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Abstract 

This paper describes a novel method for automatically planning point-to-point motion paths for a robot with six degrees 

of freedom (6-DOF). A linear motion path between two points on such robots may be impractical due to joint angle constraints 

or exceeding the manipulator's operational range. The proposed method employs a genetic algorithm to generate suitable 

motion paths based on the second-, third-, and fourth-orders of Bézier curves. The control points of Bézier curves are 

determined using a genetic algorithm, which can adjust the fitness function as the end-effector moves closer to the obstacle. 

As a result, the algorithm can adjust its motion path planning in response to obstacles. The motion paths are generated with 

the goal of optimizing the robot's inverse kinematic configuration. The results show that using a genetic algorithm and Bézier 

curves can produce motion paths with smooth transitions, minimal changes in joint angles, and no sudden jerks within the 

robot's operational area in both obstacle-free and obstacle avoidance scenarios. This solution may be useful for intelligent 

robots with automated path-planning capabilities in unknown environments. 
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Nomenclature 

Symbol Description 

𝜓, 𝜃, 𝜙 Roll, Pitch, Yaw angle 

𝜃𝑖 Joint angle boundary 

𝛼𝑖 Connecting rod torque 

𝑎𝑖 Connecting rod length 

𝑑𝑖 Joint offset 

𝐴𝑖−1
𝑖  Homogeneous transformation matrix 

𝑅(𝜙,𝜃,𝜓) Rotation matrix 

𝑃𝑖 Control point of Bézier curve 

𝑆𝐴𝐶𝑖 Sum of available inverse kinematic configurations 

 safe distance. 

 reduction factor 

1.  Introduction 

The six-degrees-of-freedom (6-DOF) robot is 

the most powerful tool in modern industrial 

production and life. With the advantage of high 

flexibility, robots with six degrees of freedom can 

perform flexible operations like human hands and 

avoid obstacles more easily than robots with fewer 

degrees of freedom. In current practical applications, 

6-DOF robots mainly perform predetermined 

operations according to known and repeated 

trajectories in production lines. When initially training 

the robot, experts will analyze the motion process and 

based on personal experience, choose a fixed, suitable 
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inverse kinematics configuration. When operating, the 

6-DOF robot will run automatically according to the 

selected default process to perform repetitive 

operations in a fixed workspace. 

As applications in unpredictable environments 

become more common, the demand for intelligent 

robots is growing. To ensure stable operation, these 

robots must be able to calculate and create various 

motion paths on their own. This capability enables 

robots to establish and adapt their work pathways in 

response to external impacts in the workplace. As a 

result, the traditional approach of selecting a single 

fixed trajectory is no longer sufficient. Instead, 

modern robots need to be able to automatically 

generate and select operating trajectories that 

accurately reflect real-world conditions. 

Planning the motion path of a 6-DOF 

manipulator is an important part of the robot control 

process. Motion path planning allows the creation of 

a realistic route from a starting point to a goal point. A 

path is usually made up of a series of connected 

waypoints. In path planning, we must consider the 

robot's constraints and limitations, such as rotation 

angle, workspace, and available inverse configurations. 

The problem of planning the motion trajectory of  

a 6-DOF manipulator presents numerous calculation 

and control challenges. 

According to Gasparetto et al., (2015), path 

planning and trajectory algorithms are important in 

robotics and automation because they ensure smooth 

trajectories required for high-speed operation while 

preventing excessive accelerations and vibrations in 

robot actuators and structures. 

Several articles have been published on the 

application of evolutionary techniques to robot motion 

planning. Juříček et al., (2023) provide an overview of 

evolutionary computation (EC) techniques commonly 

used in engineering, specifically industrial robotics. 

Several of these articles focus on a genetic algorithm 

that generates a moving path for two- or three- link 

robots. Kazem et al., (2008) used a genetic algorithm 

(GA) to optimize point-to-point trajectory planning 

for a three-link robot arm, reducing travel time and 

space while avoiding collisions. 

Some research on the 6-DOF robot focuses on 

automated and optimized path planning and trajectory 

methods. Perumaal, & Jawahar (2012) proposed an S-

Curve trajectory planner for minimum-time and 

collision-free pick-and-place operations in the presence  

of obstacles. Masajedi et al., (2013) used the Bee 

Algorithm (which simulates the food foraging 

behavior of honeybee colonies: neighborhood search 

combined with global search) to assess reliability for 

both linear and curved trajectories for a 6-DOF robot 

running ADAMS software. 

Path planning for a 6-DOF robot has received 

little attention in genetic algorithm research. Hou  

et al., (2023) used the non-dominated sorting genetic 

algorithm II to improve efficiency and reduce runtime 

in trajectory planning for 6-DOF manipulators while 

accounting for kinematic constraints. 

Zhang et al., (2018) propose an improved 

adaptive genetic algorithm for optimizing interpolation 

point time intervals, resulting in time-optimal 

trajectory planning by adjusting the crossover and 

mutation operators in the general adaptive genetic 

algorithm. 

Baressi Šegota et al., (2020) propose utilizing 

evolutionary computation algorithms to optimize 

robotic manipulator paths and reduce joint torques. 

The results show that the genetic algorithm performs 

the best in terms of torque minimization, with 

differential evolution providing comparatively good 

results and simulated annealing producing the weakest 

results while providing smoother torque curves. 

Meng et al., (2021) propose a method to 

improve the efficiency of a robotic chainsaw when 

cutting complex timber joints. They employ particle 

swarm optimization (PSO) to determine the shortest 

cutting path and an adaptive genetic algorithm (AGA) 

to optimize the timing of interpolation points, 

resulting in a time-optimal trajectory. Their findings 

show that PSO reduces path length while AGA 

smoothens trajectories and minimizes time intervals, 

demonstrating the efficacy of their approach for 6-

DOF robots in cutting tasks. 

