
Available online at https://www.rsu.ac.th/rjas

Rangsit Journal of Arts and Sciences, January-June 2016 RJAS Vol. 6 No. 1, pp. 89-96

Copyright © 2011, Rangsit University ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

DOI : 10.14456/rjas.2016.8

89

Separation of concerns in designing mobile software

Paniti Netinant
1*

 and Tzilla Elrad
2

1College of Information and Communication Technology, Rangsit University, Patumthani 12000, Thailand

E-mail: paniti.n@rsu.ac.th
2Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616-3793, USA

*Corresponding author

Submitted 30 November, 2015; accepted in final form 11 April 2016

Available online 21 June 2016
__

Abstract
Given initial decomposition system properties of a mobile software into processes or components we are

faced with inter-concern and intra-concern properties that are tightly bounded in many processes or components. This

paper concentrates on the challenges of expressing separation of concerns and imposing inter-concern system properties

during an execution of mobile software development. The approach is based on two completely independent areas of

research. The Communication Closed Layers (CCL) is a formal system for developing, maintaining, and verifying a

distributed program. The Aspect-Oriented Software Development (AOSD) enables separations of concerns.

Keywords: Aspect-Oriented Software Development (AOSD), separation of concerns, mobile software development

__

1. Introduction

The recent expansion of smart devices has

abundantly created a unique opportunity for

researchers to use all their capabilities to provide

new application software. Mobile application

software development is rapidly changing the way

we have commonly worked and interacted.

Mobile software development has to comprehend

how separation of concerns can be achieved and

how individuals choose to properly develop mobile

software to effectively utilize a separation of

concerns. At present there are more than hundred

thousand of application software available through

the various stores, some of which are available for

multilingual and multiple types of devices. Most

of mobile application software are either native

applications or web applications (Wasserman,

2010). Native applications run entirely on the

mobile device. Web applications consist of a

remote server and a small device-based client

executing and interacting user’s commands

through communication networks. There are

several comprehensive mobile application design

and development available for the major mobile

platforms. IPhone developers use Xcode package

across all Apple products (Apple Developer,

2015). Android developers use the Android

development tools (Android Developers, 2015) or

eclipse programming tools (Eclipse website, 2016).

Windows phone developers use Microsoft Studio

for mobile development (Windows Phone

Developer site, 2016). These dominant

development gears and structures greatly simplify

the task of design and implementation of a mobile

application software. However, they are based on

object-oriented design and implementation. The

intra-concern system properties are associations

and necessities over confined state of processes or

components of states. The inter-concern system

properties are associations and necessities over

dissimilar confined processes or components of

states that describe the reliabilities and

collaboration among a collection of supportive

processes or components. Both processes and

components of system properties are critical for a

system development and verification. The intra-

concern properties are relatively easier to express

and carry on through a system development life

cycle.

The approach taken here is based on two

completely independent areas of research. The

first one is the Communication Closed Layers

(CCL) which is a formal system for developing,

maintaining, and verifying distributed programs

(Elrad & Frances, 1982). The second approach is

the Aspect-Oriented Software Development

(AOSD) (Filman & Friedman, 2000; Elrad,

Filman, & Bader, 2001) that enables explanation

and mechanization of separation of concerns in the

design and implementations. Aspect oriented

NETINANT & ELRAD

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

90

approach delivers an ordinary framework to

discourse inter-concern cooperation. The heart of

aspect-oriented software development is the

localization of crosscutting concerns. Under CCL

limits cooperative global properties can be

deliberated as a special case of crosscutting

concerns.

Both CCL and AOSD are software

development methodologies that can express a

mobile software development. Their synergy for a

mobile software development and runtime

verification of virtual global system assertions is a

promising match to handle the complexity of

global system cooperation, consistencies, and

correctness. CCL and AOSD are balanced on the

notion of crosscutting concerns. CCL detentions

the semantics whereas AOSD provides the

sensitive tools. Together, it makes a design-by-

contract discipline (Meyer, 1993) applicable to a

wider range of mobile software.

