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Abstract  

Lung cancer is a prevalent disease, with nearly 238,000 new cases diagnosed in 2023. This study utilizes clinical 

predictors from a Kaggle dataset containing 309 observations across 15 variables to aid in lung cancer diagnosis. The variables 

include swallowing difficulty, peer pressure, gender, allergy, yellow fingers, anxiety, wheezing, alcohol consumption, chronic 

disease, chest pain, coughing, fatigue, smoking, age, and shortness of breath. The research aims to develop and compare 

various supervised machine learning models for classifying and predicting lung cancer, while also identifying key clinical tests 

and parameters using unsupervised statistical models. The dataset was divided into training and test sets, balanced, and 

preprocessed for unbiased training. Feature selection and machine learning models were applied to identify crucial predictors. 

The study explored tree models, logistic regression, Naïve Bayes, support vector machine (SVM), ensemble, neural network, 

and kernel models. Among these, the linear SVM achieved the highest accuracy of 93.75% with 5-fold cross-validation. 

However, it showed overfitting, with a lower test accuracy of 82.55%. The Gaussian Naïve Bayes model emerged as the 

optimal choice, providing consistent performance between validation and test cases. It achieved the highest cross-validation 

classification accuracy of 82.81% using only 9 variables: swallowing difficulty, peer pressure, gender, allergy, yellow fingers, 

anxiety, wheezing, alcohol consumption, and chronic disease. This model allows for effective training with fewer predictors 

without compromising classification performance. 
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1. Introduction 

Lung cancer is currently one of the leading 

causes of death in humans. Over the past years, lung 

cancer has been diagnosed globally at an increasing 

rate through time (Thandra et al., 2021; Li et al., 

2023). Scientists believe that smoking is responsible 

for nearly 80% of lung cancer causes; however, non-

smoking individuals are also likely to develop lung 

cancer due to other external predictors, such as being 

a second-hand smoker or fine dust in the atmosphere 

(Walser et al., 2008).  

As technology has drastically developed 

throughout the years, experts can now classify lung 

cancer into 2 brief classifications: small-cell and non-

small-cell lung cancer (Sankar et al., 2023; Ketkomol 

et al., 2024). Those in which are non-small cell types 

are far more common than small cell types and can be 

divided into many subtypes, whether it is squamous 

cell carcinoma, adenocarcinoma, or large cell 

carcinoma (Lareau et al., 2021). Once diagnosed with 

lung cancer, physicians run additional tests to determine 

its spread and stage in the body (Sherry, 2022).  



PECHPRASARN ET AL. 

JCST Vol. 14 No. 3, September - December 2024, Article 55 

2 

The symptoms that an individual with lung 

cancer can have include many things, for example, 

coughing, weight loss, chest pain, and many more 

(Ruano-Raviña et al., 2020). When a physician 

evaluates a patient, they will inquire about those 

symptoms to determine if the patient requires further 

cancer treatment. Most patients with lung cancer 

present with digital clubbing, hemoptysis, coughing, 

weight loss, loss of appetite, chest pain, and fatigue 

(Kim et al., 2022). 

Physicians often spend much time 

investigating possible symptoms that can indicate 

cancer (Vidaver et al., 2016); hence, it will be 

beneficial to rule out some insignificant symptoms to 

help clinical experts reduce diagnosis time.  

A lung cancer diagnosis is usually carried out 

using imaging techniques such as CT scans, MRI 

scans, and PET scans (Bukhari et al., 2017). A 

physician will use the images from these tools to 

determine whether there is a possibility of cancer. The 

current diagnosis of lung cancer involves the use of 

spiral CT technology to assist with chest radiography, 

as well as different types of imaging complemented 

with pathological assessment of biopsies (Cegla et al., 

2023). However, the most common diagnostic tool is 

white light bronchoscopy (WLB) (Nooreldeen, & 

Bach, 2021). Bronchoscopy in the lung is used for 

direct visualization of pathological changes in the 

trachea and bronchi. It has been modified as a flexible 

fiberoptic bronchoscopy that can visualize the 

tracheobronchial tree to the level of segmental and 

subsegmental divisions for diagnosing lung cancer 

(Arroliga, & Matthay, 1993). 

