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Abstract 

This in vitro experimental study examines and evaluates the antimicrobial and synergistic effects of the ethanolic 

extract of six plants: Biancaea sappan (L.) Tod, Bauhinia malabarica Roxb, Carthamus tinctorius L., Derris scandens (Roxb.) 

Benth, Hibiscus sabdariffa L., and Piper nigrum L. against common microbial species representing gram-positive, gram-

negative bacteria, and fungi, consisting of Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, 

Pseudomonas aeruginosa, and Candida albicans. The plants were extracted using 90% ethanol. According to the standard 

method of agar diffusion assay, the micro-dilution method for minimal inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) were determined. This study found that among the six plants, only B. sappan and B. 

malabarica exhibited moderate inhibitory effects against S. aureus and S. epidermidis. B. sappan had MIC values of 250 µg/ 

mL and 125 µg/ mL, respectively, and B. malabarica showed MIC values of 62.50 µg/ mL and 31.25 µg/ mL, respectively. 

The synergistic effects of a combination of B. sappan and B. malabarica extracts at a ratio of 25:75 were analyzed, and it was 

found that the combination inhibited S. aureus and S. epidermidis with MIC values of 250 µg/ mL and 125 µg/ mL, 

respectively. The fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI) 

indicated antagonistic or synergistic effects of the combination, with FICI and FBCI values of 2.5–5.0 for both B. sappan and 

B. malabarica extracts in the 25:75 mixture. In conclusion, single plant ethanolic extracts of B. sappan and B. malabarica 

possess potent antimicrobial activity to varying degrees. However, the antimicrobial potency of the 25:75 ratio mixture of 

these extracts was shown to decrease against the same organisms, with in vitro antimicrobial activity and antagonistic effects 

observed only against the tested gram-positive bacteria. 
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1.  Introduction 

Infectious illnesses have been identified as one 

of the most significant threats to human health across 

the world. The majority of them are caused by 

microorganisms like bacteria and fungi. Unfortunately, 

the potential of synthetic or natural plant antibiotics 

has not been extensively researched, developed, or 

introduced into pharmaceutical care to mitigate the 

threat of microbial illnesses. Additionally, the abuse 

and misuse of synthetic antibiotics have gradually 

resulted in drug-resistant bacteria, posing a new 

worldwide therapeutic challenge to the public health 
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system known as antibiotic resistance. Presently, 

antimicrobial resistance (AMR) is one of the most 

significant health threats. It has reached high-risk 

levels concerning pathogens that do not respond to 

antimicrobial drugs. This makes infections more 

difficult to treat. (World Health Organization, 2019, 

2022, 2023). The Centers for Disease Control and 

Prevention (U.S.) reported that Methicillin-resistant 

Staphylococcus aureus (MRSA), Multidrug-resistant 

Staphylococcus epidermidis (MDRSE), and Candida 

spp. were classified as serious threats (Centers for 

Disease Control and Prevention (U.S.), 2019; Murray 

et al., 2022; Siciliano et al., 2023). With an increase 

in bacterial resistance to antibiotics, natural 

antimicrobial plant products have gained attention in 

scientific research. 

The use of natural products or therapeutic 

bioactive compounds from certain plant extracts has 

been ubiquitous for a long time. It is an important drug 

production source and raw material in the production of 

traditional, alternative, and modern medicines. 

Therefore, medicinal plants are considered important 

sources of new chemicals that may have therapeutic 

effects (Bulbul et al., 2011; Blumenthal et al., 2000; Li et 

al., 2024). Several plants have been employed for their 

antibacterial activity owing to active compounds, while 

others have been used by combining their common 

phytochemicals with antibiotics. Thus, the selection of 

six different plants (B. sappan, B. malabarica,  

C. tinctorius, D. scandens, H. sabdariffa, and P. nigrum) 

for the study was based on their traditional use and 

medicinal properties reported medicinal properties 

(Table 1). 

For the extraction of most bioactive compounds, 

ethanol was used for extraction to compare biological 

activities, including antimicrobial activities. Ethanol was 

chosen as a widely used polar solvent for the preparation 

of plant extracts. It is a universal solvent capable of a 

higher safety profile and can dissolve a wide range of 

major polyphenol compounds (phenolic and flavonoid), 

alkaloids, saponins, tannins, steroids, and terpenoids 

found in plants (Abubakar, & Haque, 2020; Bashir et al., 

2023; Ingle et al., 2017; Irfan et al., 2022; Pintać et al., 

2018; Usman et al., 2022). It is a popular choice for 

preparing extracts available in the laboratory. Due to its 

ability to effectively extract compounds from the plant 

material, it can maintain the condition and value of the 

material along with reducing the risk of contamination 

before extraction (Abubakar, & Haque, 2020; Ćujić et 

al., 2016; Zhang et al., 2018). Numerous reports indicate 

that bioactive compounds from plant ethanolic extracts 

exhibit stronger antimicrobial properties compared to 

those extracted using methanol or water (Baluchamy et 

al., 2023; Acquavia et al., 2021; Chaudhry et al., 2022; 

Grozdanova et al., 2020; Hikmawanti et al., 2021; Valle 

et al., 2015; Valle et al., 2016).  