2. The tyranny of process composition

Decomposition of a mobile software into

processes and components provides only a

syntactic representation of one dimension: the

vertical dimension. No syntactic representation is

available for the decomposition of the systems into

its logical phases in terms of system’s goals. For

example, it is not syntactically observable when

the system as a whole has accomplished its first

sub-goal and is complete to launch into the second

sub-goal. At any assumed time, different

processes or components might be performing at

different sub-goals. A designing software

architectures of mobile applications using an

aspect-oriented approach is an explicit and abstract

way (Ali & Ramos, 2012). The tyranny

decomposition into processes or components

supervises the logical structure of the system as a

whole.

The first attempt to break this tyranny of

process decomposition is to enforce a

complementary horizontal decomposition.

Artificial barrier may be introduced to gather and

hold processes or components together at a certain

point before allowing them to continue

accomplishment. Each process or component may

have a set of halting points at which it suspends its

execution. When all processes or components

have reached a local halting point and the whole

system halts, a global association among the

different states of processes or components is

verified for reliability. Only if the system is on a

“the correct” milestone step, it allows to carry on.

Also, this global checking point can be used for

intelligent judgements concerning system future

sub-goals. Now both decompositions are

syntactically visible, global invariants could be

implanted and the complementary structure of the

system as a sequence of sub-goals is visible. The

huge benefit from such capabilities can be primary

by their use in sequential and non-distributed

systems. Preconditions and postconditions use

assertions and invariants during a sequential life

cycle process.

Obviously, this approach is far from real-

world. Over synchronization slows the system

performance more than necessary. In many cases,

just the process or component of detecting that

separated processes have all reached a halting

point is, in the best case, a hazard and in many

cases just difficult.

Breaking the tyranny of composition of

processes or components mandatory a more

refined method. The knowledge behind the CCL is

to novelty a reasonable set of boundaries under

which processes or components do not have to

“actually” halt at their limited halting points and

yet the semantics of the program as a whole is as if

they do. The horizontal decomposition of the

concerns into its logical stages is visible and not

yet impressive in terms of execution. The proof of

such semantic correspondence is given in (Elrad &

Frances, 1982).

In 1996, Elrad, Baoling, and Nastasic

presented a synergy of object-oriented distributed

programming and CCL “design by con-tract” for

distributed applications where processes are tightly

bounded to accomplish a unique common goal.

The idea is that object orientation provides

encapsulation of the communication among

processes or components and hence enables a

syntactic identification of a limited process or

component that cooperates with parallel units in

other processes or components. CCL enables the

syntactic identification of such collaboration. The

actual application of layer restrictions is inserted

into each process or component code. This result

with the well-known tangling code occurrence of

crosscutting concerns and here is where aspect

orientation can provide an expected solution.

The integration between CCL and aspect

orientation for a mobile software development is

simple; limited halting points for each process or

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

91

component would be comprehended by aspect

oriented approach called joint points. A pointcut

designators will filter out a subset of all the joint

points in different processes or components for the

identification of a simulated global state that

represent the reasoning behind the horizontal

structure of the program. Before advice, after

advice, around advice, and aspects would have

their ordinary role. The complication results from

a massy code tangling in the chessboard

implementation are detached. The system obtains

a higher degree of flexibility and adaptability

associated with aspect-oriented design.

The Communication Closed Layer (CCL)

is a language independent methodology that is

characterized only in terms of semantic constraints

among its components. Equally, this paper will

present the CCL realization independent of any

particular aspect oriented knowledge.

3. Communication closed layer

The notion of CCL is an independent

language. A comprehensive formal definition and

proof system can be found in (Elrad & Frances,

1982; Gerth & Shrira, 1986). More work on CCL

can be found in (Elrad, Baoling, & Nastasic, 1996;

Elrad, 1984; Elrad & Kumar, 1990; Elrad &

Kumar, 1991; Elrad & Kumar. 1993; Fokkinga,

Poel, & Zwiers, 1993; Gerth & Shrira, 1986;

Janssen & Zwiers, 1992a; Janssen, Poel, Xu, &

Zwiers, 1994). This paper will present only an

overall, more instinctive description using CSP

philological notation.Let [P1 || P2 || … || Pn] be a

program P composed of n processes or

components P1 to Pn.
Now assume each of these processes or

components is decomposed into its rational
segments. Each Pi is refined into:

 begin Si1; Si2; … ; Sik end.