In the past several decades of technological 

development, artificial intelligence (AI) has been 

utilized and implemented in many fields (Cao, 2017). 

There are several types of artificial intelligence these 

days, such as machine learning, expert systems, neural 

networks, and pattern recognition (Pechprasarn et al, 

2023a). Machine learning has grown and developed 

rapidly in recent years and gained worldwide 

attention, and it usually provides systems or programs 

the ability to learn from experiences or data without 

being explicitly programmed (Sarker, 2021). 

Support vector machines (SVM) have the 

advantage of handling structured data, data with 

multiple dimensions, and complex functions, which is 

suitable for determining kernel functions (Sowmya et 
al., 2021). In the 21st century, human life has been 

dramatically involved with AI, and it has also 

extended to the medical field. Numerous AI models 

have been published and proven to play an essential 

role in clinical decision-making as they can help 

clinicians predict treatment response, side effects, and 

prognosis (Chiu et al., 2022). Integrating AI into 

clinical workflows is promising and generally has 

satisfying results. 

Artificial intelligence (AI) improves lung 

cancer diagnosis and treatment by classifying lung 

cancer types with high accuracy using techniques like 

deep learning and enhancing machine learning models 

for better diagnostic performance (Singh, & Gupta, 

2019). With personalized treatment plans and precise 

prognostic predictions from AI, physicians can hope 

for improved patient outcomes (Pereira et al., 2020). 

As research in this field advances, collaboration 

between AI and medical expertise holds promise for a 

brighter future in the fight against lung cancer 

(Lakshmanaprabu et al., 2019).  

Machine learning (ML) has accelerated several 

research fields related to the medical field, and the 

techniques are continuously updated. The ML model 

is adapted to learn from previous diagnoses and 

medical records to produce reliable results when new 

datasets are inserted into the model repeatedly (Rana, 

& Bhushan, 2023). Up until now, AI detection 

methods have also shown great potential in lung 

cancer patient care (Wang et al., 2019), as lung cancer 

is the best field for AI applications due to its 

heterogeneity (Chiu et al., 2022). One example of 

machine learning in lung cancer diagnosis includes 

screening standard criteria and laboratory results of 

patients to predict if they have developed lung cancer 

(Gould et al., 2021).  

Furthermore, AI has also been used in the 

radiomics field, turning datasets into numbers that can 

be analyzed by AI, which is particularly helpful in 

studying lung cancer. After the analysis, the data will 

be able to diagnose, predict the progression of cancer, 

and monitor the treatment process as a helping tool for 

clinical physicians (Tunali et al., 2021). 

The purpose of this study is to use machine 

learning models from the available dataset to identify 

crucial predictors of lung cancer causes. This 

developed model was aimed to scope down the 

predictors and reduce the time for physicians to 

evaluate and diagnose patients suspected to have lung 

cancer with only at-sight symptoms. Furthermore, this 

model should help individuals to observe their 

primary symptoms. We performed several training 

sessions to develop ML models, whether it was to use 

the feature selection method along with the available 

machine learning model in MATLAB2022b to 

identify crucial predictors of lung cancer. 
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2. Objectives 

1 ) To identify critical symptoms indicating 

lung cancer and reduce diagnosis time for clinical 

technicians, the identified symptoms will be tested 

and validated by training and testing the model using 

only the identified symptoms and show that the 

trained model can provide accurate lung cancer 

diagnosis and prediction. 

2 ) To use machine learning models to 

accurately predict lung cancer from the collected 

dataset. Different machine learning models will be 

trained and tested to compare their performance with 

results in the literature. 

3 ) To apply feature selection methods and 

machine learning models to train a less complex lung 

cancer prediction model with similar performance. 

