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Abstract  
This investigative paper is aimed to design a dynamic output feedback H∞ controller with circular pole 

constraints for vehicle suspension systems.  The closed-loop system satisfies both the H∞ norm on the closed-loop 

transfer function from the disturbance input to the system output and D-stability constraint on the close-loop system 

matrix.  A condition for finding the desired controller is illustrated via a linear matrix inequality (LMI).  Additionally, it 

is shown that this existing condition is equivalent to the feasibility of a certain matrix inequality which is jointly convex 

in all variables. The proposed controller performance is carried out through simulation. Also, it is compared with 

passive system and the dynamic output feedback H∞ controller. 

 
Keywords:  Output feedback H∞ control, circular pole constraints, vehicle suspension systems, linear matrix inequality  

 

1.  Introduction 

Recently, a lot of work reported in the 

literature relates to design different kinds of 

vehicle suspensions via various control strategies. 

Over two decades, numerous control design 

techniques have been developed for the vehicle 

suspension systems. The particular interest is to 

use advanced control technique to attain 

performance requirement for vehicle suspensions 

that include: i) isolating passengers from vibration 

and shock occurring from road roughness; ii) 

suppressing the hop of the wheels to maintain firm 

and uninterrupted contact of wheels to road; and 

iii) keeping suspension strokes within an allowable 

maximum (Hrovat, 1997).  To the best knowledge 

of the authors, there are some relevant instance of 

control schemes employed in this field such as 

fuzzy control (Du & Zhang, 2009), optimal control 

(Prabakar, Sujatha, & Narayanan, 2013), H∞ 

control (Rubio-Massegu, Palacios-Quinonero, 

Rossell, & Karimi, 2013; Chen & Guo, 2005), gain 

scheduling (Fialho & Balas, 2002), model 

predictive control (Chen & Scherer, 2004), 

passivity control (Xiao & Zhu, 2014), adaptive 

control (Koch & Kloiber, 2014) and so on.  

In general, a desirable controller is 

designed to achieve various control objectives i.e. 

disturbance attenuation, robust stabilization of 

uncertain systems, or shaping of the open-loop 

responses capable of expressing in terms of H∞ 

performance and tackled by H∞ -synthesis 

techniques. In the study of H∞ control problems, it 

is particularly aimed to design a feedback linear 

controller, leading to the fact that the closed-loop 

system is stable and the minimization of H∞ norm 

of a closed-loop transfer function is achieved.  

It is known well that one of the practical 

concerns of control design is its time-domain 

performance. Certainly, many time-domain 

performance specifications are determined by 

zeros and poles of the closed-loop system. The 

systems are, therefore, constructed so that better 

dynamic performance becomes achieved. To be 

more practical, the closed-loop poles are placed in 

a suitable region of the complex plane, especially 

in circular region. As such placing in a suitable 

disk, an upper bound on the damping ratio, the 

natural frequency, and the damped natural 

frequency can be guaranteed. In addition, it is 

possible to conclude that the closed-loop poles in a 

specified region guarantees both stability; all 

closed-loop poles forced in the circular region of 

Left Half Plane (LHP), and the transient 

performance i.e. settling time, maximum 

overshoot, and rise time. For the closed-loop pole 

placement in a specified region, the design of a 
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controller in both nominal and uncertain systems is 

of great interest. Many researchers have 

investigated this problem (Chu, 1991; Haddad & 

Bernstein, 1992) for linear systems without 

uncertainties. Garcia and Bernussou (1995) 

extended to the system with uncertainties for state 

feedback control. Moreover, various researchers 

include the problem with the guaranteed cost 

control (Garcia, 1997; Yu, Chen, & Nan, 2002), 

and with the multi-objective control (Chilali & 

Gahinet, 1996; Scherer, Gahinet, & Chilali, 1997). 