Recently, various studies have examined the 

effects of combining plant extracts in a different ratio 

mixture. These combinations produced various effects 

on microorganisms, exhibited antimicrobial activity, and 

altered interaction, resulting in synergistic/ antagonistic 

effects (Kongcharoensuntorn et al., 2024). These results 

may be due to interactions between the constituents of 

different parts (Adwan et al., 2010; Donkor et al., 2023; 

Saquib et al., 2021). However, the antimicrobial effects 

from different ratios of plant extract combinations with 

antimicrobial activity, tested within blended plant 

ethanolic extract preparations, have not been published. 

This study focuses on the first assessment of the natural 

antimicrobial activity of six different plant ethanolic 

extracts and then evaluates the interaction of those 

extracts that have antimicrobial activity in combination 

to test synergistic effects against several common 

microbial strains, representing groups of gram-positive, 

gram-negative bacteria, and fungi. 

 

2.  Objectives 

This study assessed the natural antimicrobial 

activity of six plant ethanolic extracts and evaluated their 

synergistic effects against common gram-positive, gram-

negative bacteria, and fungi. 

 

3.  Materials and Methods 

3.1 Collection and Authentication of Plant Materials 

Plant material of B. sappan (Heartwood),  

B. malabarica (Leaf), C. tinctorius (Leaf), D. 

scandens (Leaf), H. sabdariffa (Flower), and P. 

nigrum (Fruit) was sourced from various regions 

within Thailand, received in May 2022, and 

subsequently cultivated in Pathum Thani, Thailand. 

The chosen collection method was deemed most 

suitable for maintaining the plant's post-collection 

viability. These procedures strictly complied with the 

standardized collection guidelines of the Botanical 

Garden Organization (BGO) under the Ministry of 

Natural Resources and Environment (MNRE), 

Thailand. Assistant Professor Dr. Thanapat Songsak 

was responsible for the identification of the plant 

species. The collected plant materials have been 

meticulously preserved at the Herbarium in the 

Department of Pharmacognosy, College of Pharmacy, 

Rangsit University, Thailand. The herbarium's 

designated coding for the B. sappan, B. malabarica, 

C. tinctorius, D. scandens, H. sabdariffa, and  
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P. nigrum samples are B.sLT-HT-01, B.mR-L-02, 

C.tL-L-03, D.sRB-L-04, H.sL-FW-05, and P.nL.F-

06, respectively. 

 

3.2 Preparation of Plant Ethanolic Extracts 

All components of the fresh plants in each part 

were chopped into small pieces after being thoroughly 

cleansed with tap water to remove any unnecessary 

contaminants, and they were dried at 50 °C using a 

laboratory hot air oven, at 50 °C until dry weight stability 

was observed. Then the dried plant material was crushed 

using an electric grinder. The plant powder from each 

dried plant part was sieved through a 400/65 mm sieve 

(mesh = 0.75 mm) (ISO 3310-1) for subsequent 

experiments. For each plant material powder (B. sappan, 

B. malabarica, C. tinctorius, D. scandens, H. sabdariffa, 

and P. nigrum), 90 grams of powder were macerated in 

500 milliliters of 90% ethanol at room temperature (25–30 

°C) for three days. The extract solutions obtained from 

maceration were filtered through Whatman No. 1 filter 

paper three times and then pooled together. After the 

filtering, the extract was subjected to rotary evaporation at 

reduced pressure and stored at -20 °C until use. The extract 

was dissolved in dimethyl sulfoxide (DMSO) to prepare a 

stock solution (50 mg/mL) stored at -20 °C until use. The 

working solution for each test was prepared from this 

concentrated stock solution. 

3.3 Antimicrobial Activity Testing 

3.3.1 Tested Microorganisms 

 This study assessed the following microbial 

strains: Staphylococcus aureus (S. aureus) (TISTR 

1466), Staphylococcus epidermidis (S. epidermidis) 

(TISTR 518), Escherichia coli (E. coli) (ATCC 

25922), Pseudomonas aeruginosa (P. aeruginosa) 

(ATCC 27853), and Candida albicans (C. albicans) 

(ATCC 10231). They were assigned to three groups 

indicated by gram-positive bacteria, gram-negative 

bacteria and fungi, which were inoculated and isolated 

in culture medium for recovery and streak-plate 

subculture, then incubated overnight at 37°C in 

Mueller-Hinton agar/broth (MHA/MHB) and 

Sabouraud dextrose agar/broth (SDA/SDB) (HiMedia 

Laboratories LLC, USA), respectively, to be assessed 

for their in vitro antimicrobial activity and synergistic 

effect for all assay designs. The Drug and Herbal 

Product Research and Development Center, College 

of Pharmacy, Rangsit University, and Professor 

Emeritus Dr. Janenuj Wongthavatchai, Department of 

Veterinary Medicine, Faculty of Veterinary Science, 

Chulalongkorn University, assisted in obtaining and 

correctly identifying the bacteria used in this study. 

 

 

 

Table 1 A list of plants reported to have traditional uses and pharmacological properties 

Scientific names 
Family 

names 
Bioactive compounds 

Traditional and 

Pharmacological properties 
References 

Biancaea sappan (L.) Tod.  Fabaceae or 

Leguminosae 

Phenolics like brazilin, 

Xanthone, Coumarin, 

Chalcones, Flavones, 

Diterpenes, Homo-

Isoflavonoids.  