Mousa et al., (2023) investigate path planning 

algorithms for a 6-DOF robotic arm, comparing 

polynomial methods to the Whale Optimization 

Algorithm (WOA: an optimization algorithm that mimics 

humpback whales' natural hunting mechanism) and 

the Genetic Algorithm (GA). In comparison to GA, 

WOA is better in terms of implementation speed and 

accuracy. However, GA has a smoother beginning and 

end to the moving path. 

Bézier curves, a popular method in computer 

graphics and design, are a versatile way to represent 

and manipulate curves. According to Hughes et al., 

(2014), Bézier curves provide smooth and flexible 

curves that are commonly used in image representation, 

design, and other graphics applications. Yoshida et al., 

(2010) present an interactive method for generating a 

3D class A Bézier curve segment by specifying two 

endpoints and their tangents. 
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Recently, researchers have investigated the use 

of Bézier curves in planning robot motion trajectories, 

as reported in recent publications. Elhoseny et al., 

(2017) describe an efficient dynamic path planning 

method for mobile robots that uses Bézier curves and 

the Modified Genetic Algorithm (MGA). This method 

dynamically determines the robot's path by optimizing 

the distance between the start and target points with 

appropriate control point selection for the Bézier curve. 

Ma et al., (2020) present a novel smooth path 

planning technique based on Bézier curves that 

addresses issues such as redundant nodes and peak 

inflection points in traditional algorithms for a mobile 

robot. They use genetic operations to obtain control 

points and then apply an optimization criterion to choose  

a shorter path while maintaining movement safety. 

AL-Qassara, & Abdulnabib (2018) present an 

optimal path planning strategy for 5-DOF robots that 

employs the Bézier curve technique in robot joint 

space. They use the particle swarm optimization 

(PSO) method to determine the best path with the 

shortest distance and least time while avoiding obstacles. 

The survey of related studies shows that 

researchers predominantly employ pure genetic 

algorithms to generate motion trajectories for 

manipulators. These studies are often confined to 

robots with low degrees of freedom (Kazem et al., 

2008) or concentrate on specific optimization criteria 

such as movement time (Zhang et al., 2018; Meng et 

al., 2021), path distance, joint torque (Baressi Šegota 

et al., 2020; Meng et al., 2021), speed, and movement 

accuracy (Mousa et al., 2023). 

Articles combining genetic algorithms with 

Bézier curves primarily apply to mobile robots and 

aim to create flexible paths while avoiding collisions 

by using some intermediate points for the generated 

movement paths (Elhoseny et al., 2017; Ma et al., 

2020). Only one study has been conducted on the PSO 

swarm algorithm to optimize the distance and control 

time for a 5-DOF robot. No specific studies have used 

genetic algorithms and Bézier curves to generate 

motion paths for a 6-DOF robot. 

Using a single genetic algorithm to plan 

smooth, jerk-free paths point to point faces numerous 

challenges, especially because the algorithm's 

chromosomes must manage a large number of 

intermediate points. This may necessitate a large 

population size, resulting in longer computation times 

and results. Furthermore, combining such algorithms 

with controllers that can dynamically adjust 

trajectories in response to obstacles complicates and 

turns the process unrealistic. 

This article presents a method for creating 

smooth, jerk-free paths for a 6-DOF robot moving 

from point to point using Bézier curves. The genetic 

algorithm will be designed to find control points  

(1–3) on Bézier curves. The fitness function of the 

genetic algorithm integration for the optimal path 

selection of the inverse kinematic configurations is 

described by Nguyen, & Nguyen (2024). This option 

is proposed to limit the size of the genetic algorithm 

and simplify the calculation process, with the goal of 

being feasible when applied to intelligent controllers 

for robots in unknown working environments. 

Our prior study utilized computer simulations 

to evaluate the robot's workspace, factoring in joint 

angles as constraints (Nguyen, & Nguyen, 2024). 

Results show that considering joint angles 

significantly shrinks the robot's effective workspace. 

Additionally, we introduce a method enabling the robot 

to autonomously select the optimal configuration 

during path planning, especially in uncertain scenarios. 

This capability facilitates seamless configuration 

adjustments in line with minimizing changes. The 

findings from this study will serve as the foundation 

for the algorithms outlined and discussed in the 

subsequent sections of this article. 

The sections that follow present a solution for 

motion path planning for a 6-DOF robot using genetic 

algorithms and Bézier curves. Section 2 presents the 

results of our inverse kinematics analysis. For forward 

kinematics, we used the Denavit-Hartenberg (D-H) 

method (Denavit, & Hartenberg, 1955), and for 

inverse kinematics, we used a two-stage geometric 

approach to account for both end-effector position and 

orientation. A genetic algorithm combined with 

Bézier curves creates and adjusts point-to-point 

motion paths in the robot's workspace, considering the 

possibility of avoiding obstacles during motion path 

planning, as described in Section 3. Section 4 presents 

the simulation results of the end-effector's motion 

paths using Bézier curves with obstacle avoidance. 

Our results demonstrate the feasibility of manually 

constructing and adjusting trajectory paths to avoid 

obstacles in the manipulator’s workspace. Section 5 

presents the paper's conclusion. 

 

2.  Kinematic model 

Kinematic problems, such as forward and 

inverse kinematics, must be solved to plan the motion 

path of a robot. The Denavit-Hartenberg's principle of 

determining the coordinate system and parameters is 

frequently applied to forward kinematics problems. 