 

3. Materials and methods 

This section demonstrates the methodology, 

data source, data curation, classification training, and 

feature selection process. The process of this study is 

shown in Figure 1, provided below. Here, we propose 

a systematic approach to preprocess the dataset, 

preparing for unbiased training and compare different 

types of supervised machine learning models using 

performance metrics, including accuracy, precision, 

recall, specificity, F1-score, and area under the curve of 

receiver operating characteristic (ROC) curve with 5-

fold cross-validation. After identifying an appropriate 

model, unsupervised feature selection methods 

(Karabulut et al., 2012) based on statistical analysis: 

ANOVA, Kruskal-Wallis, Chi2, and MRMR are utilized 

to identify statistically significant parameters, and these 

clinical features are later verified by training the model 

with fewer predictors to show that the trained model is 

capable of predicting the lung cancer without 

compromising the classification performance. 

 

3.1 Dataset source and details 

The lung cancer dataset we used was collected 

from the Kaggle database website (Sasaki, 2020) 

(accessed February 27). The dataset contains data 

from 309 observances, including yes or no labels with 

details as described in Table 1 below. 

 

3.2 Data Curation 

The 309 observational data available were 

classified into 2 types: negative individuals and 

individuals with lung cancer. There are 39 cases for 

negative individual cases and 270 cases for 

individuals with lung cancer. 

 

3.3 Datasets for training, validation, and test  

datasets 

We reduced the dataset to a training dataset 

with a total of 64 rows, 32 for ordinary individuals and 

32 for individuals with lung cancer, ensuring the 

training set was balanced and unbiased. The 

remaining original data were then separated into an 

unseen testing dataset, consisting of 7 rows of non-

cancer individual data and 238 rows of lung cancer 

data, totaling 245 cases. 

 

3.4 Machine Learning Training, Validation,  

Testing, and Performance Metrics 

We used the Classification Learner application 

available in MATLAB 2022b to train the machine 

learning models listed in Table 2. The models were 

trained to compare their performance on the separated 

dataset (Pechprasarn et al., 2023b). 

Classification performances were evaluated 

using a 5-fold cross-validation computing accuracy, 

precision, recall or sensitivity, specificity, and F1-

score, using the equations 1 to 5 as expressed below. 

 

Accuracy = 
Tp + Tn

Tp + Tn + Fp + Fn
   (1) 

Precision = 
Tp

Tp + Fp
     (2) 

Recall =sensitivity= 
Tp

Tp + Fn
   (3) 

F1-score = 2
Precision × Recall

Precision + Recall
   (4) 

Specificity=
Tn

Tn+Fp
     (5) 

where    Tp represents true positive cases 

Tn represents true negative cases, 

Fp represents false positive cases 

Fn represents false negative cases. 

 

The classification performance was then 

evaluated using the unseen test dataset to determine if 

the models were efficient and accurately predict other 

datasets, i.e., to test whether they could generalize to 

unseen data. 

.
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Figure 1 Process flow in this study includes data curation, data separation, training and testing, and feature selection. 

Adapted from “Identification of Important Factors in the Diagnosis of Breast Cancer Cells Using Machine Learning Models 

and Principal Component Analysis”, published in J. Curr. Sci. Technol, 13(3), p. 645 
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Table 1 Predictors and labels’ details from the downloaded dataset 

Variable Variable Detail Values Type 

Swallowing 

Difficulty 
Experience of pain while swallowing food, drink, or any substances 

Yes: 2 

No: 1 
Predictor 

Peer Pressure 
Experience of being influenced in an activity or behavior by surrounding 

people 

Yes: 2 

No: 1 
Predictor 

Gender Male or Female sexuality 
Yes: 2 

No: 1 
Predictor 

Allergy Symptoms of being hyperimmune to a specific thing(s) 
Yes: 2 

No: 1 
Predictor 

Yellow Fingers Experience of having yellowish fingers 
Yes:2 

No: 1 
Predictor 

Anxiety Experience of being excessively worried or nervous 
Yes: 2 

No: 1 
Predictor 

Wheezing Experience of having a high-pitched sound from lungs while breathing 
Yes: 2 