Antibacterial, Antifungal, 

Antiviral, Antioxidant, 

Anthelmintic, Anticonvulsant 

Immunomodulatory, 

Insecticidal, Analgesic,  

Anti-inflammatory 

(POWO, 2024b; 

Rajput et al., 2022; 

Prashith et al., 2021)  

Bauhinia malabarica Roxb. Fabaceae or 

Leguminosae 

Flavonoids like quercetin, 

Isoquercitrin, Glycoside, 

Polyphenolic, Hyperoside, 

kaempferol, Afzelin, 6,8-

di-C-methylkaempferol-3-

methyl ether 

Anthelmintic, Antiperiodic, 

Antioxidant, Analgesic, 

Antibacterial, Antifungal,  

Anti-inflammatory, 

Nephroprotective, 

Hypolipidemic, 

Antiatherogenic  

(Igwe, & Okeke, 

2017; POWO, 

2024a; Thetsana, 

2019; Thetsana et al., 

2019)  

Carthamus tinctorius L. Asteraceae Flavonoids, Alkaloids, 

Organic acids, Glycosides, 

Polyacetylenes, Steroids, 

Coumarins, Fatty acids, 

Phenylethanoid 

Anticoagulant, 

Antihypertensive, 

Cardioprotective, Antioxidant, 

Neuroprotective, Antitumor, 

Anti-melanogenic, 

Antidiabetic, 

Immunostimulants,  

Anti-obesity, Anti-arthritic, 

Anti-inflammatory 

(Asgarpanah, & 

Kazemivash, 2013; 

Lamichhane et al., 

2022; POWO, 

2024c; Zhang et al., 

2016)  
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Table 1 A list of plants reported to have traditional uses and pharmacological properties (Cont.) 

Scientific names 
Family 

names 
Bioactive compounds 

Traditional and 

Pharmacological properties 
References 

Derris scandens (Roxb.) 

Benth. 

Fabaceae Flavonoids, Isoflavones, 

Coumarins 

Antibacterial, Antioxidant, 

Anticancer, Anti-inflammatory, 

Musculoskeletal pain, 

Immunostimulants 

(Hussain et al., 2015; 

Madhiri, & Panda, 

2018; POWO, 

2024d; Puttarak et 

al., 2016)  

Hibiscus sabdariffa L. Malvaceae Natural acids, Phenolic 

acids, Organic acids, 

Anthocyanins 

Antibacterial, Antioxidant, 

Nephron/Hepatoprotective, 

Diuretic, Anti-cholesterol,  

Anti-diabetic,  

Anti-hypertensive 

(Da-Costa-Rocha et 

al., 2014; POWO, 

2024e; Riaz, & 

Chopra, 2018) 

Piper nigrum L. Piperaceae Alkaloid like piperine, 

Phenolics, Flavonoids, 

Terpenes, Tannin, 

Carotenoids, Sterols 

Antibacterial,  

Anti-inflammatory, Antipyretic, 

Antioxidant, Antitumor 

(Ashokkumar et al., 

2021; POWO, 2024f; 

Shityakov et al., 

2019) 

3.3.2 Screening of Antimicrobial Activity of Plant 

Ethanolic Extracts by Agar Diffusion Assay 

The agar diffusion assay, using the agar well 

diffusion technique, involved placing the antimicrobial 

agent into an agar well made with a sterile disposable 

pasteur pipette (inside diameter of agar well: 

approximately 6–7 mm) under aseptic conditions. It 

was widely used as a first part of research methods for 

screening plant extracts for antibacterial activity 

(Balouiri et al., 2016). The microbial preparation 

begins with picking the pure single colonies of each 

microorganism from their culture plate, which should 

be prepared in sterile saline solution (0.85% NaCl by 

autoclaving) to help disperse and dilute the bacteria, 

then after checking an adjusted McFarland turbidity 

scale of 0.5 (1.5x108 CFU/mL), sterile cotton swabs 

was employed to inoculate the agar plate surface with 

each bacterium, distributing a volume of microbial 

inoculum evenly and thoroughly throughout the 

surface. 100 µL of the targeted antimicrobial agent, 

which was 1,000 µg/mL of each plant ethanolic 

extracts, was transferred into the agar wells. This was 

performed in triplicate for each strain, and the test 

plates were incubated under appropriate conditions at 

37°C for approximately 24 hours, depending on the 

test microorganism. The antimicrobial agent diffused 

from the agar well and spread into the gel of the agar 

plate. A clear zone was observed to determine the 

inhibitory activity of each microbial strain tested. The 

sizes of the inhibition clear zones surrounding the 

wells were measured to the nearest whole on a 

millimeter scale with vernier calipers. The 

sensitivities of each isolated bacterial species were 

assessed against numerous antibiotics: Positive 

controls (PC) were ampicillin 10 µg/disc, gentamicin 

10 µg/disk, and ketoconazole 50 µg/disk was used 

agar disc diffusion technique (Kirby-Bauer) according 

to Clinical and Laboratory Standards Institute (CLSI) 

recommendations (Bubonja-Šonje et al., 2020; 

Clinical and Laboratory Standards Institute, 2024; Ii 

et al., 2022; The American Society for Microbiology, 

2009), and a diluent of extract (5% DMSO) was 

employed as a negative control (NC) in this 

investigation, then ensuring that antimicrobial activity 

is evaluated accurately and objectively. For each 

antimicrobial assay, the results were provided as the 

average of the least-triplicate trials (n = 3). 