Finding the joint variables to bring the end-effector to 
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the desired position for a 6-axis robot is a complex 

inverse kinematics problem (Hartenberg, & Denavit, 

1964). As a result, geometric methods are widely 

used. However, the interdependent results in the 

multi-solution problem remain a significant barrier to 

determining a suitable configuration for a 6-DOF 

robot (Yang et al., 2016). 
 

2.1 Forward kinematics 

According to Spong et al., (2004), the typical 

6-DOF manipulator platform has the six 

homogeneous transformation matrices 𝐴𝑖−1
𝑖  given in 

Equation (1): 

𝐴𝑖−1
𝑖 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖 𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖 −𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

] (1) 

where  

cαi≡ cos ( αi); sαi≡ sin ( αi);(i=1,2, …, 6) 

cθi≡ cos ( θi);sθi≡ sin ( θi);(i=1,2, …, 6) 

 

Lee, & Ziegler (1984) introduced the concept 

of forward kinematics, with Equation (2) detailing the 

transformation matrix. This matrix represents the 

spatial relationship between the end-effector and the 

robot's base coordinate system by determining its 

position and orientation. 

T0
6=A0

1 A1
2 A2

3 A3
4 A4

5 A5
6 

T0
6= [

nx sx ax p
x

ny sy ay p
y

nz sz az p
z

0 0 0 1

] = [R0
6 P0

6

0 1
]            (2) 

 

The vectors n, s, and a define the end-effector's 

orientation, while the vector p represents its position. 

𝑅0
6 is the rotational matrix that describes the 

orientation of the end-effector's coordinate system 

in relation to the base coordinate system, while 𝑃0
6 

is the position vector of the end-effector's 

coordinate system within the base coordinate 

system. Together, these vectors describe the end-effector's 

spatial configuration in the base coordinate system. 

 

2.2 Inverse kinematics 

For a 6-DOF robot, solving the inverse 

kinematics problem involves finding the joint angles 

that correspond to a specified end-effector position 

and orientation. According to Piotrowski,  & Barylski, 

(2014), this problem can be approached in two stages: 

first, determining the inverse kinematics of position to 

calculate the first three joint angles (𝜃1, 𝜃2, 𝜃3), and 

then determining the inverse kinematics of orientation 

to calculate the final three joint angles (𝜃4, 𝜃5, 𝜃6). 

This division simplifies the overall kinematic analysis 

and is outlined in Nguyen, & Nguyen (2024). 

According to Spong et al., (2004), the rotation 

matrix, based on the rotation angles Roll, Pitch, and 

Yaw (RPY), is illustrated as follows: 

𝑅(𝜙,𝜃,𝜓) = 𝑅𝑧(𝜙). 𝑅𝑦(𝜃). 𝑅𝑥(𝜓) =

[

𝑐𝜙𝑐𝜃 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑠𝜙𝑐𝜃 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓
−𝑠𝜃 𝑐𝜃𝑠𝜓 𝑐𝜃𝑐𝜓

] (3) 

Equation (4) provides the orientation matrix 

𝑅0
6, which is obtained for wrist orientation and has the 

same structure as the RPY transformation matrix 

R(ϕ,θ,ψ). 

R0
6=R0

1R1
2R2

3R3
4R4

5R5
6=R0

3.R3
6            (4) 

  The matrixes 𝑅(𝜙,𝜃,𝜓) and 𝑅0
6 can be compared 

as follows: 

R3
6=(R0

3)
-1

R0
6=(R0

3)
-1

R(ϕ,θ,ψ)           (5) 

Equation (5) derives the matrix (R0
3)

-1
  from 

angles θ1,θ2,θ3, and matrix 𝑅(𝜙,𝜃,𝜓)is defined by RPY 

angles. Therefore, it becomes possible to find the 

remaining corresponding angles θ4,θ5,θ6 from matrix 

R3
6. 

The inverse kinematics problem of a 6-DOF 

robot usually has four sets of solutions corresponding 

to four different configurations at the same position 

and direction angle of the terminal coordinates. 

Dividing the analysis process into two sequential 

stages simplifies determining solution sets compared 

to traditional methods. The following section 

discusses automatic path planning with a genetic 

algorithm and Bézier curves, including obstacle 

avoidance considerations. 

 

3. Automated path optimization using genetic 

algorithms combined with Bézier curves 

3.1 Bézier curve 

A Bézier curve is a continuous, smooth curve 

composed of a starting point, a number of control 

points, and an end point. Figure 1 demonstrates how 

the Bezier curve's high-order derivative continuity 

enables it to change smoothly from beginning to end. 

As a result, the Bezier curve is useful for planning the 

robot's travel path because it is both continuous and 

smooth (Abbas et al., 2011). 

In the Oxyz coordinate system (Farin, 2006), 

the Bezier curve of degree ‘n’ is defined as: 
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𝑃(𝑡) = ∑ 𝐵𝑖
𝑛(𝑡)𝑃𝑖

𝑛
𝑖=0 0 ≤ 𝑡 ≤ 1 (6) 

where: 

Bi
n(t)= (

n

i
) ti(1-t)n-i, i=0,1,…,n is Bernstein 

polynomials with degree ‘n’. 

Pi=(xi,yi
,zi), i=0,1,…,n are the control points of 

Bézier curve. 

 

 
a) second-order Bézier curve 

 

 
b) third-order Bézier curve 

 

 
c) fourth-order Bézier curve 

 

Figure 1 Construction of Bézier curves (Reprinted from 

Bézier curve, 2014) 

 

Typically, traditional path planning algorithms 

use Bézier curves, which have fixed starting and ending 

points while other points change the curve's trajectory. In 

this paper, the Bézier curve property was used to plan the 

path for a 6-DOF manipulator's end-effector, with the 

Bézier curve's starting and ending control points (𝑃0 and 

𝑃𝑛) representing the starting and target positions of the 

moving path, respectively. The remaining control points 

Pj (j=1,2,…,n-1) on the Bézier curve are used to alter 

the motion path, allowing the robot arm to travel from its 

starting point to its final destination in the workspace. In 

the following section, the proposed genetic algorithm 

creates control points for the Bézier curve, yielding a 

smooth motion path with obstacles avoidance in the 

robot's environment. 