No: 1 
Predictor 

Alcohol Consuming 
Personal drinking habits, including frequency and amount of beverage 

consumed 

Yes: 2 

No: 1 
Predictor 

Chest Pain Experience having pain or discomfort around the chest 
Yes: 2 

No: 1 
Predictor 

Coughing Experience coughing excessively 
Yes: 2 

No: 1 
Predictor 

Fatigue Experience of being exhausted 
Yes: 2 

No: 1 
Predictor 

Smoking Personal smoking habit, whether one has been smoking or not 
Yes: 2 

No: 1 
Predictor 

Age The length of time one has been used on Earth ever since their labor 
Yes: 2 

No: 1 
Predictor 

Shortness of Breath Experience of being unable to breathe regularly or feeling suffocated 
Yes: 2 

No: 1 
Predictor 

Lung Cancer Class 
Yes: Positive lung cancer case 

No:  Negative lung cancer case 
Yes/No Label 

 

Table 2 The machine learning models utilized in the study 

Model Detail Model Detail 

Tree 

Fine tree 

K-Nearest neighbor 

Fine KNN 

Medium tree Medium KNN 

Coarse tree Coarse KNN 

Logistic regression Logistic Regression Cubic KNN 

Naïve Bayes 
Gaussian Naïve Bayes Weighted KNN 

Kernel Naïve Bayes 

Ensemble 

Boosted trees 

SVM 

Linear SVM Subspace Discriminant 

Quadratic SVM Subspace KNN 

Cubic SVM RUS Boosted trees 

Fine Gaussian SVM 

Neural network 

Narrow Neural network 

Medium Gaussian SVM medium Neural network 

Coarse Gaussian SVM Wide Neural network 

Logistic regression Kernel Tri-layered Neural network 

 

  



PECHPRASARN ET AL. 

JCST Vol. 14 No. 3, September - December 2024, Article 55 

6 

 

3.5 Feature Selection 

Feature selection models, including ANOVA, 

Kruskal Wallis, Chi2, and MRMR, were applied to 

identify crucial predictors contributing to model 

classification accuracy using the Feature Selection 

analysis tool available on MATLAB 2022b. After 

identifying the essential predictors, the model was 

trained to show that they still performed well, similar 

to the models trained using all 15 variables. The results 

section will show that ML models prepared using 

fewer predictors can provide comparable performance 

to the models trained with all available predictors. 

 

4.  Results 

4.1 Machine Learning Classification accuracy  

based on 15 parameters 
Table 3 shows the comparison of the confusion 

matrix, accuracy, specificity, precision, recall, and 

F1-score computed from the trained models using 5-

fold cross-validation and the training dataset of all the 

models available in MATLAB 2022b. As can be seen, 

the best performance model is the Linear SVM 

followed by Quadratic SVM, as their accuracy, 

specificity, precision, recall, and F1-score were 

exceptionally outstanding. 

Table 4 shows the comparison of confusion 

matrix rate, accuracy, specificity, precision, recall, 

and F1-score computed from the trained models using 

5-fold cross-validation and the test dataset of all the 

models in MATLAB 2022b as percentage. Since the 

number of data entries in each class was imbalanced, 

for a fair comparison, the confusion matrices were 

visualized as rate or normalized by the number of 

rows in each class.  

 

Table 3 Confusion matrix, accuracy, specificity, precision, recall, and F1-score computed from the trained models using 5-

fold cross-validation and the training dataset 

Model Detail Tp Tn Fp Fn Accuracy Specificity Precision Recall F1-score AUC 

Tree 

Fine Tree 23 30 2 9 82.81% 93.75% 92.00% 71.88% 80.7% 84.18% 

Medium Tree 23 30 2 9 82.81% 93.75% 92.00% 71.88% 80.7% 84.18% 

Coarse Tree 23 31 1 9 84.38% 96.88% 95.83% 71.88% 82.14% 84.04% 

Logistic 

Regression 
Logistic Regression 26 27 5 6 82.81% 84.38% 83.88% 81.25% 82.54% 83.3% 

