 

Variance is 57.5, 36.8, 20.4, 13.3 and 10.3 

for noise power at SNR=15dB, 20dB, 

25dB, 30dB and 35dB respectively. 

 The effect of the window size to the value 

of  R
 is low. Therefore, the window size 

should be set to either 5x5 or 7x7 for the 

highest PSNR (Figure 5.4) 
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Figure 5.1  The Mean and SD of radiometric variance for maximum PSNR (Window Size 5x5) 

 

Figure 5.2  The Mean and SD of radiometric variance for maximum PSNR (Window Size 7x7) 

 

Figure 5.3  The Mean and SD of radiometric variance for maximum PSNR (Window Size 9x9) 
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Figure 5.4  The comparison consequence of Mean of radiometric variance for maximum PSNR for three window size 

(5x5, 7x7 and 9x9) 

 

 

3.3  Impact of spatial variance (
S ) 

According to Section 3.1, the optimal 

window size is either 5x5 or 7x7. In this section, the 

objective of this experimental section is to determine 

the optimal spatial variance, which makes the 

maximum PSNR therefore the effect of 
S  is 

investigated when the window size is fixed at 5x5 

and 7x7.  R
 is varied between and 0.5 to 60.0 with 

increments of 0.5. Note that the graphs in this section 

show the filter result when 
S  is set such that it 

provides the highest PSNR for the given  R
.  

3.3.1  Impact of 
S  for the bilateral filter with 5x5 

window size 

Figures 6.1-6.5 show the highest PSNR for 

the different 
S  and the window size of 5x5.  The 

noise level is varied for each figure. 

3.3.2  Impact of 
S  for the bilateral filter with 7x7 

window size 

Figure 7.1-7.5 shows the highest PSNR for 

the different 
S  and the window size of 7x7. The 

noise level is varied for each figure. 

 

 

Figure 6.1  Comprehensive investigation consequence of spatial variance consequence (SNR=15dB) 
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Figure 6.2  Comprehensive investigation consequence of spatial variance consequence (SNR=20dB) 

 

 

Figure 6.3  Comprehensive investigation consequence of spatial variance consequence (SNR=25dB) 

 

 

Figure 6.4  Comprehensive investigation consequence of spatial variance consequence (SNR=30dB) 
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Figure 6.5  Comprehensive investigation consequence of spatial variance consequence (SNR=35dB) 

 

 

 

Figure 7.1  Comprehensive investigation consequence of spatial variance consequence (SNR=15dB) 

 

 

Figure 7.2  Comprehensive investigation consequence of spatial variance consequence (SNR=20dB) 
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Figure 7.3  Comprehensive investigation consequence of spatial variance consequence (SNR=25dB) 

 

 

Figure 7.4  Comprehensive investigation consequence of spatial variance consequence (SNR=30dB) 

 

Figure 7.5  Comprehensive investigation consequence of spatial variance consequence (SNR=35dB) 
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3.3.3  Discussion 

Figures 8.1-8.3 show the relation of 
S  and 

R  providing the highest PSNR for the window size 

of 5x5, 7x7 and 9x9, respectively.  The comparison 

of the average radiometric variances giving the 

highest PSNR for different window size is shown in 

Figure 8.4.  From the four Figures, it can be 

concluded that: 

 For window size 5x5, the Spatial Variance, 

which makes the highest performance (or 

highest PSNR) is 2.9±3.0, 1.5±0.5, 1.4±0.9, 

1.2±1.2, 0.5±0.4 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 8.1). 

 For window size 7x7, the Spatial Variance, 

which makes the highest performance (or 

highest PSNR) is 2.6±3.0, 1.2±0.4, 1.1±0.6, 

1.0±0.6, 0.8±0.8 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 8.2). 

 For window size 9x9, the Spatial Variance, 

which makes the highest performance (or 

highest PSNR) is 2.6±3.0, 1.4±0.3, 1.2±0.5, 

0.7±0.4, 0.7±0.8 for noise power at SNR=15dB, 

20dB, 25dB, 30dB and 35dB respectively 

(Figure 8.3).  

 The Spatial Variance, which makes the highest 

performance (or highest PSNR), will decrease 

when the SNR of image increases (or the noise 

power in that image decreases) as shown in 

Figure 8.1-8.3.  The average value (from three 

window sizes: 5x5, 7x7 and 9x9) of these 

Spatial Variance is 2.7 , 1.3, 1.2, 1.0, 

0.7 for noise power at SNR=15dB, 20dB, 25dB, 

30dB and 35dB respectively.  

 The effect of the window size to the value of 
S  

is low.  Therefore, the window size should be 

set to either 5x5 or 7x7 for the highest PSNR 

(Figure 8.4) 

 

 

 

 

 

 

Figure 8.1  The Mean and SD of spatial variance for maximum PSNR (Window Size 5x5) 
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Figure 8.2  The Mean and SD of spatial variance for maximum PSNR (Window Size 7x7) 

 

 

Figure 8.3  The Mean and SD of spatial variance for maximum PSNR (Window Size 9x9) 

 

 

Figure 8.4  The comparison consequence of Mean of spatial variance for maximum PSNR for three window size (5x5, 7x7 

and 9x9) 
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4.  Conclusion 

In this article, the impact of the window size, 

spatial and radiometric variances to the denoising 

performance of a bilateral filter is investigated.  The 

experiment on denoising eight Gaussian-noise 

corrupted images was performed to find the optimal 

values of the three parameters at different noise 

levels.  In addition, an experimental setting value of 

three major parameters: window size (in section 3.1), 

spatial variance (in section 3.2.3) and radiometric 

variance (in section 3.3.3), which generates the 

denoised images with the maximum PSNR 

measurement, are thoroughly studied for each case of 

all eight tested images and all five noise 

environments. 
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