 

3.2 Genetic algorithm. 

Genetic algorithms are a technique in the fields of 

machine learning and artificial intelligence inspired by 

genetic mechanisms and natural evolution. The basic 

idea of this algorithm is to use genetic operations such as 

crossover and mutation to create new generations from 

the best individuals of the current generation. Genetic 

algorithms are often applied in optimization problems 

and searching large solution spaces, including the 

problems of finding optimal paths, optimizing objective 

functions, and training neural networks in machine 

learning. The outstanding feature of this algorithm is its 

ability to automatically find potential solutions without 

the need for deep expertise. This genetic algorithm is also 

suitable for creating a manipulator's movement trajectory, 

particularly in unknown working environments. 

The purpose of this article is to use genetic 

algorithms to generate an automatic path for a 6-DOF 

manipulator's end-effector moving from point A 

(xA,y
A
,zA) to point B (xB,y

B
,zB),  using the Bézier curve 

inside the workspace. The starting and ending points of 

the Bézier curve are assigned to the positions of points A 

and B on the moving path. A genetic algorithm is used to 

determine the position of the remaining control points Pj 

(xj,yj
,zj) of the Bézier curve by assigning values 𝑥𝑗, 𝑦𝑗, 

and 𝑧𝑗 along the xyz coordinate axes to the population 

member's chromosomes. After each evolutionary 

process, the positions of points Pj (xj,yj
,zj) will be 

determined using the changing value of the optimal 

function. In this algorithm, the objective optimization 

function is the total number of available inverse 

kinematic configurations of the robot during the end-

effector's motion along the path from the start point to the 

endpoint. The number of inverse kinematic configurations 

during manipulator end-effector movement is determined 

using a tool developed and presented by the authors in  

a recent publication (Nguyen, & Nguyen, 2024). 

The objective function will be different for each 

path formed by the Bézier curve with control points 𝑃𝑗. 

The best 𝑃𝑗 position combinations from each 

evolutionary cycle will be carried over to the next 

evolutionary cycle. After completing the evolution 

process with the optimal objective function, the 

manipulator end-effector's moving path will be built 

using a Bézier curve with the starting, ending, and 

control points 𝑃𝑗. Figure 2 depicts the proposed genetic 

algorithm combined with the Bézier curve, while Table 1 

provides information on the fitness function and 

adjusting for obstacle avoidance. 
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Figure 2 Flow chart of path planning using genetic 

algorithms combined with the Bézier curve 

Table 1 The fitness function and adjusting to obstacle 

avoidance 

Input: The 6-DOF robot's parameters and workspace, path 

start and end points, the n-order Bézier formula, GA 

algorithm parameters, and the spatial region of the obstacle. 

Procedure: Automated path planning and obstacle 

avoidance 

Path-planning algorithm: 

1. Initialize the first population.  

2. Main loop:  

- Assign 𝑃𝑗  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) into the chromosome.  

- Calculate the optimal function and then apply selection, 

crossover, and mutation to the population's chromosomes.   

The optimal function is given below: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
∑ 𝑆𝐴𝐶𝑖

𝑛
𝑖=1

𝑛
                                   (7) 

where: 

• n is the number of switched points on the shortest path on 

the path from point A to point B according to Nguyen 

and Nguyen (2024). 

• SACi is the total number of inverse kinematic 

configurations that can be achieved at the ith position 

of end-effector, calculated using the following 

pseudocode: 

The pseudocode computes SACi 

for xi=1:n 

      for yi = 1:n 

           for zi = 1:n 

                if (xmin -  ≤ xi ≤ xmin + ) and (ymin -      

                        ≤ yi ≤ ymin + ) and (zmin -  ≤ zi  

                        ≤ zmin + )  

                         𝑆𝐴𝐶𝑖 = . ∑ 𝐶𝑘
4
𝑘=1  

                else 

                          𝑆𝐴𝐶𝑖 = ∑ 𝐶𝑘
4
𝑘=1  

                end 

           end 

      end 

end 

where:  

• 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 are the positions of the robot's end-effector. 

• 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 , 𝑧𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥 are obstacle 

region limits in the Oxyz coordinate system. 

•  is the safe distance between the manipulator end-

effector and the obstacle. 

•  is the reduction factor when the end-effector is 

close to the obstacle. 

• Ck is equal to 1 if the kth inverse configuration 

satisfies the constraint of all joint angles at the ith 

position and is equal to 0 otherwise (𝑘 = 1,2,3,4). 

- Repeat the main loop until the termination condition is met 

or the maximum generation is achieved. 

Output: The 𝑃𝑗  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) positions of the Bézier curve, 

moving paths, and fitness values. 
 

 

Input 

- The robot and GA algorithm parameters 

- The starting and ending points: A (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) 

and B (𝑥𝐵, 𝑦𝐵 , 𝑧𝐵),   
- The spatial region of the obstacle (if any) 

Set up the 𝑃𝑗  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) by selecting the n-order 

of Bézier curves. 

Initialize the first population of the GA algorithm 

Assign the control point 𝑃𝑗  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) to the 

chromosomes 

Check if there are 

any obstacles? 

Output 

The optimal control points 𝑃𝑗  (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) 

When the end- 

effector approaches 

the obstacle, update 

the SACi with the 

reduction factor. 

Calculate the fitness function and find the best 𝑃𝑗 

position combinations for each evolutionary cycle.  