For further improving the system transient 

dynamic performances, the H∞ strategy combining 

with the transient behavior of the closed-loop 

system becomes a promising and effective 

approach. Unfortunately, there are less attentive 

studies to the combination of the H∞ control and 

transient behavior improvement simultaneously 

(Yedavalli & Liu, 1995; Wang, 1998; Wang, Zeng, 

Ho, & Unbehauen, 2002; Kanchanaharuthai & 

Ngamsom, 2005). For the particular interest of 

vehicle suspension systems, no recent report 

combines H∞ control design with circular pole 

constraints. Such combination is not only to assure 

in the disturbance attenuation problem but also to 

improve better transient performance.  

This paper is organized as follows. 

Section 2 is a problem statement and Section 3 

stated performance and stability analysis.  In 

Section 4, for an output feedback controller, the 

existing conditions of H∞ controller with pole 

constraints are illustrated via a linear matrix 

inequality (LMI) to construct a desired controller 

and the proposed scheme is applied to design the 

dynamic output feedback controller for a quarter-

car suspension system in Section 5. Section 6 is 

dedicated to comparative analysis of simulation 

results with the existing uncontrolled system and 

the study is then concluded in Section 7. 

Throughout the study,
nR and 

n mR 

denote the set of n-dimensional real vectors and 

the set of n m –dimensional real matrices, 

respectively. 
TM is the transpose of matrix M

and the notion X Y where X andY are 

symmetric matrices, meaning that X Y  yields 

positive definite result. nI denotes the identity 

matrix. 

 

2.  Problem statement 

 Since a linear system is of particular 

interest, the following equations have been 

described:  

 
w u

z zw z

y

u

yw yu

x Ax B B

z C x D D

y C x D

w

u

w uD

u

w

 

 









,  (1) 

where
1nx R  is the state-vector, 

1mu R  is the 

control-vector, 
1rz R   denotes the regulated 

output-vector, 
1py R   is the output-vector, and 

1mw R  denotes the exogenous vector. 

, , , , , ,, ,w u z zw zu ywyA B B C D DC D  and 
yuD have 

appropriate dimensions. In addition, assume that 

the system considered is completely controllable 

and observable. 

The interested problem is formulated to 

determine a linear output feedback control such 

that the following performance requirements are 

simultaneously achieved; 

  

(a) All closed-loop poles are confined in a stable 

circular region ( , )D r in the complex plane 

together with the center at 0, 0j    the 

radius  ( )r r 
 
as illustrated in Figure 1. 

(b) The H∞ norm of the transfer function ( )zwT s  

from ( )w t to ( )z t  meets the constraint 

maxsup ]) )[( (
R

zw zwT s T j


  



   

where max[ ] 
 

is the maximum singular 

value, is a pre-specified constant and

 
1

( )zw cl cl cl clT s C sI A B D


   where 

, , ,cl clclA B C and clD are matrices of the 

overall closed-loop system that will be given 

in Section 4. 

  

 In the next section, we will provide a 

procedure to determine a dynamic output feedback 

controller which generates an actuating signal to 

regulate the regulated output of the vehicle 

suspension system and satisfies with the 

requirement of (a)-(b).  

 

3.  Performance and stability analysis 

In this section, some useful important 

lemmas in the derivation of our main results are 

provided.  
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Figure 1 ( , )D r  region 

 

 

Lemma 1: (Garcia & Bernussou, 1995) Let 
n nA R   be a given matrix. Then all the poles 

of the closed-loop system are located with a given 

circular region ( , )D r , i.e., ( ) ( , )A D r  , if 

and only if there exists 0Q   such that  

0,r r

TA AQ Q   (2) 

where 
r

A I
A

r


 . 