 

% RIZD= 
(IZD sample - IZD negative control)

(IZD antimicrobial standard)
 x 100 

 

The expression used to quantify antibacterial 

activity was the Relative Inhibition Zone Diameter 

(RIZD), calculated using the following equation: % 

RIZD = (IZD of sample – IZD of negative 

control)/(IZD of an antimicrobial standard of each 

strain) that reflects the percentage of the relative 

diameter of the inhibitory zone, measured in 

millimeters. The calculated findings reveal that the 

percentages equal 100, indicating that specific extracts 

are as effective in inhibiting bacterial growth as the 

antibiotics used in the study. The common 

interpretation of the breakpoint values is as follows: 

0% = no effect, > 0 – 100% = moderate efficacy,  

> 100% = good efficacy, and > 200% = high efficacy 

(Patthamasopasakul et al., 2024; Costa et al., 2023; 

Gouvinhas et al., 2018; Leal et al., 2020; Rojas et al., 

2006) . 
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3.3.3 Determination of Minimal Inhibitory 

Concentration (MIC) of Plant Ethanolic 

Extracts by the Resazurin-based 96-well 

Plate Method 

Determination of the MIC of the plant 

ethanolic extracts against each microbial strain by 

micro-broth dilution assays using MHB and SDB. 

The concentrations of the plant ethanolic extracts 

ranged from 1,000 μg/mL to 1.95 μg/mL prepared by 

two-fold serial dilutions. Consequently, 100 μL 

culture of inoculum for each strain at 1.5×105 

CFU/mL was transferred into the wells of 

polystyrene sterile flat-bottom 96-well plates. Each 

concentration from the 2-fold dilution of the plant 

ethanolic extract (100 μL) was loaded in triplicate 

wells for each strain. 100 μL of 2% DMSO were 

loaded in triplicate wells and considered negative 

control. After incubating the plate for 24 hours at 

37°C, the MIC value was determined as the first well 

with the lowest concentration of compounds 

showing no visible bacterial growth or turbidity 

(Kowalska-Krochmal, & Dudek-Wicher, 2021; 

Swebocki et al., 2023). To confirm microbial growth 

by the colorimetric assay (Elshikh et al., 2016; Han 

et al., 2024), 30 μL of 0.015 % resazurin solution 

were added to all test wells and incubated for 2–4 

hours at 37°C. Wells that exhibited microbial growth 

showed a color change, as the microorganism 

reduced resazurin (blue dye) to resofurin (pink). 
 

3.3.4 Determination of Minimum Bactericidal 

Concentration (MBC) of Plant Ethanolic 

Extracts from the Micro-dilution Method by 

Drop Plate Method 

Determination of the MBC of the plant ethanolic 

extracts against each microbial strain was done by 

pipetting 50 μL of the culture from each well of the 

micro-broth assay onto each MHA or SDA culture 

plate, performed in triplicate for each strain. They were 

then incubated for 24 hours at 37°C. The lowest 

concentration of extracts that showed no bacterial 

growth was considered the point of MBC value 

(Swebocki et al., 2023; Thongdonphum et al., 2023). 

 

3.3.5 Synergistic Antimicrobial Activity Testing of 

Plant Ethanolic Extracts by Fractional 

Inhibitory Concentration Index (FICI) and 

Fractional Bactericidal Concentration Index 

(FBCI) 

 

ΣFIC=[FIC(A) + FIC(B)]= [
MIC(A,B)

MIC(A)
+

MIC(B,A)

MIC(B)
] 

As usual, the results of the determination of the 

MIC or MBC values of the plant ethanolic extracts 

against each microbial strain by micro-broth dilution 

assays. The values of the MIC or MBC were used in 

the analysis of the synergistic effects of plant 

ethanolic extracts in combination using the fractional 

inhibitory concentration (FICI) and fractional 

bactericidal concentration (FBCI) index. Following 

the formula that determines the index: ΣFIC = FIC(A) 

+ FIC(B) = (MIC(A, B)/MICA) + (MIC(B, 

A)/MICB), where MIC(A) and MIC(B) were the MIC 

or MBC of the plant ethanolic extracts A and B alone, 

respectively. The MIC (A, B) and MIC (B, A) were 

the values of the MIC or MBC of the plant ethanolic 

extracts in combination, respectively, with the 

minimum concentration of effective combinations 

included. The correlation between the FIC or FBC 

values and the effect of the antibacterial agent 

combinations was calculated using the FIC or FBC 

index formula. The common interpretation of the 

breakpoint values was as follows: Synergistic effect 

(FICI or FBCI ≤ 0.5), additive effect (0.5  <  FICI or 

FBCI ≤ 1), indifferent effect (1  <  FICI or FBCI ≤ 4), 

and antagonistic effect (FICI or FBCI  > 4) (Vuuren, 

& Viljoen, 2011). 