Sij is the j part of processes or components
i. The mobile software can be expressed as:

begin S11;S12; … ;S1k end

||
begin S21;S22; … ;S1k end

||
begin S31;S32; … ;S1k end

||
…
||

begin Sn1;Sn2; … ;Snk end

Note that this symbol reflects the tyranny

of processes or components decomposition. Now

assume that all the j segments are collaborating to

accomplish the general system’s sub-goal. We

would like this fact to be syntactically denoted. [S1j

|| S2j || … || Snj] is called the j layer of the system Lj

:: [S1j || S2j || … || Snj]. We would like to use layers

symbol to combine the whole system back. There

are two different composition rules: the Sequential

Composition Rule (SCR) and the Distributed

Composition Rule (DCR).

3.1 The SCR – Sequential composition rule

Let L1 and L2 be two mobile program

layers. The composition {L1 + L2} is defined as the

distributed mobile program [S11 || S12]; [S11 || S12].

This is basic, the semantics of our first attempt to

make the rational configuration of the whole

mobile software program syntactically observable.

All processes or components must halt at layer

limitations and only when everyone has reached

this synchronization point, then the second

segment may start.

3.2 The DCR – Distributed composition rule

Let L1 and L2 be two mobile program

layers. The composition {L1 * L2} is defined as

the distributed mobile program [S11 || S12]; [S11 ||

S12]. This is, basically, the semantics result by

discounting layer limitations at accomplishment

time. DCR and SCR for more than two layers are

defined inductively.

With respect to the example above, the

Distributed Composition Rule (DCR); {L1 * L2 *

… * Lk} yields the distributed mobile software

program in Figure 1. Whereas the Sequential

Composition Rule (SCR); {L1 + L2 + + Lk}, yields

the distributed in Figure 2.

Superlatively, we would like to use SCR

through the mobile software life cycle but use the

DCR at runtime. The mobile problem is that two

compositions, in general, do not yield the same

semantics. The SCR mobile program exhibits only

a subset of all probable computation paths that can

happen in the DCR mobile program. This means

that, in general, the revolution from SCR to DCR

at runtime does not necessarily preserve the

program semantics.

NETINANT & ELRAD

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

92

begin S11;S12; … ;S1k end

||

begin S21;S22; … ;S1k end

||

begin S31;S32; … ;S1k end

||

…

||

begin Sn1;Sn2; … ;Snk end

Figure 1 The mobile distributed components
composition rule

begin S11;S12; … ;S1k end

;

begin S21;S22; … ;S1k end

;

begin S31;S32; … ;S1k end

;

…

;

begin Sn1;Sn2; … ;Snk end

Figure 2 The Mobile sequential components
composition rule

4. Aspect orientation for expressing

We use the familiar aspect oriented

semantics (Kiczales, 2001) to provide a common

frame or a reference that makes it possible to

define the structure of the crosscutting concerns

inherit in the CCL design.

The CCL Join Point: Joint points are

certain well defined points in the execution flow of

a program. The CCL join points are defined at the

beginning and the end of each program segment

Sij.

The CCL Pointcut Designators: Pointcut

designators identify particular joint points by

filtering out a subset of the entire join points in the

program flow. The CCL pointcut designators are

filtering out the joint points at each layer

boundaries. Pointcut layer j filters out all CCL

join points Sij for i = 1…n.

The CCL Advice: Advice declarations are

used to define an additional code that runs at join

points. The CCL advices are used to communicate

local process states; or just a relevant subset of it,

to establish teamwork cooperation.

The CCL Aspect: An aspect is a modular

unit of crosscutting implementation. The CCL

aspects are assertions over virtual global states that

are verified at runtime. Since a global state is a

collection of local states its realization is a

crosscutting concern.

Current research has already established

the use of aspects in verifying and imposing

preconditions and postconditions of “design by

contract” (Meyer, 1993). Aspects make it possible

to implement preconditions and postconditions in a

modular form. Also a consistent behavior across a

large number of operations could be implemented

in a much simpler way because of the localization

of crosscutting concerns. The contribution of this

paper is the extension of the class of properties that

can be verified and imposed using aspect

orientation approach. The “virtual global states”

as defined in (Elrad, Baoling, & Nastasic, 1996) is

the distributed programming equivalence to the

simple state in sequential programming over which

assertions are defined.