Lemma 2: (Kanchanaharuthai & Ngamsom, 2005) 

Given a constant 0   and a disk ( , )D r . Then 

both requirements (1) and (2) are satisfied if the 

following matrix inequality has a positive 0Q   
such that 

 

1
0

TQ A

A Q







 
 

 
 (3) 

with 
2 2( )T

zw zw w w

T TQ r Q A Q QA C C QB B Q       

where A A I   . In addition, from a Schur 

complement, equation (4) can be rewritten as: 

 

 

2

1

2

0 0
0

0

0

T

T T

T

w z

w zw

z zw

r Q A QB C

A Q

B Q D

C D I





 

 





 
 

 
 


 
  
 (4) 

 

 If we consider the system represented in 

(1), then a necessary and sufficient LMI condition 

can be expressed as follows:  

 

Theorem 1: As for the linear system, let the 

desired circular pole region ( , )D r  and the H∞ 

norm bound constraint 0   be given.  The 

system (1) is satisfied with requirements (a)-(b)   if 

and only if there exists a symmetrical positive 

definite matrix 
n nP R   such that  

 

2

2

0 0
0

0

0

TT

w z

w zw

z

T T

zw

r PA B PC

A P P

B D

C

P

P D I





 

 



 
 

 
 


 
  

   

 (5) 
 

Proof: We start with pre- and post-multiplying (4) 

by the matrix diag{ , }U P I to yield (5). 

Remark 1 According to Theorem 1, it is 

straightforward to find a full state control law 

( )u Kx with pole constraints that can minimize 

a pre-specified H∞ norm constraint 

simultaneously. Hence, the design problem is 

reformulated as the following optimization 

problem: 

Minimize 0   subject to LMI (6) and 0P   

  

 

where 
2

1

2

( )

0 0
0

0

0

T

T

T

u w z

u

w zw

z zw

T

r A P B Y B PC

A P B Y P

B

C

P

D IP

D





 

 





  
 

  
 


 
  

 (6) 
 

As a result, a full state control gain can be 

selected as 
1K YP which can be efficiently 

found through convex optimization algorithm. 

 
4.  Dynamic output feedback controller design 

 We consider the system in (1), place all 

closed-loop poles of linear systems in ( , )D r
region and satisfy the pre-specified H∞ norm 

constraint simultaneously via a full-order output 

feedback controller. Thus the state space 

representation of the desired controller can be 

shown as follows: 
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( ) (

)

)

) (( 0

K K

K

K K
A Bx t x t

C yu t t

    
     

    
     (7) 

where ( ) K Kn n

Kx t R


  is the state of the 

controller, and ,K KA B ,and KC  are  matrices 

with the appropriate dimensions that can be 

founded.  Hence, the overall closed-loop system is 

given by: 

( ) ( )

( ) ( )

cl clcl cl

cl cl

A Bx t x t

C Dz t w t

    
     

    
 (8) 

where 

 

( )
( ) , ,

( )

, 0 .
0

K

cl cl

K K K

w

cl cl z

x t A BC
x t A

x t A

B C C
B

B C

 
 
 

   
    
   

 

 (9) 

 

Theorem 2: As for the linear systems (1). Given 

the desired circular pole region ( , )D r and the 

H∞ norm bound constraint 0  , the closed-loop 

system can achieve the expected performance 

requirements (a)-(b) if and only if there exist 

,  , , ,X Y A B and C  such that 

11 21 31 41

21 22

2

31

41

0 0
0

0

0

T T T

z

zw

T

wD

D I



    
 
   
  
 
   

 (10) 

where 
2 2

11 2 2
,

r X r I

r I r Y

 
    

 
 

 22

21

31

41

,

, ,

u

z z

T T

w w

AX BC X A I

A I YA B C Y

X I
C

B B

X C
I Y

Y

 

 





   
   

   

 
     

 

    
 (11) 

Therefore, a desired dynamic control law can be 

constructed as: 

1 1

1

1

( ) ( ) ,

( ) ,

T T

K K y u K

T

K

K

A N A YAX N B C X YB C M M

B N B

C CM

 





   





 (12) 

where X and Y  are arbitrary non-singular 

matrices satisfying .TM N I XY   
 
Proof:  We apply a changing variables method and 

the define the matrix P  and 
1P

 as follows 

1: , : ,
T TX M Y N

P P
M U N Q


   

    
   

 (13) 

where the order of controller Kn  is equal to the 

order of plant n .  After pre-multiplying and post-

multiplying (5) by 2 2diag{ , , , }I I  and its 

transpose, respectively, we obtain: 