Calculate the total number of inverse kinematic 

configurations that can be achieved at the ith 

position of the end-effector (SACi) 

Meet the termination 

condition or reach the 

maximum generation? 

Yes 

No 

No 

Yes 

Loop 
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This genetic algorithm also considers the ability 

to avoid obstacles on the constructed paths. It identifies a 

box-shaped structure as the obstacle on a previously 

generated path. The algorithm then adjusts its objective 

function to consider the path segments located in the 

obstacle's spatial region. Furthermore, to ensure the 

manipulator's safety while moving to avoid obstacles, a 

safe distance is included in the condition function for 

recalculating the objective function in the algorithm. 

Equation (7) modifies the 𝑆𝐴𝐶𝑖 value when the robot's 

end-effector position (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is within both the 

obstacle's area (defined by 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛, 
𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) and a nearby safe zone with a spatial 

offset (). To achieve an accurate and varied 

examination, the genetic algorithm generates moving 

trajectories using 2nd, 3rd, and 4th-order Bézier curves. 

Furthermore, a simulation program is developed to 

evaluate the manipulator's movement along these paths. 

 

4.  Simulation results and discussion 

The typical 6-DOF manipulator used in this paper 

is comparable to the KUKA KR 15/2 industrial robot 

described by Gracia et al., (2009). To simulate the 

algorithm, the authors suggest a robot model with 

Denavit-Hartenberg (D-H) parameters similar to the 

AKB-IRV1 robot from AKB Machinery (n.d.). This 

proposed robot has similarities to the object described in 

our previous study (Nguyen, & Nguyen, 2024), and its 

D-H parameters are shown in Table 2. Furthermore, 

Table 3 provides a foundational set of general parameters 

for the proposed genetic algorithm to use in simulation. 

 

Table 2 The 6-DOF robot’s D-H parameters 

Joint i αi (rad) 𝒂𝒊  (mm) 𝒅𝒊 (𝒎𝒎) 

1 𝜋/2 100 370 

2 0 300 0 

3 𝜋/2 111.36 0 

4 −𝜋/2 0 300 

5 𝜋/2 0 0 

6 0 0 105 

 

Table 3 Genetic algorithm parameters 

The number of individuals in the population 100 

Probability of mutation (%) 5% 

Probability of crossover (%) 89% 

Max generation (cycles) 200 

Selection type Tournament 

Crossover type Two points 

Safe distance () (m) 0.05 

Reduction factor () -1 

 

All simulation results in this section are 

evaluated using the proposed manipulator D-H 

parameters in Table 2, with the suggested limit on the 

manipulator's joint angle determined as −𝜋 < 𝜃𝑖 < 𝜋, 

and the genetic algorithm parameters in Table 3. 

 

4.1 Problem description 

The basic motion planning problem is to find a 

suitable pathway from point A to point B for the end-

effector in the Oxyz coordinate system. The first and 

simplest idea is to create a straight-line path for the 

end-effector. With this straight-line motion, the end-

effector moves linearly along points that divide 

equally in Oxyz coordinates. 

Consider a 6-DOF manipulator with 

parameters D-H according to Table 2. Let the end-

effector move in a straight line from point A (-0.1, 0.2, 

0.7) to point B (0.3, -0.1, 0.4) with a fixed direction 

angle (𝜙, 𝜃, 𝜑 = 0) in Oxyz coordinate. This straight-

line moving path is divided into n = 1000 equally 

spaced discrete points. At each discrete point on the 

motion path, the feasibility of inverse kinematic 

configurations is considered with the limit on the 

manipulator's joint angles. 

a) initial viewpoint  

b) subsequent angle  
Figure 3 The end-effector moves in a straight line from 

point A (-0.1, 0.2, 0.7) to point B (0.3, -0.1, 0.4) 

A 

B 

A 

B 
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The survey results depicted in Figure 3, 

captured from two distinct viewing angles, illustrate 

the straight-line trajectory of the end-effector from 

point A to point B. Some specific red-colored points 

have no available inverse kinematic configurations. 

Those red-colored points show impossible motion 

path segments for the end-effector. This may be due 

to constraints in joint angles or the motion path 

occurring partially outside the manipulator's operating 

range. Along the path, the cyan segments represent the 

discrete points that have at least one available inverse 

kinematic configuration. 

According to Nguyen, & Nguyen (2024), 

Figure 4 shows the sequence of configurations as the 

end-effector transitions from point A to point B 

through 1000 evenly distributed discrete points along 

the pathway. Configurations 1 and 3 are satisfied by 

separate segments in the response, but configurations 

2 and 4 are not available. The interval points (1-281), 

(309-680), and (934-1000) align with configuration 1, 

whereas points (851-1000) correspond to configuration 3. 

When comparing the four configurations, no inverse 

configuration is available that matches the end-

effectors' straight motion path in the (282–308) and 

(681–850) interval points. 

 

 
Figure 4 Response of inverse kinematic configurations 

along the straight line from point A to point B 

 

 

 

 

 

 

Straight-line motion paths to move the end-

effector from one location to another are not always 

feasible. In this case, it is necessary to create a new, 

fully accessible path from A to B. Every discrete point 

on this path must have at least one available inverse 

kinematic configuration. This path planning can be 

based on the operator's expertise or on intelligent 

methods such as genetic algorithms. The following 

section will show the simulation results for the point-

to-point motion planning algorithm, which applies a 

genetic algorithm to combine Bézier curves of varying 

orders while considering obstacle avoidance. 