To best explain the use of aspect

orientation in breaking the tyranny of process

composition in distributed programs, we use the

well-known two-phase commit protocol. A

complete formal CCL development of this protocol

is given in (Elrad & Kumar, 1991; Elrad &

Kumar.1993; Janssen & Zwiers, 1992a and b; Poel

& Zwiers, 1992)

5. Aspect orientation for expressing CCL

The two-phase commit protocol is an

example used in distributed database to guarantee

consistency of the database. A coordinator process

receives a request to initiate a voting, it should

return, “COMMIT,” if all processes participating in

the voting process vote either “yes” or “fail.” The

voting process is a distributed program called the

“coordination.” The coordination can be farther

decomposed into four layers that reflect the logical

structure of the program into its sequential sub-

goals. The REQUEST is a vote requesting

message passed between the coordinator and each

of the participants. The VOTE is a voting process,

based on its local state deliberates yes or no reply.

The DECIDE is a process that the coordinator

collects the votes and computes the collective

consensus. The EFFECTUATE is a process that

the final decision is passed back to all participants

by acting accordingly. Note that this decom-

position is orthogonal to the processes decom-

position. The process decomposition is assigned

every voting participant process(i) a roll in each of

these layers.

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

93

)(Pr)..1(iocessni ::

 begin

 reguest-i;

 vote-i;

 decide-i;

 effectuate-i;

end

The two-phase commit protocol

decomposition into layers is given in Figure 3.

The communication closed layers safety theorem

applied to this example states that if each of the

four layers in closed communications are allowed

only between request segments, between vote

segments, between decide segments, and between

effectuate segments but never between a request

segment and a vote segment – then the two

compositions are semantically equivalent. This

means that we can use the SCR during software

life cycle development and the DCR for the actual

execution

Figure 3 The SCR of two-phase commit protocol

Figure 4 illustrates a formal specification

in terms of preconditions and postconditions that

reflects the “design by contract” of the two-phase

commit protocol using the SCR. What we like to

emphasize here is not so much detail of the

specifications, but rather the nature of the global

assertions that reflects distributed cooperation.

These assertions are called virtual global assertions

because there might not be any real time at which

any one of them holds. Each process reaches its

own layer boundaries at a different time

6. A formal aspect oriented CCL

We can use join points and pointcut

designators to define virtual global time and virtual

global state.

Let [P1 || P2 || … || Pn] be a distributed

program P composed of n processes P1 to Pn. and

let BEGIN layer-1; layer-2; … ; layer-k END be

the complementary program composition into k

layers.

Regarding the two-phase commit

protocol, the executable program is the one yieled

by the DCR, so first, we need to wrap each

segment with an aspect.

::)(Pr),..1(iocessni
BEGIN
 request-i;
 vote-i;
 decide-i;
 effectuate-i;
END

There are four CCL join points for every

process(i): around request-i, around vote-i, around

decide-i and around effectuate-i. There are four

CCL pointcut designators:)..(n1i requiest-i,

)..(n1i vote-i,)..(n1i decide-i,

)..(n1i effectuate-i.

Virtual global times that we would like to

express are: the virtual time when the system

achieved its REQUEST sub-goal, the virtual time

when the system achieved its VOTE sub-goal, the

virtual time when the system achieved the

DECIDE sub-goal, the virtual time when the

system achieved the EFFECTUATE sub-goal. At

each virtual time we have the associated virtual

global state and the virtual global assertions as

given in Figure 4.

The advice code that runs at join points

takes a snapshot of the process local state (or just

an appropriate subset of all variables that appear in

a global invariant) and copies it into a pool of all

such snapshots. When a pool is full; all processes

have passed their appropriate layer boundaries, the

verification of the global assertion can be

evaluated. An intelligent decision could be made

based on this evaluation.

The roles played by states, assertions, and

invariants in sequential programming using design

by contract discipline – can be played by virtual

global states, virtual assertions, and virtual

invariants in distributed programming. The

effectiveness of this approach increases with the

degree of logical cooperation and the degree of

communication between the processes.

Aspect-oriented software development

principles support the CCL distributed software

development. CCL practical implementation relies

on an effective handling crosscutting concerns.

REQUEST layer is [request-1 || request-2 ||

 …|| request-n]

VOTE layer is [vote-1 || vote-2 || …|| vote-n]

DECIDE layer is [decide-1 || decide-2 ||

 …|| decide-n]

EFFECTUATE layer is [effectuate-1 || effectuate -2 ||

 …|| effectuate -n]

NETINANT & ELRAD

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

94

Figure 4 Virtual global assertions for two-phase commit protocol

One of the principles in software

development is the visibility rule: a significant

concern should be syntactically visible. Aspect

orientation strength is mainly due to elevating

crosscutting concerns to be syntactically visible.