Naïve 

Bayes 

Gaussian Naïve 

Bayes 
29 27 5 3 87.50% 84.38% 85.29% 90.63% 87.88% 91.02% 

Kernel Naïve Bayes 27 30 2 5 89.06% 93.75% 93.1% 84.38% 88.53% 91.31% 

SVM 

Linear SVM 29 31 1 3 93.75% 96.88% 96.67% 90.63% 93.55% 97.17% 

Quadratic SVM 29 30 2 3 92.19% 93.75% 93.55% 90.63% 92.07% 96.68% 

Cubic SVM 26 30 2 6 87.5% 93.75% 92.86% 81.25% 86.67% 95.02% 

Fine Gaussian SVM 32 12 20 0 68.75% 37.5% 61.54% 100% 76.19% 77.44% 

Medium Gaussian 

SVM 
28 29 3 4 89.06% 90.63% 90.32% 87.5% 88.89% 96.0% 

Coarse Gaussian 

SVM 
25 32 0 7 89.06% 100% 100% 78.13% 87.72% 96.19% 

Ensemble 

Boosted Trees 12 18 14 20 46.88% 56.25% 46.15% 37.5% 41.38% 0% 

Bagged Trees 29 27 5 3 87.5% 84.38% 85.29% 90.63% 87.88% 90.53% 

RUS Boosted Trees 12 18 14 20 46.88% 56.25% 46.15% 37.5% 41.38% 0% 

Neural 

Network 

(NN) 

Narrow NN 27 27 5 5 84.38% 84.38% 84.38% 84.38% 84.38% 89.26% 

Medium NN 27 26 6 5 82.81% 81.25% 81.82% 84.38% 83.08% 90.14% 

Wilde NN 26 28 4 6 84.38% 87.5% 86.67% 81.25% 83.87% 86.28% 

Bilayered NN 26 27 5 6 82.81% 84.38% 83.87% 81.25% 82.54% 83.84% 

Trilayered NN 27 29 3 5 87.5% 90.63% 90.00% 84.38% 87.1% 86.67% 

Kernel 

SVM Kernel 26 20 12 6 71.88% 62.5% 68.42% 81.25% 74.29% 72.56% 

Logistic regression 

Kernel 
26 21 11 6 73.43% 65.63% 70.27% 81.25% 75.36% 78.91% 
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Table 4 Confusion matrix rate, accuracy, specificity, precision, recall, and F1-score computed from the trained models using 

5-fold cross-validation and the test dataset 

Model Detail Tp Tn Fp Fn Accuracy Specificity Precision Recall F1-score AUC 

Tree 

Fine Tree 61.80% 71.40% 28.60% 38.20% 66.60% 71.40% 68.36% 61.80% 64.92% 69.06% 

Medium 

Tree 
61.80% 71.40% 28.60% 38.20% 66.60% 71.40% 68.36% 61.80% 64.92% 69.06% 

Coarse 

Tree 
57.10% 71.40% 28.60% 42.90% 64.25% 71.40% 66.63% 57.10% 61.50% 60.29% 

Logistic 

Regression 
Logistic 

Regression 
50.80% 100.00% 0.00% 49.20% 75.40% 100.00% 100.00% 50.80% 67.37% 78.36% 