 

4.2 Automated path optimization 

Consider the second-, third-, and fourth- order 

Bézier curves, as shown in Figure 1, with the moving 

path's starting and ending points 𝑃0 and 𝑃𝑛, 

respectively. A genetic algorithm will be used to 

determine the position of the control points 𝑃𝑗 in the 

Oxyz coordinate system and create motion paths for 

the end-effector to move from point A to point B. 

These curves are required to accommodate joint angle 

limit conditions and inverse kinematic configurations 

within the robot's workspace. 

Figure 5 illustrates the optimal result obtained 

by applying the genetic algorithm with the parameters 

in Table 4 to determine the position of the control 

points 𝑃𝑗 in the Oxyz space using the objective 

function (7). For the quadratic (second-order) Bézier 

curve, the genetic algorithm gives the best results at 

the 32nd iteration cycle, with a maximum fitness value 

of 832, where the control point is 𝑃1 (0.0611, -0.5386, 

0.5517). For the third-order Bézier curve, the genetic 

algorithm gives the best results at the 73rd iteration 

cycle, with a maximum fitness value of 747.5, where 

the control points are 𝑃1 (0.3299, 0.3317, 0.4009) and 

𝑃2 (0.5517, 0.5517, 0.5517). For the fourth-order 

Bézier curve, the genetic algorithm has the best results 

at the 27th iteration cycle, with a maximum fitness 

value of 695, where the control points 𝑃1 (-0.2425, 

0.2177, 0.2307), 𝑃2 (0.2627, 0.5517, 0.5517), and 𝑃3 

(0.5517, 0.5517, 0.5517) are located. 

 

 

 

B 
 

A 
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a) second-order Bézier curve 
 

b) third-order Bézier curve 
 

c) fourth-order Bézier curve 

Figure 5 Fitness value using Bézier curves 

 
Table 4 Optimal result using a genetic algorithm to create moving paths based on Bézier curves 

Bézier curve order Second order Third order Fourth order 

Max fitness value 832 747.5 695 

Best iteration cycle 32nd 73rd 27th 

Control point 𝑃1(𝑥1, 𝑦1, 𝑧1) (0.0611, -0.5386, 0.5517) (0.3299, 0.3317, 0.4009) (-0.2425, 0.2177, 0.2307) 

Control point 𝑃2(𝑥2, 𝑦2, 𝑧2) - (0.5517, 0.5517, 0.5517) (0.2627, 0.5517, 0.5517) 

Control point 𝑃3(𝑥3, 𝑦3, 𝑧3) - - (0.5517, 0.5517, 0.5517) 

Total available inverse configuration 1,663 1,494 1389 

 

Figures 6a, 7a, and 8a show the end-effector's 

motion path relative to the order of the Bézier curves, 

displaying its smooth and responsive movement. 

These figures show the motion curve generated by the 

genetic algorithm in the Oxyz coordinates, which 

corresponds to the constraints of joint angles and 

selected inverse kinematic configurations. Figures 6b, 

7b, and 8b show various inverse kinematic 

configurations based on these motion paths. These 

diagrams show how the inverse configuration aligns 

with the end-effector's movement from point A to 

point B using Bézier curves. 

Figures 6b, 7b, and 8b show that the first 

inverse kinematic configuration corresponds to the 

entire motion path of the end-effector. Meanwhile, the 

remaining inverse kinematic configurations are only 

available within specific ranges. In each of the three 

cases, the first configuration will be chosen primarily 

for the motion controller. The number of the third 

inverse kinematic configurations for the second-order 

Bézier curve increases significantly (394–1000) when 

compared to linear motion (Figure 4). Additionally, a 

small segment (156–168) of the fourth inverse 

kinematic configuration appears in Figure 6b. In 

comparison to the linear motion in Figure 4, the third 

inverse kinematic configuration reduces the number 

of suitable configurations for the third-order Bézier 

curve from 149 to 55. Meanwhile, configuration 2 in 

the range (360–799) appears to be new, responding to 

motion paths as an additional controller option. This 

is similar to the 4th order Bézier curve; the number of 

the third inverse kinematic configurations is reduced 

to 40, and configuration 2 gains an additional segment 

(496–845). 

After calculating the total number of available 

inverse configurations capable of responding to the 

end-effector's motion paths, it was discovered that the 

straight-line motion path shown in Figure 4 has 847 

configurations. Using the genetic algorithm, the 

second-order Bézier curve has 1,663 possible inverse 

configurations, while the third-order Bézier curve has 

1,494. There are 1,389 inverse configurations of the 

fourth-order Bézier curve. It is obvious that the new 

motion paths are Bézier curves, resulting in a greater 

total number of available inverse configurations than 

straight-line motion. 

This indicates that, in addition to providing the 

movement of the end-effector between points A and B 

and in the opposite direction (as described in 

configuration 1), new inverse kinematic configurations 

arise (configurations 2 and 4). This makes it easier to 

select inverse kinematic configurations during the 

manipulator's control programming process. 
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a) The end-effector’s motion path 
 

b) Response of inverse kinematic configurations 

 

Figure 6 End-effector motion path (a) and inverse kinematic configurations (b) with second-order Bézier curve 

 

a) The end-effector moving path 
 

b) Response of inverse kinematic configurations 

 

Figure 7 End-effector motion path (a) and inverse kinematic configurations (b) with third-order Bézier curve 

 

a) The end-effector moving path 
 

b) Response of inverse kinematic configurations 
 

Figure 8 End-effector motion path (a) and inverse kinematic configurations (b) with fourth-order Bézier curve 

 

As a result, the genetic algorithm efficiently 

generates free impact motion paths from A to B using 

second- to fourth-order Bézier curves. These paths 

adhere to joint angle constraints and operate in inverse 

kinematic configurations. Higher-order Bézier curves 

have more control points than second-order Bézier 

A B 

A B 

A B 

A 

B 
𝑃1 

A 

B 

𝑃1 
𝑃2 

A 

B 

𝑃1 

𝑃2 

𝑃3 
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curves, resulting in more inflection points in the 

workspace. This increases control over the end-

effector's movement from point A to point B, and vice 

versa. This approach is useful for creating motion 

paths for manipulators with six degrees of freedom. 