The CCL strength is mainly due to elevating the

cooperative structure of distributed software to be

syntactically visible. In the past, we had mostly

application where processes, for the most part, did

not interfere with each other. Resources

management enforced sharing. Now, we see more

applications where there is a higher degree of

processes cooperation, the processes do not merely

share resources, but actually have common goals.

Such a mobile program common goals are

significant concerns, yet these concerns are not

syntactically visible. Given a mobile software

program, it is impossible to decompose it back to

its logical structure in terms of common sub-goals.

These types of applications can benefit from an

aspect orientation realization of CCL development.

The following are examples of the

benefits:

Testing- Virtual global assertions and

global invariants of the program could be tested

during run example, if one process is executing at

layer-1 and all the rest are already at layer-2, any

cooperation with the legging process concerning

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

ISSN 2229-063X (Print)/ISSN 2392-554X (Online)

95

the second sub-goal needs to be put on suspension.

A smart scheduling can prevent this by always

preferring a process that is executing in a lower

layer over one that is executing in a higher one.

Real-time application – CCL provides the

virtual global time vector. The vector components

with the highest value can be considered as the

“real-time” at which a sub-goal has been achieved.

Different applications might need to eliminate

execution of a non-crucial layer in case of time

constraints. When a real-time computation cannot

be completed, at least we get an approximation by

concerning the latest assertion evaluated.

A partial list of more application of CCL

can be found in (Elrad, Baoling, & Nastasic, 1996;

Elrad, 1984; Elrad & Kumar, 1990; Elrad & Kumar,

1991; Elrad & Kumar.1993; Fokkinga, Poel, & Zwiers,

1993; Gerth & Shrira, 1986; Janssen & Zwiers, 1992a;

Janssen & Zwiers, 1992b; Janssen & Zwiers, 1993;

Janssen, Poel, Xu, & Zwiers, 1994; Kiczales, 2001;

Stomp & Roever, 1987)

7. Conclusion

Two of the aspect orientation

characteristics defined by Filman, and Friedman

(2000) and Elrad et al. (2001) are enlightening

here: the quantification and the understood

invocation. Without these, the implementation of

an aspect-oriented mobile software using CCL is

problematic, rich in code tangling and hence not

attractive from practical point. Aspect orientation

approach separates concerns from the rest of the

software. It enables clean integration between

mobile processes or components composition and

the mobile software layer composition. The

tyranny of mobile processes or components of

software composition is mildly substituted with

synchronicity of both process or component

composition and layer composition. Design and

code implementation using this approach

composition is not tangle with the design and code

implementing using other compositions.

The roles played by states, assertions, and

invariants in sequential programming using design

by contract discipline. The effectiveness of this

approach increases with the degree of rational

collaboration and the degree of communication

between the processes or components. The CCL

practical implementation relies on an effective

handling of separation of concerns for the mobile

software design and development.

8. References

Ali, N., & Ramos, I. (2012). Designing mobile aspect-

oriented software architectures with ambient.

In P. Alencar & D. Cowan (Eds.), Handbook

of Research on Mobile Software

Engineering: Design, Implementation, and

Emergent Applications, Volume II (Chapter.

29, 526-543). PA, USA: Engineering Science

Reference (an imprint of IGI Global). DOI:

10.4018/978-1-61520-655-1.ch029

Apple Developer. (2016). https://developer.apple.com

Accessed on March 15, 2016.

Android Developers. (2016).

http://developer.android.com Accessed on

March 15, 2016.

Eclipse website. (2016). http://www.eclipse.org

Accessed on March 15, 2016.

Elrad, T., & Frances, N. (1982). Decomposition of

distributed programs into Communication

Closed Layers. Science of Computer

Programming, 2(1), 155-173. North-Holland.

Elrad, T. (1984). A practical software development for

dynamic testing of distributed programs.

IEEE Proceedings on the International

Conference on Parallel Processing, Bellaire,

Michigan, USA, 388-392.

Elrad, T., & Kumar, K. (1990). State space abstraction

of concurrent systems: a means to

computation progressive scheduling.

Proceedings of the 19
th
 International

Conference on Parallel Processing, Bellaire,

Michigan, USA, pp. 482-483.