Naïve 

Bayes 

Gaussian 

Naïve 

Bayes 

80.70% 85.70% 14.30% 19.30% 83.20% 85.70% 84.95% 80.70% 82.77% 94.21% 

Kernel 

Naïve 

Bayes 

53.80% 100.00% 0.00% 46.20% 76.90% 100.00% 100.00% 53.80% 69.96% 94.45% 

SVM 

Linear 

SVM 
65.10% 100.00% 0.00% 34.90% 82.55% 100.00% 100.00% 65.10% 78.86% 95.89% 

Quadratic 

SVM 
63.90% 100.00% 0.00% 36.10% 81.95% 100.00% 100.00% 63.90% 77.97% 95.35% 

Cubic 

SVM 
63.00% 100.00% 0.00% 37.00% 81.50% 100.00% 100.00% 63.00% 77.30% 95.95% 

Fine 

Gaussian 

SVM 

94.10% 57.10% 42.90% 5.90% 75.60% 57.10% 68.69% 94.10% 79.41% 89.17% 

Medium 

Gaussian 
SVM 

68.10% 100.00% 0.00% 31.90% 84.05% 100.00% 100.00% 68.10% 81.02% 95.59% 

Coarse 

Gaussian 

SVM 

64.30% 100.00% 0.00% 35.70% 82.15% 100.00% 100.00% 64.30% 78.27% 95.83% 

Ensemble 

Boosted 

Trees 
0.00% 100.00% 0.00% 100.00% 50.00% 100.00% N/A 0.00% N/A N/A 

Bagged 

Trees 
35.30% 100.00% 0.00% 64.70% 67.65% 100.00% 100.00% 35.30% 52.18% 79.89% 

RUS 

Boosted 

Trees 

0.00% 100.00% 0.00% 100.00% 50.00% 100.00% N/A 0.00% N/A N/A 

Neural 

Network 

(NN) 

Narrow 

NN 
63.00% 100.00% 0.00% 37.00% 81.50% 100.00% 100.00% 63.00% 77.30% 85.41% 

Medium 

NN 
79.00% 100.00% 0.00% 21.00% 89.50% 100.00% 100.00% 79.00% 88.27% 95.17% 

Wilde NN 56.70% 100.00% 0.00% 43.30% 78.35% 100.00% 100.00% 56.70% 72.37% 89.50% 

Bilayered 

NN 
59.20% 100.00% 0.00% 40.80% 79.60% 100.00% 100.00% 59.20% 74.37% 85.53% 

Trilayered 

NN 
62.60% 71.40% 28.60% 37.40% 67.00% 71.40% 68.64% 62.60% 65.48% 72.30% 

Kernel 

SVM 

Kernel 
50.00% 100.00% 0.00% 50.00% 75.00% 100.00% 100.00% 50.00% 66.67% 86.28% 

Logistic 

regression 

Kernel 

64.30% 71.40% 28.60% 35.70% 67.85% 71.40% 69.21% 64.30% 66.67% 81.06% 

The best performing machine learning model 

was the linear SVM model with an accuracy of 

93.75%, precision of 96.67%, recall of 90.63%, 

specificity of 96.88%, and F1 score of 93.55%, as 

shown in Table 3 in comparison to the other models. 

The confusion matrix of the validation case using a 5-

fold cross-validation approach and their 

corresponding ROC for this model are shown in 

Figure 2a and Figure 2b below. The area under the 

ROC curves (AUC) was 0.9717 for the two classes. 

However, the accuracy percentage of this Linear SVM 

model was not yet satisfied when tested, as shown in 

Table 4, using the separated test dataset, as established 

in Figure 2c and Figure 2d. The performance metrics 

of the tested Linear SVM indicated high overfitting, 

with discrepancies of over 10%. Table 5 highlights the 

differences in classification performance metrics 

between the validation and test performance, where 

positive and negative values indicate overfitting and 

underfitting performance, respectively. 
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Figure 2 (a) Confusion matrices of the trained Linear SVM validation using the training dataset, (b) ROC curve plots of the 

trained Linear SVM validation using the training dataset, (c) Confusion matrices in percentage and True-False Rate Graph of 

the trained Linear SVM when tested using the test dataset, and (d) ROC curve plots of the trained Linear SVM using the test 

dataset. 

 