 

3.4 Statistical Analysis 

The measurements for all experiments were 

presented as the average of triplicate run (n = 3). For 

each result, the data were summarized as the mean ± 

standard error of the mean (SEM). The significance of 

the differences between two related groups of the single 

tested plant ethanolic extracts was determined using an 

independent t-test and a one-way analysis of variance 

(ANOVA), followed by a Tukey HSD multiple 

comparison test to interpret the significance of the 

differences between the three combination related 

groups of ratio mixtures of the tested plant ethanolic 

extracts. A probability (P ≤ 0.05) was considered 

statistically significant. 

 

4.  Results and Discussion 

4.1 Antimicrobial Activity of Plant Ethanolic 

Extracts by Agar Diffusion Assay 

The findings from this study reveal significant 

insights into the antibacterial properties of six various 

plant ethanolic extracts using the agar diffusion 

technique. The diameter of the inhibition zone was 

measured to correlate with the antimicrobial 

properties of the plant ethanolic extracts and the 

strains of organisms (Table 2). The single plant 

ethanolic extracts of C. tinctorius, D. scandens, H. 
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sabdariffa, and P. nigrum did not have the ability to 

inhibit the growth of S. aureus, E. coli, S. epidermidis, 

P. aeruginosa, and C. albicans. These results were 

inconsistent with previous studies reporting on the 

antimicrobial activity of ethanol extracts from these 

plants (Balali et al., 2023; Haleem et al., 2023; Sri 

Chaithanya, & Seedevi, 2023; Zarai et al., 2013). It 

may be troublesome since the composition of plant 

extracts varies according to local climate, environmental 

factors, differences in the cultivation sources, harvest 

season, and quality control processes of these plant 

materials before extraction. This may result in reduced 

amounts of active compounds. Thus, these absences 

of activity demonstrate that these the plant extracts 

lacked sufficient antimicrobial properties were 

insufficient to provide an observed effect against these 

specific microbes (Balekundri, & Mannur, 2020; 

Radulović et al., 2013; Vaou et al., 2021). Conversely, 

the single plant ethanolic extracts of B. sappan and B. 

malabarica presented a notable antibacterial with 

moderate effect against two bacteria in the genus of 

Staphylococcus, S. aureus and S. epidermidis, which 

included important opportunistic pathogens colonized 

on the skin that cause commensal infectiousness and 

the most common nosocomial infections (Ahmed, 

2011; Atunnisa et al., 2023; Chessa et al., 2015, 2016; 

Otto, 2009; Siciliano et al., 2023). 

Previous studies have shown that alcoholic 

crude extracts of sappan heartwood are potent in 

inhibiting S. aureus (Hemthanon, & Ungcharoenwiwat, 

2022) and S. epidermidis (Atunnisa et al., 2023). 

According to research on sappan wood, using ethanol 

as an extraction solvent has the highest wood 

extraction yield. There were included many different 

biological actions and several structurally unique 

phenolic components such as brazilin, xanthone, 

coumarin, chalcones, flavones, and homo-isoflavonoids. 

They have antimicrobial activity against a variety of 

pathogenic bacteria, although slightly less potent than 

methanol extraction (Nirmal et al., 2015; Nirmal & 

Panichayupakaranant, 2015; Niu et al., 2020; Rajput 

et al., 2022; Srinivasan et al., 2012; Vij et al., 2023). 

Additionally, ethanol had been used as a solvent in 

previous work to extract a series of flavonoid 

derivatives, including the essential ingredient in  

B. malabarica leaf ethanolic extract. It was identified 

several distinctive bioactive substances, including 

hyperoside, kaempferol, afzelin, 6,8-di-C-methyl 

kaempferol-3-methyl ether, quercetin, isoquercitrin, 

and a glycoside molecule, all of which demonstrated 

antibacterial effects against a broad range of bacterial 

strains. These compounds can be used to prevent and 

treat various bacterial infections, although they exhibit 

slightly less potency when extracted with ethanol 

compared to methanol. (Nguyen, & Bhattacharya, 

2022; Thetsana, 2019; Thetsana et al., 2019; Yang et 

al., 2020). This evidence suggests that plants contain 

bioactive chemical compounds, with most previous 

studies reporting that the major active ingredients 

belong to phenolic and flavonoid compound groups 

(Aliyu et al., 2009; Fernandes et al., 2012; 

Kaewamatawong et al., 2008; Manso et al., 2021; 

Sasmal, n.d.; Sharma et al., 2014). This finding was 

consistent with research on the activity that may be 

able to inhibit these specific strains of gram-positive 

bacteria. It may be related to variances in cell wall 

structures and resistance mechanisms among bacteria 

and species. Due to the gram-positive bacteria have a 

more accessible peptidoglycan layer, antibacterial 

substances can penetrate more effectively.  