 
2

2 2 2 2

2 2

2 2

2 2

2

2

2

(

( ) 0 0
0

)

0

0

T

cl

T T T T T

cl

T T

cl

zw

cl z

cl

T

cl

w

T

r PA B PC

A P P

B D

P

PC D I

 

 



     
 
   

 


 
 







 





 (14) 

where 

1 2: , :
0 0

X I I Y

M N

   
      

   
 (15) 

Subsequently, it is apparent that 

1 2

1 1 2 1

,

0.T T

P

X I
P

I Y

 

 
       

 

 (16) 

We substitute clA  and P in (5) and the controller 

variables are then renamed as: 

 
1:

        

.

:

:

K y u K

K

K

T

K

T

A YAX N B C X YB C M

N A

B N

M

C M

B

C

  







 

 

Additionally, we can easily check each term in (5) 

as follows: 
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2 2

2

2 2 2
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 

2

2

2

2 ,

,

T

cl z z

w w

T T T

cl

P
X I

I Y

C CP

B B Y

X C

B

 

 

 
   




 

 



  

 (17) 

which imply that (11) holds. 

 

5. Vehicle suspension systems 

 
Figure 2  Quarter-car suspension model with active 
suspension 
 

 As mentioned earlier, the developed design 

method is applied for designing a dynamic output 

feedback H∞ controller for a quarter-car suspension 

system. Applying a first-order state space model, 

the following expression is for the quarter-car 

suspension system with a suitable vector of 

controlled output. 

 Considering the quarter-car system model 

depicted in Figure 1, its dynamic model can be 

written as 

 

( ) [ ( ) ( )]

              [ ( ) ( )] ( )

( ) [ ( ) ( )] [ ( ) ( )]

               [ ( ) ( )] ( )

s s s s u

s s u

u u s s u s s u

u u r

m z t c z t z t

k z t z t u t

m z t c z t z t k z t z t

k z t z t u t

  

  

   

  

 

 (18) 

where
sm and 

um denotes the sprung and the 

unsprung masses representing the chassis mass and 

wheel mass, respectively; sk and sc stem from the 

stiffness and damping of the suspension system; 

uk represents the tire stiffness; rz are the vertical 

displacement; ( )sz t  and ( )uz t
 

denotes the 

vertical displacement of the sprung and the 

unsprung masses, respectively; and ( )u t denotes 

the control input of the system considered. Let us 

define the following state variables: 

1 2 3( ) ( ), ( ) ( ), ( ) ( ),s u sx t z t x t z t x t z t  

4( ) ( )ux t z t
. 

As a result, we have a first-order 

state-space equation in the following form:  

( ) ( ) ( ) ( )w ux t Ax t B w t B u t    (19) 

where ( )x t  denotes the state vector, ( )u t is the 

active control to be designed, ( ) ( )rw t z t stands 

for the road disturbance input and the matrices 

, wA B and uB are given by 

 

0 0 1 0

0 0 0 1

,

1 1
0 0 ,

0 0 0

s s s s

s s s s

s s u s s

u u u u

T

w

s u

T

u
u

u

k k c c
A

m m m m

k k k c c

m m m m

B
m m

k
B

m

 
 
 
 
   
 
 

  
 

 
  
 

 
  
 

 (20) 
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Furthermore, we define the vector of 

controlled output to be main performance criteria; 

especially, ride comfort, suspension stroke, road 

holding ability, and the required control effort. 

These criteria are able to be quantified through the 

sprung mass acceleration ( )sz t , the suspension 

deflection ( ) ( )s uz t z t , the tire deflection 

( ) ( )u rz t z t and the control input force ( )u t , 

respectively. To attain good vehicle suspension 

characteristics, such criteria are necessarily made 

as small as possible, thereby considering the 

following vector of controlled outputs: 

 

 
1

2

3

( )

( ) ( )

( ) ( )

( )

     ( ) ( ) ( )

s

s u

u r

z zw zu

z t

z t z t
z

z t z t

u t

C x t D w t D u t







 
 


 
 