Table 5 shows that the only model that did not 

have performance differences between the validation 

and test was Gaussian Naïve Bayes. The Gaussian 

Naïve Bayes model can predict with an accuracy of 

87.50%, a precision of 84.38%, a recall of 85.29%, an 

F1 score of 90.63%, and a specificity of 87.88% for the 

validation. For the test case, the model can provide 

similar performance with an accuracy of 83.20%, 

precision of 84.95%, recall of 80.70%, F1 score of 

82.77%, and specificity of 85.70%, respectively. The 

confusion matrices of the trained Gaussian Naïve 

Bayes for the validation and test cases are shown in 

Figures 3a and 3c. The trained model has an 

overfitting rate of 4.134% on average. Figures 3b and 

3d show the ROC curves with their AUC values; the 

discrepancies were well within 2% between the 

validation and the test cases. The test performance of 

our trained model was similar to the performance 

reported in the literature; for example, Liu et al., 

(2020) employed logistic regression and achieved an 

accuracy of 86.2%. Pacurari et al., (2023), using an 

artificial neural network (ANN) and support vector 

machine (SVM), achieved accuracy from 77.8% to 

100%. Teramoto et al., (2017) can classify 

approximately 71% of lung cancer-suspected images 

correctly by utilizing a deep convolutional neural 

network (DCNN). As you can see, our model 

discrepancies are not significantly different from the 

existing reported performance in the literature. 

 

  

(a) (b) 

(c) 
(d) 
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Table 5 Discrepancies in performance metrics calculated by subtracting Table 3 from Table 4 

Model Detail ΔAccuracy ΔSpecificity ΔPrecision ΔRecall ΔF1-score ΔAUC 

Tree 

Fine Tree 16.21% 22.35% 23.64% 10.08% 15.78% 15.12% 

Medium Tree 16.21% 22.35% 23.64% 10.08% 15.78% 15.12% 

Coarse Tree 20.13% 25.48% 29.20% 14.78% 20.64% 23.75% 

Logistic 

Regression 
Logistic Regression 7.41% -15.62% -16.12% 30.45% 15.17% 4.94% 

Naïve 

Bayes 

Gaussian Naïve Bayes 4.30% -1.32% 0.34% 9.93% 5.11% -3.19% 

Kernel Naïve Bayes 12.16% -6.25% -6.90% 30.58% 18.57% -3.14% 

SVM 

Linear SVM 11.20% -3.12% -3.33% 25.53% 14.69% 1.28% 

Quadratic SVM 10.24% -6.25% -6.45% 26.73% 14.10% 1.33% 

Cubic SVM 6.00% -6.25% -7.14% 18.25% 9.37% -0.93% 

Fine Gaussian SVM -6.85% -19.60% -7.15% 5.90% -3.22% -11.73% 

Medium Gaussian SVM 5.01% -9.37% -9.68% 19.40% 7.87% 0.41% 

Coarse Gaussian SVM 6.91% 0.00% 0.00% 13.83% 9.45% 0.36% 

Ensemble 

Boosted Trees -3.12% -43.75% N/A 37.50% N/A N/A 

Bagged Trees 19.85% -15.62% -14.71% 55.33% 35.70% 10.64% 

RUS Boosted Trees -3.12% -43.75% N/A 37.50% N/A N/A 

Neural 

Network 

(NN) 

Narrow NN 2.88% -15.62% -15.62% 21.38% 7.08% 3.85% 

Medium NN -6.69% -18.75% -18.18% 5.38% -5.19% -5.03% 

Wilde NN 6.03% -12.50% -13.33% 24.55% 11.50% -3.22% 

Bilayered NN 3.21% -15.62% -16.13% 22.05% 8.17% -1.69% 

Trilayered NN 20.50% 19.23% 21.36% 21.78% 21.62% 14.37% 

Kernel 
SVM Kernel -3.12% -37.50% -31.58% 31.25% 7.62% -13.72% 

Logistic regression Kernel 5.58% -5.77% 1.06% 16.95% 8.69% -2.15% 

Note: Positive values indicate overfitting performance, and negative values indicate underfitting performance. 

 

Table 6 The ANOVA values, the p-values of the Kruskal-Wallis test, the probability density of the Chi2 test, and the MRMR 

values of the 15 clinical features 

 

Predictors Anova Predictors 
Kruskal-

Wallis 
Predictors Chi2 Predictors MRMR 

Swallowing 

Difficulty 
15.7113 

Swallowing 

Difficulty 
13.2112 

Swallowing 

Difficulty 
13.3992 

Swallowing 

Difficulty 
0.1954 

Peer Pressure 11.9894 Peer Pressure 10.6140 Peer Pressure 10.7625 Gender 0.1518 

Gender 9.7403 Gender 8.8931 Gender 9.0156 Peer Pressure 0.1488 

Allergy 7.4056 Allergy 6.9774 Allergy 7.0712 Allergy 0.0471 

Yellow Fingers 6.1776 Yellow Fingers 5.9146 Yellow Fingers 5.9927 Yellow Fingers 0.0367 