In contrast, the outer membrane of gram-negative 

bacteria or fungi operates as a barrier to a wide range 

of substances through distinct mechanisms. (Reygaert, 

2018; Uddin et al., 2021). Therefore, the extracts tested 

in this study were ineffective against gram-negative 

bacteria, including E. coli and P. aeruginosa, as well 

as fungi like C. albicans. This may be a result of gram-

negative bacteria having cell walls with a thin 

lipopolysaccharide outer membrane that acts as a 

permeability barrier. This membrane may have 

successfully reduced the quantity of plant extract that 

the bacteria's efflux pump mechanisms could release. 

Therefore, in some cases, it has been shown that gram-

negative bacteria were more resistant than gram-

positive bacteria to antimicrobials generated from 

plant extract that they may even show no impact at all 

(Biswas et al., 2013; Saxena et al., 2023). Furthermore, the 

complex structural and biological differences between 

eukaryotic fungi compared with the prokaryotic 

pathogens of bacteria. Their integrative resistance 

mechanisms of fungi may result in higher 

antimicrobial resistance (Fisher et al., 2022; Lee et al., 

2023). 

The antimicrobial properties of single and 

combined plant ethanolic extracts in different ratios 

(25:75, 50:50, and 75:25) between B. sappan and B. 

malabarica were evaluated. They revealed a 

consistent antibacterial effect against S. aureus and S. 

epidermidis, while the combinations did not inhibit E. 

coli, P. aeruginosa, or C. albicans. The results 

demonstrated that the combined extracts show 

moderate antimicrobial efficacy, both individually 

and in combination, when mixed in varying ratios of 

B. sappan and B. malabarica, as shown in Table 3. For 
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the single plant ethanolic extracts, the %RIZD values 

against S. aureus were 23.93 ± 0.39 and 31.56 ± 0.90, 

while the %RIZD values against S. epidermidis were 

26.50 ± 0.94 and 35.40 ± 1.34 for B. sappan and B. 

malabarica, respectively, at the same ratio of plant 

ethanolic extracts. Furthermore, when the ethanolic 

extracts of B. sappan and B. malabarica were 

combined in varying ratios (25:75, 50:50, and 75:25), 

the mixtures preserved antibacterial potency against a 

moderate level for S. aureus, with %RIZD values of 

31.30 ± 0.37, 30.27 ± 1.38, and 23.50 ± 1.12. Like S. 

epidermidis that was shown with %RIZD values of 

25.66 ± 0.67, 23.50 ± 2.85, and 18.98 ± 0.21, 

respectively, but still had not inhibited the growth of 

E. coli, P. aeruginosa, or C. albicans 

These results indicate that while there is a 

noticeable antibacterial effect, the efficacy does not 

significantly improve with the combination, and in 

some ratios, it appears to be slightly reduced. This 

might be due to the specialized interactions between 

the bioactive compounds found in these plants, which 

may not improve effectiveness against the resistant 

outer membrane of gram-negative bacteria or the 

different cellular structures of fungi. This aligns with 

the first screening and previous studies, indicating that 

while individual plant extracts can exhibit specific 

antibacterial activities, their combinations do not 

always result in synergism or a broader spectrum of 

action. For instance, the bioactive compounds in  

B. sappan and B. malabarica are known for their 

effectiveness against gram-positive bacteria and this 

may potentially be due to small molecules or mechanisms 

involving cell wall disruption or inhibition of essential 

bacterial enzymes. The mechanisms by which these 

extracts exert their antibacterial effects could involve 

disruption of cell wall synthesis, inhibition of protein 

synthesis, or interference with other critical bacterial 

processes. However, this did not give any indication 

regarding more specific mechanisms of action 

(Oulahal, & Degraeve, 2022; Sullivan et al., 2020; 

Vaou et al., 2022). 

 

Table 2 Results of the antimicrobial activity testing of the investigated single plant ethanolic extracts in an agar diffusion assay 

 
  

Antimicrobial agent 
Inhibition zone (mm)IZ against tested microbial 

S. aureus S. epidermidis E. coli P. aeruginosa C. albicans 

Single-plant ethanolic extracts 

- 1,000 µg/mL of B. sappan L.Tod (Heartwood) 9.30 ± 0.15 12.70 ± 0.45 - - - 

- 1,000 µg/mL of B. malabarica Roxb (Leaf) 12.27 ± 0.39 16.97 ± 0.64 - - - 

- 1,000 µg/mL of C. tinctorius L. (Leaf) - - - - - 

- 1,000 µg/mL of D. scandens (Roxb) Benth (Leaf) - - - - - 

- 1,000 µg/mL of H. sabdariffa L. (Flower) - - - - - 

- 1,000 µg/mL of P. nigrum L. (Fruit) - - - - - 

Ratio mixture of B. sappan L.Tod : B. malabarica Roxb 

- 25:75 12.17 ± 0.15 12.30 ± 0.32 - - - 

- 50:50 11.77 ± 0.54 11.27 ± 1.37 - - - 

- 75:25 9.13 ± 0.44 9.10 ± 0.10 - - - 

Positive control  

- 10 µg/disk of ampicillin  38.87 ± 1.32 47.93 ± 0.60 NA NA NA 

- 10 µg/disk of gentamicin  NA NA 18.00 ± 0.25 29.13 ± 0.64 NA 

- 50 µg/disk of ketoconazole  NA NA NA NA 47.40 ± 1.15 

Negative control  

- 2% DMSO - - - - - 

(-) = No activity of antimicrobial property, (NA) = Not analysis, IZ Inhibition zones including the diameter of the paper disc/agar well (6 

mm), The results are represented as mean ± SEM values of 3 independent tests (n = 3) 
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Table 3 Results of percentage of inhibition zone diameter (%RIZD) in relation to the tested antibiotic 