 

4.3 Obstacle avoidance 

To test the algorithm's adaptability in 

generating the end-effector's motion path in uncertain 

environments, a rectangular obstacle will be randomly 

placed along the current motion path. As shown in 

Table 5, these obstacles define distinct regions within 

the Bézier curves. Assuming this, the obstacle's 

location could be determined using a variety of 

position measurement techniques, such as cameras, 

space laser scanning, and so on. In such cases, the 

genetic algorithm adjusts the 𝑆𝐴𝐶𝑖 parameter inside 

the optimization function (Table 1) to improve the 

current path. Figures 9a, 11a, and 13a show the 

obstacle and the available travel path, with the 

restricted segment highlighted in red. After running 

the genetic algorithm with the parameters from Table 

5, new moving paths are reconstructed using the new 

control points 𝑃𝑗
′ shown in Figures 9b, 11b, and 13b. 

Using the 𝑆𝐴𝐶𝑖 parameter adjustment 

algorithm described in Table 1 with  = -1 and  = 

0.05 (m), the simulation results determine the new 

control position 𝑃𝑗
′  for the Bézier curves shown in 

Table 5. Figures 10a, 12a, and 14a illustrate the fitness 

values, while Figures 10b, 12b, and 14b show the 

response of the inverse kinematic configurations after 

adjusting the 𝑆𝐴𝐶𝑖 parameter for avoiding obstacles. 

 

Table 5 Optimal result using a genetic algorithm based on Bézier curves in case obstacle avoidance 

Bézier curve order Second order Third order Fourth order 

Obstacle region limits (m) 

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 , 𝑧𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) 

(0, 0.1, -0.3, -0.2, 0.5, 0.6) (0.2, 0.3, 0.3, 0.4, 0.5, 0.6) (-0.1, 0, 0.3, 0.4, 0.4, 0.5) 

Max fitness value 633.5 535.5 663.5 

Best iteration cycle 2nd 25th  47th  

Control point 𝑃1
′ = (𝑥1

′ , 𝑦1
′ , 𝑧1

′ ) (0.0435, -0.2958, -0.0544) (-0.2650, 0.0424, 0.0436) (-0.2862, 0.0347, 0.0660) 

Control point 𝑃2
′ = (𝑥2

′ , 𝑦2
′ , 𝑧2

′ )  (0.3937, 0.4334, 0.5517) (0.3929, 0.4779, 0.5517) 

Control point 𝑃3
′ = (𝑥3

′ , 𝑦3
′ , 𝑧3

′ )   (0.5517, 0.5517, 0.5517) 

Total available inverse configuration 1266 1070 1338 

 

a) Obstacles and impossible paths of movement (red-colored) 

with a safe distance () 

b) Obstacle avoidance path with new control point 𝑃1
′ 

 

Figure 9 End-effector motion path: before (a) and after (b) obstacle avoidance with second-order Bézier curve 
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a) Fitness value in case obstacle avoidance 

 
b) Response of inverse kinematic configurations in case obstacle 

avoidance 
 

Figure 10 Fitness value (a) and available configuration (b) using a second-order Bézier curve for obstacle avoidance 

 

a) Obstacles and impossible paths of movement (red-colored) 

with a safe distance () 

b) Obstacle avoidance path with new control points 𝑃1
′ and 𝑃2

′ 

 

Figure 11 End-effector motion path: before (a) and after (b) obstacle avoidance with third-order Bézier curve 

 

 

a) Fitness value in case obstacle avoidance 
 

b) Response of inverse kinematic configurations in case 

obstacle avoidance 
 

Figure 12 Fitness value (a) and available configuration (b) using a third-order Bézier curve for obstacle avoidance 
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a) Obstacles and impossible paths of movement (red-colored) 

with a safe distance () 

b) Obstacle avoidance path with new control points 𝑃1
′, 𝑃2

′ and 𝑃3
′ 

 

Figure 13 End-effector motion path: before (a) and after (b) obstacle avoidance with fourth-order Bézier curve 

 

 

a) Fitness value in case obstacle avoidance 
 

b) Response of inverse kinematic configurations in case obstacle 

avoidance 
 

Figure 14 Fitness value (a) and available configuration (b) using a fourth-order Bézier curve for obstacle avoidance 

 

Figures 9b, 11b, and 13b show the algorithm's 

ability to dynamically adjust motion paths. These 

updated paths successfully maneuver around obstacles 

while ensuring a safe distance and smooth curvature 

for end-effector motion. Despite the reduced number 

of available inverse configurations, the algorithm 

intelligently selects new control points (𝑃𝑗
′) to 

generate alternative motion paths. Even when there 

are obstacles, the paths remain within joint angle 

limits and the robot's operational range. Although the 

revised paths may have increased length and curvature 

to avoid obstacles, the manipulator smoothly guides 

the end-effector from point A to point B without the 

need for inverse configuration changes, ensuring a 

certain level of safety when near obstacles.  