Elrad, T., & Kumar, K. (1991). The use of

communication closed layers to support

imprecise scheduling for distributed real-time

programs. Proceedings of the 10
th
 Annual

International Conference on Computer and

Communications, Scottsdale, AZ, USA, pp.

226-231. DOI: 10.1109/PCCC.1991.113815

Elrad, T., & Kumar, K. (1993). Scheduling cooperative

work: viewing distributed system as both

CSP and SCL. Proceedings of the 13
th

International Conference on Distributed

Computing Systems, Pittsburgh, PA, USA,

pp. 532-539. DOI:

10.1109/ICDCS.1993.287670

Elrad, T., Baoling, S., & Nastasic, N. (1996). A

synergy of object-oriented concurrent

programming and program layering.

Concurrency and Parallelism,

Programming, Networking, and Security,

NETINANT & ELRAD

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 89-96

96

 Lecture Note in Computer Science No. 1179,

pp. 223-233, Springer-Verlag Press. DOI:

10.1007/BFb0027795

Elrad, T., Filman, B., & Bader, A. (2001). Aspect-

oriented programming: Introduction.

Communications of ACM, 44(10), 29-32.

DOI: 10.1145/383845.383853

Filman, R. E., & Friedman, D. P. (2000). Aspect-

oriented programming is quantification and

obliviousness. Workshop on Advanced

Separation of Concerns. Conference on

Object-Oriented Programming, Systems,

Languages, and Application (OOPSLA

2000), Minneapolis, MN, USA,

Fokkinga, M., Poel, M., & Zwiers, J. (1993). Modular

completeness for communication closed

layers. Proceedings of Formal Techniques in

Real Time and Fault Tolerant Systems, pp.

50-65, Springer-Verlag Press. DOI:

10.1007/3-540-57208-2_5

Gerth, R. T., & Shrira, L. (1986). On proving

communication closeness of distributed

layers. Proceedings of the 6
th
 Conference on

Foundations of Software Technology and

Theoretical Computer Science, New Delhi,

India. DOI: 10.1007/3-540-17179-7

Janssen, W., & Zwiers, J. (1992a). From sequential

layers to distributed processes: deriving a

distributed minimum weight spanning tree

algorithm. Proceedings of the 11
th
 ACM

Symposium on Principles of Distributed

Computing, pp. 215-227. DOI:

10.1145/135419.135461

Janssen, W., & Zwiers, J. (1992b). Protocol design by

layered decomposition: A composition

approach. Proceedings of the second

International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant

Systems, pp. 307-326. London, UK:

Springer-Verlag Press.

Janssen, W., & Zwiers, J. (1993). Specifying and

proving communication closeness in

protocol. Proceedings of the 13
th

 IFIP

Symposium on Protocol Specification,

Testing and Verification.

Janssen, W., Poel, M., Xu, Q., Zwiers, J. (1994).

Layering of real-time distributed processes.

Proceedings of Formal Techniques in Real

Time and Fault Tolerant Systems, Springer-

Verlag Press. DOI: 10.1007/3-540-58468-

4_175

Kiczales, G. (2001). Getting started with AspectJ.

Communications of ACM, (44)10, 59-65.

DOI: 10.1145/383845.383858

Meyer, B. (1993). Systematic concurrent object-

oriented programming. Communications of

ACM, 36(9), 56-80. DOI:

10.1145/162685.162705

Poel, M., & Zwiers, J. (1992). Layering techniques for

development of parallel systems, Proceedings

of Computer Aided Verification. Lecture

Note in Computer Science No. 663, pp. 16-

29, Springer-Verlag Press. DOI: 10.1007/3-

540-56496-9_3

Stomp, F. A., & Roever, W. P. (1987). A correctness

proof of distributed minimum weight

spanning tree algorithm. Proceedings

of the 7
th

 International Conference

on Distributed Computer Systems ,

Berlin, West Germany.

Wasserman, I. A. (2010). Software engineering

issues for mobile application

development. Proceedings of 2010 Future

of software engineering research, Santa

Fe, New Mexico, USA, pp. 397-400.

DOI: 10.1145/1882362.1882443

Windows Dev Center (2016).

http://dev.windows.com/ Accessed on

March 15, 2016.

http://dx.doi.org/10.1145/383845.383853