Antimicrobial agent 

 

Concentration (µg/mL) 

% RIZD against tested microbial 

(Antibiotic drug : Ampicillin 10 µg/disc) 

S. aureus S. epidermidis 

Single-plant ethanolic extracts 

- 1,000 µg/mL of B. sappan L.Tod 23.93 ± 0.39 26.50 ± 0.94 

- 1,000 µg/mL of B. malabarica Roxb 31.56 ± 0.90 35.40 ± 1.34 

Ratio mixture of B. sappan L.Tod : B. malabarica Roxb 

- 25:75 31.30 ± 0.37 25.66 ± 0.67 

- 50:50 30.27 ± 1.38 23.50 ± 2.85 

- 75:25 23.50 ± 1.12 18.98 ± 0.21 

0% = No effect, > 0 - 100% = Moderate efficacy, > 100% = Good efficacy, > 200% = High efficacy, The results are represented as 

mean ± SEM values of 3 independent tests (n = 3) 

 
Table 4 Results of minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for the 

antimicrobial activity testing of single plant ethanolic extracts 

Antimicrobial agent 

Antimicrobial activity against tested microbial 

S. aureus S. epidermidis 

MIC MBC MIC MBC 

Single-plant ethanolic extracts 

- B. sappan L.Tod 250.00 > 500.00 125.00 125.00 

- B. malabarica Roxb 62.50 125.00 31.25 31.25 

Ratio mixture of B. sappan L.Tod : B. malabarica Roxb 

- 25:75 250.00 > 250.00 125.00 125.00 

The statistical analysis of the % RIZD among 

the different mixture ratios revealed insightful patterns 

regarding their antibacterial efficacy. Specifically, the 

ratios of 25:75 and 50:50 did not exhibit statistically 

significant differences in their % RIZD values  

(P > 0.05). This indicates that the antibacterial 

activities of these mixtures are relatively similar. 

However, a significant difference was observed with 

the 75:25 ratio, suggesting a variation in antimicrobial 

effectiveness with moderate effect with this 

combination. (Gouvinhas et al., 2018; Leal et al., 

2020). This result was achieved with the 25:75 

mixture. This finding underscores the potential of the 

25:75 ratio to maximize antibacterial efficacy from 

calculated when compared with their combination in 

this study. Therefore, focusing on this specific ratio 

for further testing is warranted. Subsequently, the 

25:75 mixture ratio was chosen based on these 

preliminary %RIZD results. It may provide a deeper 

understanding of the antimicrobial potency and 

effectiveness or some interaction of the extract ratios 

in combination, further validating its antimicrobial 

agent in this study. Although the potency of all ratios 

in the mixture was shown to be moderate efficacy 

used for the experiment to determine the MIC and 

MBC for use in the next interpretation of other 

parameters of synergistic antimicrobial agents. 

 

4.2 Determination of MIC and MBC of Plant 

Ethanolic Extracts by the Resazurin-based 96-

well Plate Micro-dilution and Drop Plate 

Methods 

The determination of MIC and MBC for the 

ethanolic extracts of B. sappan and B. malabarica 

against S. aureus and S. epidermidis provides a deeper 

understanding of their antibacterial potency. The MIC 

and MBC values, which were tested over a 

concentration range of 1,000 to 1.95 μg/mL, reveal 

significant antibacterial activity for both extracts. 

Table 4 highlights the efficacy of these extracts, both 

single and the mixtures, in different ratios. For S. 

aureus, the MIC values were 250 μg/mL for B. sappan 

and 62.5 μg/mL for B. malabarica, while the MBC 

values were > 500 μg/mL and 125 μg/mL, respectively. 

These results indicate that B. malabarica was more 

potent against S. aureus compared to B. sappan, 

requiring lower concentrations to inhibit and kill the 

bacteria. Previous research has demonstrated that 
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alcoholic crude extracts of B.sappan heartwood, 

including lead compounds such as brazilin (Muangrat, 

& Thipsuwan, 2023; Nirmal et al., 2015), or lead 

bioactive flavonoid of quercetin from B.malabarica 

extract (Nguyen, & Bhattacharya, 2022) were highly 

effective in inhibiting S. aureus with low MIC and 

MBC values (Hemthanon, & Ungcharoenwiwat, 

2022). Consistent with these findings. Similarly, 

regarding antimicrobial activity against S. epidermidis,  

B. sappan showed MIC and MBC values of 125 

μg/mL, whereas B. malabarica exhibited even lower 

MIC and MBC values of 31.25 μg/mL, revealing 

significant antibacterial activity for both extracts. This 

again underscores the greater efficacy of B. malabarica 

's comparative effectiveness, with consistently lower 

MIC and MBC values than B. sappan, implying that it 

contains stronger antibacterial agents or may have 

higher levels of main bioactive components. The MIC 

and MBC values were accurate and precise for 

measuring antimicrobial potency; nevertheless, it 

cannot identify specific bioactivity or interaction 

(Dafale et al., 2016). When the extracts were combined 

at a 25:75 ratio (B. sappan : B. malabarica), the results 

align with previous findings for the single extracts, 

where the effect against S. aureus showed MIC and 

MBC values of 250 and >250 μg/mL, respectively, and 

exhibited S. epidermidis showed both MIC and MBC 

values of 125 μg/mL. These findings suggest that 

combining the extracts did not significantly enhance 

the antibacterial activity compared to the stronger 

individual extracts (Cacace et al., 2023). Therefore, the 

moderate antibacterial potency of B. malabarica and B. 