 
 

  

 (21) 

with  

 

1 1

2

2

3

0 0 ,

0 0 0

0 0 0 0

0 0 0 ,

1
0 0

s s s s

s s s s

z

T

zw

T

zu

s

k k c c

m m m m

C

D

D
m

 







 
  
 
  
 
 
  

 

 
  
 

 (22) 

where ,  ( 1,2,3)i i   denote adjustable weights 

that can manage the tradeoff between the above 

performance requirements. Apart from this, 

assuming that the suspension deflection and the 

sprung mass velocity was only the available 

feedback information. Thus, we obtain the 

observed output vector as follows:  

 ( ) ( )

( )

1 1 0 0
  ( ) ( )

0 0 1 0

s u

s

y

z t z t
y

z t

x t C x t

  
  
 

 
  
 

 (23) 

where ( )x t  is the state vector defined previously, 

and yC is the observed output matrix.  

 In summary, the vehicle suspension 

control problem is formulated to find a dynamic 

output feedback controller in (7) so that the desired 

performance requirements stated in Section 2 are 

simultaneously achieved. 

 

6.  Simulation results 

In this section, the developed control 

methodology is implemented on a vehicle 

suspension system and the closed-loop 

performance is evaluated by the computer 

simulation under a transient condition. That is, 

MATLAB LMI Control Toolbox is employed to 

compute the desired controller. The complete 

system dynamics are obtained under the MATLAB 

environment. The time domain simulations are also 

carried out to investigate the damping performance 

of the designed controllers in the system. The 

proposed controller performance is compared with 

the uncontrolled system and the output feedback 

H∞ controller. The model parameters employ the 

following nominal values (Rubio-Massegu et al., 

2013) 

504.5 kg, 62 kg, 13100 N/m, 

252000 N/m, 400 Ns/m,

s u s

u s

m m k

k c

  

 

and the particular values of the weighting 

coefficients: 1 2 38, 10,  0.0015.     

Moreover, for the proposed controller, we assign 

all closed-loop poles in D(100,50) and set 

( ) 32.zwT s

   

 

6.1.  Time response to a bump disturbance 

 To illustrate the performance achieved by 

the proposed controller, we consider the case of an 

isolated bump in an otherwise smooth road 

surface. We present the time response of the 

quarter-case suspension system to a road 

disturbance. The corresponding isolated bump is 

provided in the form of: 
 

2
1 cos ,  0

2
( )  

            0                  ,  

r

A V L
t t

L V
z t

L
t

V

   
     

    





 

 (24) 

where A and L denote the bump height and length, 

respectively; andV is the vehicle velocity. The 

parameter values are used throughout the 

numerical simulation are as follows: 

0.1 m, 5 m, 12.5 m/s A L V    (Rubio-

Massegu et al., 2013).  
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For this road disturbance, the magnitudes 

of the developed controller and the existing 

controllers used as performance criteria are 

computed. In Figure 3, the solid line exhibits the 

bump response where the proposed method and the 

dashed lines are the output feedback H∞ method. It 

can be seen that the oscillations in bump responses 

are sluggishly damped by the uncontrolled system 

(passive suspension) shown in dash-dotted line. In 

comparison with the uncontrolled system, it is easy 

to observe that the active controller (the proposed 

controller and the output feedback H∞ controller) 

improves significantly, that is, better transient 

dynamic performance on ride comfort (lower peak 

and shorter setting time in the sprung mass 

acceleration), suspension deflection, and road 

holding ability. Moreover, the developed control 

law practically offers the level of vibrational 

response mitigation more than the output feedback 

H∞ control law. Comparing with the output 

feedback H∞ controller, it is obvious that transient 

responses of the proposed controller, in particular 

( ), ( ) ( ), ( )s s u u rz t z t z t z z t 
 

do decay faster 

and exhibit smaller overshoot along with shorter 

settling time. Figure 4 illustrates that the closed-

loop poles of the presented control law are placed 

in the desired region D(100,50). But the closed-

loop poles of uncontrolled systems and the output 

feedback H∞ control are nearer the imaginary axis 

than that of the proposed controller. As known 

well that the more all closed-loop pole locations 

are pushed toward the left-half plane, the more the 

settling time and overshoot decreases. Therefore, 

this is why transient responses of the proposed 

strategy clearly outperform both the uncontrolled 

system and the output feedback H∞ controller.  