Figures 10a, 12a, and 14a show the optimal 

results obtained by running the genetic algorithm with 

the parameters listed in Table 5. The objective 

function (7) computes the new control points 𝑃𝑗
′, 

which have different positions from the current 

control points 𝑃𝑗. The genetic algorithm performs best 

on the quadratic (second-order) Bézier curve at the 

second iteration cycle, with a maximum fitness value 

of 633.5, where the control point is 𝑃1
′ (0.0435, -

0.2958, -0.0544). The genetic algorithm performs best 

on the third-order Bézier curve at the 25th iteration 

cycle, with a maximum fitness value of 535.5, where 

the control points are 𝑃1
′ (-0.2650, 0.0424, 0.0436) and 

𝑃2
′ (0.3937, 0.4334, 0.5517). The genetic algorithm 

improves on the fourth-order Bézier curve in the 47th 

iteration cycle, with a maximum fitness value of 

A B 
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obstacle 

𝑃2 
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𝑃3 
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663.5. In this case, the new location-specific control 

points are 𝑃1
′ (-0.2862, 0.0347, 0.0660), 𝑃2

′ (-0.3929, 

0.4779, 0.5517), and 𝑃3
′ (0.5517, 0.5517, 0.5517).  

When evaluating the available inverse 

kinematic configurations in Figures 10b, 12b, and 

14b, configuration 1 remains the most complete 

configuration for controlling the end-effector move 

from point A to point B. In comparison to the results 

in Figures 6b, 7b, and 8b, configuration 4 is no longer 

possible with the new motion paths. Configurations 2 

and 3 achieve fewer points than the case without 

obstacles. The number of controller configurations 

decreases from 1,663 to 1266 with quadratic Bézier 

curves, 1,494 to 1070, and 1389 to 1338 with third- 

and fourth-order Bézier curves. This reduces the 

possibility of switching inverse kinematic 

configurations during control programming. 

However, the most important aspect is that the 

proposed algorithm can effortlessly generate new 

motion paths based on Bézier curves and self-adjust to 

successfully avoid obstacles. 

 

4.4 Smooth motion analysis 

To evaluate the smoothness of movement along 

Bézier curve trajectories, we look at changes in the 

robot's joint angle values. Because the last three joint 

angles (𝜃4, 𝜃5, 𝜃6) only affect the direction angle of the 

end-effector, the first three joint angles (𝜃1, 𝜃2, 𝜃3) 

will be considered. We will examine the graphs of 

angle and angular difference for 𝜃1, 𝜃2, 𝜃3 when 

considering the motion paths based on Bézier curves 

constructed in both cases with and without obstacles, 

as demonstrated in Sections 4.2 and 4.3. Figures 15 

show the results for angle and angular difference of 

𝜃1, 𝜃2, 𝜃3.

 

 

a) without obstacle 
 

b) obstacle avoidance 

 

Figure 15 Joint angles and angular differences with the second-, third-, and fourth-order Bézier curves in the case of no 

obstacle (a) vs. obstacle (b) 

 

Figures 15 demonstrate the angles and angular 

differences of the first three joints (𝜃1, 𝜃2, 𝜃3) relative 

to the generated motion paths in Sections 4.2 and 4.3. 

The joint angular difference is measured as the end-

effector transitions between consecutive positions 

along the motion paths. These charts are based on 

second-, third-, and fourth-order Bézier curves in 

situations with and without obstacles.  

 When all factors are considered, in the 

presence of an obstacle, the angles (𝜃1, 𝜃2, 𝜃3) have 

greater angular displacement than in the absence of an 

obstacle. The second-order Bézier curve (blue lines) 

has the lowest absolute value of amplitude and the 

most linear path of the angular difference, while the 

fourth-order Bézier curve (green lines) has the highest 

values. Figure 15b shows the maximum absolute 

value of 0.0011 (rad) for the joint angular difference 

(𝜃1 of the fourth-order Bézier curve). 

This demonstrates that the joint angular difference is 

quite small when the manipulator is operating along 

the moving paths. In this case, the end-effector moves 

smoothly with no jerks. It allows the manipulator's 

control to be easier and smoother. As a result, the 

motion paths generated by genetic algorithms using 

Bézier curves are smooth, have low angular disparity, 

and can navigate around obstacles while remaining at 

a safe distance. 

The goal of this paper is to find a new path that 

follows the inverse kinematic configuration when 

moving the end-effector from point A to point B, 
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rather than a straight-line path of motion. These 

motion paths have smooth movements that maintain 

joint angle constraints in the robot's workspace. 

According to the survey findings, the genetic 

algorithm, when combined with Bézier curves, can 

automatically generate a smooth and gentle motion 

path from one point to another in the Oxyz 

coordinates. This algorithm can self-adjust parameters 

in the optimization function to rebuild the moving 

path to avoid obstacles. Using higher-order Bézier 

curves makes the motion paths for the 6-DOF 

manipulator more flexible by providing more control 

points. This algorithm is valuable for smart 

manipulators that can plan and adjust their motion 

paths in uncertain environments. 

 

5.  Conclusion 

This article describes how to automatically 

generate point-to-point motion paths for a 6-DOF 

robot using genetic algorithms combined with Bézier 

curves. The order of the Bézier curve determines the 

number of control points, thereby influencing the 

flexibility of the motion paths. The suggested genetic 

optimal function considers the total number of 

available inverse kinematic configurations along the 

moving paths. The survey results show a straight-line 

motion path may occur due to the robot's limitations. 

The combination of a genetic algorithm and Bézier 

curves generates motion paths with smooth shifts, 

minimal changes in joint angles, and no sudden jerks 

within the robot's operational area. The proposed 

algorithm can also assist the robot in adjusting its 

motion paths when encountering obstacles at a safe 

distance. This algorithm is suitable for 6-DOF robots 

and is able to manage unexpected situations in an 

unknown environment. Finally, future research for the 

6-DOF robot could investigate using a single genetic 

algorithm to generate optimal motion paths that avoid 

obstacles. This could include comparing results from 

previous studies or using optimization search 

algorithms to determine the best number of control 

points for the Bézier curve, as described in this article. 

Subsequent studies will present the related findings. 
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