sappan highlights their properties as therapeutic agents 

against only gram-positive bacteria such as S. aureus 

and S. epidermidis. However, the lack of enhanced 

activity in combinations suggests that further research 

will be needed to optimize formulations and potentially 

discover synergistic interactions with other 

antibacterial compounds or extracts. 

4.3 Analysis of the antimicrobial synergistic 

effects in the combination of plant ethanolic 

extracts assays by FICI and FBCI 

The analysis and investigation into the 

antimicrobial synergistic effects of the combination of 

B. sappan and B. malabarica ethanolic extracts at a 

25:75 ratio provide important insights into their 

potential interactions by FICI and FBCI to assess 

synergy. We found varying results indicating the 

nature of the interactions between the extracts, as 

shown in Table 5. For both S. aureus and S. 

epidermidis, FICI and FBCI values were calculated as 

5, which indicates an antagonistic interaction since 

FICI and FBCI values greater than 4 are typically 

interpreted as antagonistic.  

This suggests that the ratio of 25:75 in 

combination with B. sappan and B. malabarica 

reduced their overall efficacy against these bacteria. 

Although the FBCI value for S. aureus was 2.5, which 

was lower than S. epidermidis, this slight difference 

suggests a somewhat antagonistic interaction of both 

plant ethanolic extracts against S. aureus compared to 

S. epidermidis (Vuuren & Viljoen, 2011). The 

implications of antagonistic interactions observed in 

the combination of B. sappan and B. malabarica 

extracts at a 25:75 ratio imply that the compounds 

within each extract may compete for the same 

bacterial targets or interfere with each other's 

mechanisms of action (Álvarez-Martínez et al., 2021; 

Sullivan et al., 2020; Vaou et al., 2022). These 

findings highlight the need for careful consideration 

when combining plant extracts, as interactions 

between bioactive compounds may reduce 

antibacterial efficacy. Further research is needed to 

optimize the beneficial use of plant extracts as 

ingredients in effective antibacterial prescription 

drugs (Caesar, & Cech, 2019). 

 

Table 5 Result of analyzed the synergistic effects of plant ethanolic extracts in combination by the fractional inhibitory 

concentration (FICI) and the fractional bactericidal concentration (FBCI) index 

Antimicrobial agent 

Synergistic effect of antimicrobial activity against tested 

microbial 

S. aureus S. epidermidis 

FICI FBCI FICI FBCI 

Ratio mixture of B. sappan L.Tod : B. malabarica Roxb 

- 25:75 5.00 2.50 5.00 5.00 

Synergistic effect (FICI or FBCI  ≤  0.5), Additive effect (0.5  < FICI or FBCI  ≤  1), Indifferent effect (1  <  FICI or FBCI  ≤  4), 

Antagonistic effect (FICI or FBCI  >  4) 
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5.  Conclusion 

These data demonstrate that different plant 

extracts produce variable results against each 

microorganism. Among the six ethanolic plant 

extracts tested, only B. sappan and B. malabarica 

demonstrated antibacterial activity against S. aureus 

and S. epidermidis, both of which are Staphylococcus 

species known to cause common nosocomial 

infections. These findings highlight the moderate 

potential of these extracts as sources of new 

antibacterial agents, specifically targeting gram-

positive bacteria. However, the extracts were 

ineffective against gram-negative bacteria and fungi, 

likely due to the structural differences in their cell 

walls and other resistance mechanisms. The ethanolic 

extracts of B. sappan may contain phenolic 

components of brazilin and B. malabarica rich in 

quercetin flavonoid, exhibiting promising antibacterial 

properties based on the previous research. However, 

they show less potency than extracts obtained with 

other solvents. The observed MIC and MBC values 

provide a quantitative measure of the potency of the 

major bioactive compound, and the antimicrobial 

activity of B. malabarica extract is stronger than that 

of B. sappan extract. Although the combination of 

both extracts was explored for potential synergistic or 

antagonistic effects, it did not significantly enhance 

antibacterial activity. The results indicated that the 

antagonistic effects of the combination of B. sappan 

and B. malabarica were limited to gram-positive 

antibacterial activity. Future research should focus on 

isolating and characterizing the active compounds 

within these extracts, determining their specific 

mechanisms of action, and exploring their 

effectiveness. These compounds may not interact 

synergistically with other compounds that target 

bacteria or fungi, necessitating further investigation 

into the specific phytochemical interactions to 

elucidate these pathways and fully understand their 

potential and limitations as antibacterial agents. 
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