The simulation results supported that the 

presented control law exhibits a remarkably 

improved performance in terms of time responses 

comparing with those from the uncontrolled 

system and the output feedback H∞ controller. 

Clearly, the developed scheme not only achieves 

two performance requirements but also offers the 

best transient dynamic properties as resulted in 

faster transient responses of the closed-loop 

systems under a road disturbance. 

 

7.  Conclusion 

In this paper, the design combination of 

an output feedback H∞ control with circular pole 

constraints can effectively minimize the H∞ norm 

and can appropriately assign the closed-loop poles 

into the desired stable region. The resulting 

controller is also effectively used to attenuate a 

road disturbance and to improve transient dynamic 

performances in terms of lower peak, shorter 

setting time, etc. The numerical simulations show 

the effectiveness of the proposed scheme as the 

transient response is improved and better than the 

passive system and the output feedback H∞ 

controller. Future studies will be devoted to the 

extension of this strategy to different mathematical 

complexities including input and output 

constraints, input delay (Li, Liu, Hand, & Hilton, 

2013; Li, Jing, & Karimi, 2014), actuator dynamics 

(Chen & Guo, 2004; Chen, Shiu, & Hsieh, 2011) 

and road excitation model. Besides, the extension 

of this approach on the controller design that 

includes the effects of uncertain and unknown 

parameters deserves further study as well. 

  

8.  References 

Chen, H., & Scherer, C. W. (2004). An LMI based 

model predictive control scheme with 

guaranteed H∞ performance and its 

application to active suspension. 

Proceedings of the American Control 

Conference. Boston, MA, USA. pp. 1487-

1492 vol. 2.  

Chen, H., & Guo, K.-H. (2005). Constrained H∞ 

control of active suspensions: an LMI 

approach.IEEE Transactions on Control 

Systems Technology, 13(3), 412-421.   

DOI: 10.1109/TCST.2004.841661 

Chen, B.-C., Shiu, Y.-H., & Hsieh, F.-C. (2011). 

Sliding-mode control for semi-active 

suspension with actuator dynamics. 

Vehicle System Dynamics, 49(1-2), 277-

290.. DOI: 10.1080/00423111003602376 

Chilali, M., & Gahinet, P. (1996). H∞ design with 

pole placement constraints. IEEE 

Transactions on Automatic Control, 

41(3), 358-367. DOI: 10.1109/9.486637 

Chu, J.-H. (1991). Pole-assignment robustness in a 

specified disk. System & Control Letters, 

16(1), 41-44. DOI: 10.1016/0167-

6911(91)90027-C  

Du, H., & Zhang, N. (2009). Fuzzy control for 

nonlinear uncertain electrohydraulic 

active suspension with input constraint. 

IEEE Transactions on Fuzzy Systems, 

17(2), 343-356.  DOI: 

10.1109/TFUZZ.2008.2011814 

Fialho, I., & Balas, G. J. (2002). Road adaptive 

active suspension design using linear 



SUTHISRIPOK ET AL 

RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 23-31 

30 

parameter-varying gain- scheduling. IEEE 

Transactions on Control Systems 

Technology, 10(1), 43-54. DOI: 

10.1109/87.974337  

Garcia, G. & Bernussou, J. (1995). Pole 

assignment for uncertain systems in a 

specified disk by state feedback. IEEE 

Transactions on Automatic Control, 

40(1), 184-190.  DOI: 10.1109/9.362872  

Garcia, G. (1997). Quadratic guaranteed cost and 

disc pole location control for discrete-

time uncertain systems. IEE Proceedings 

- Control Theory Applications, 144(6), 

545-548.  DOI: 10.1049/ip-cta:19971542  

Haddad, W. M., & Bernstein, D. S. (1992). 

Controller design with regional pole 

constraints. IEEE Transactions on 

Automatic Control, 37(1), 54-69. DOI: 

10.1109/9.109638 

Hrovat, D. (1997). Survey of advanced suspension 

developments and related optimal control 

applications. Automatica, 33(10), 1781-

1817. DOI: 10.1016/S0005-

1098(97)00101-5  

Kanchanaharuthai, A., & Ngamsom, P. (2005). 

Robust H∞ load-frequency control for 

interconnected power systems with D-

stability constraints via LMI approach. 

Proceedings of the 2005 American 

Control Conference, pp. 4387-4392  

Vol.6.  DOI: 10.1109/ACC.2005.1470670 

Koch, G., & Kloiber, T. (2014).  Driving state 

adaptive control of an active vehicle 

suspension system. IEEE Transactions on 

Control Systems Technology, 22(1), 44-

57. DOI: 10.1109/TCST.2013.2240455 

Li, H., Liu, H., Hand, S. & Hilton, C. (2013).  

Design of robust H∞ controller for a half-

vehicle active suspension with input 

delay. International Journal of Systems 

Science, 44(4), 625-640.  DOI: 

10.1080/002077221.2011.617895  

Li, H., Jing, X., & Karimi, H. R. (2014). Output-

feedback-based H∞ control for vehicle 

suspension systems with control delay. 

IEEE Transactions on Industrial 

electronics, 61(1), 436-446. DOI: 

10.1109/TIE.2013.2242418 

 

Prabakar, R. S., Sujatha, C., & Narayanan, S. 

(2013). Response of a quarter car model 

with optimal magnetorheological damper 

parameters. Journal of Sound and 

Vibration, 332(9), 2191-2206. 

DOI:10.1016//j.jsv.2012.08.021  

Robio-Masegu, J., Palocios-Quinonero, F., Rossell, 

J. M., & Karimi, H. R. (2013). Static 

output-feedback control for vehicle 

suspension: a single-step linear matrix 

inequality approach. Mathematical 

Problems in Engineering, 2013, Article 

ID 907056, 12 pages.  

Scherer, C., Gahinet, P., & Chilali, M. (1997).  

Multi-objective output feedback control 

via LMI approach optimization. IEEE 

Transactions on Automatic Control, 

42(7), 896-911. DOI: 10.1109/9.599969  

Wang, Z. (1998). Robust H∞ state feedback 

control with regional pole constraints: an 

algebraic Riccati equation approach. 

Journal of Dynamic Systems, 

Measurement, and Control, 120(2), 289-

292. DOI: 10.1115/1.2802422  

Wang, Z., Zeng, H., Ho, D. W. C, & Unbehauen, 

H. (2002).  Multi-objective control of a 

four-link flexible manipulator: a robust 

H∞ approach. IEEE Transactions on 

Control Systems Technology, 10(6), 866-

875. DOI: 10.1109/TCST.2002.804132  

Xiao, L., & Zhu, Y. (2014).  Passivity-based 

integral sliding mode active suspension 

control. In Proceedings of the 19th 

International Federation of Automatic 

Control World Congress, Cape Town, 

South Africa. August 24-29, 2014, pp. 

5205-5210.  

Yedavalli, R. K., & Liu, Y. 1995).  H∞ control 

with regional stability constraints. 

Automatica, 31(4), 611-615. DOI: 

10.1016/0005-1098(95)98491-N  

Yu, L., Chen, G., & Nan, Y. (2002).  Design of 

output feedback guaranteed cost 

controller with disk closed-loop pole 

constraints for uncertain discrete-time 

system. Proc. 15
th

 Triennial World 

Congress.  

 

 

 



RJAS Vol. 6 No. 1 Jan.-Jun. 2016, pp. 23-31 

ISSN 2229-063X (Print)/ISSN 2392-554X (Online) 

31 

 
Figure 3  Bump responses: Time histories of body acceleration, suspension deflection, and tire deflection 

 
Figure 4  Pole location   
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