Anxiety 6.1119 Anxiety 5.8566 Anxiety 5.9339 
Alcohol 

Consumption 
0.0195 

Wheezing 5.4478 Wheezing 5.2646 Wheezing 5.3332 Wheezing 0.0164 

Alcohol 

Consumption 
5.0433 

Alcohol 

Consumption 
4.8984 

Alcohol 

Consumption 
4.9617 Anxiety 0.0137 

Chronic Disease 3.7416 Chronic Disease 3.6910 Chronic Disease 3.7371 Chest Pain 0.0084 

Chest Pain 3.2339 Chest Pain 3.2083 Coughing 3.2476 Coughing 0.0073 
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Table 6 Cont. 

 

 

   
 

   
 

Figure 3 (a) Confusion matrices of the trained Gaussian Naïve Bayes validation using the training dataset, (b) ROC curve 

plots of the trained Gaussian Naïve Bayes validation using the training dataset, (c) Confusion matrices in percentage and 

True-False Rate Graph of the trained Gaussian Naïve Bayes when tested using the test dataset, and (d) ROC curve plots of 

the trained Gaussian Naïve Bayes using the test dataset 

 

  

Predictors Anova Predictors 
Kruskal-

Wallis 
Predictors Chi2 Predictors MRMR 

Coughing 3.2339 Coughing 3.2083 Chest Pain 3.2476 Age 0.0000 

Fatigue 2.0340 Fatigue 2.0422 Fatigue 2.0656 Smoking 0.0000 

Smoking 1.5346 Smoking 1.5470 Age 1.9794 Chronic 

Disease 

0.0000 

Age 1.2622 Age 0.9810 Smoking 1.5641 Fatigue 0.0000 

Shortness of 

Breath 

0.0000 Shortness of 

Breath 

0.0000 Shortness of 

Breath 

0.0000 Shortness of 

Breath 

0.0000 

(a) (b) 

(c) (d) 
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4.2 Number of Predictors Reduction Using Feature  

Selection Method 

Several feature selection methods were then 

applied to the dataset using the built-in feature 

selection tool, including ANOVA, Kruskal-Wallis, 

Chi2, and MRMR in MATLAB 2022b. The results of 

these unsupervised statistical analyses are shown in 

Table 6. 

Table 6 shows that the top 3 most important 

features were (1) Swallowing Difficulty, (2) Peer 

Pressure, and (3) Gender. Although the results from 

different methods here show slightly different 

predictor rankings, the 3 highest scoring predictors 

remained the same for all methods. The 3 statistical 

methods, Chi2, ANOVA, and Kruskal-Wallis, 

provided the same ranking outputs. Each predictor 

was employed to train Gaussian Naïve Bayes models 

by adding one predictor at a time and computing 

accuracy for validation and test cases, as explained in 

the materials and method section. 

From Table 7, the Gaussian Naïve Bayes 

trained using a different number of predictors showed 

dramatic improvement with 3 predictors compared to 

2 predictors; however, the test performance did not 

reach the same performance level. Therefore, the 

number of predictors was increased. The validation 

performance metrics remained within 81.25% to 

85.94% for validation accuracy and 90.09% to 

91.80% for validation AUC; meanwhile, the test 

performance gradually improved from 73.10% to 

85.70% for test accuracy and 74.46% to 91.81% for 

test AUC. Therefore, the number of predictors that can 

provide optimal performance for both validation and 

test cases was 9 predictors, with the performance 

difference well below 1%. If an additional predictor 

was added to the training, the performance metrics 

deviated by nearly 3%. 

 

Table 7 Validation and test accuracy and AUC computed from ROC curves for Gaussian Naïve Bayes models trained using 1 

predictor to 10 predictors 

Predictors included in the model training 
Validation Test dataset 

Performance 

comparison 

Accuracy AUC Accuracy AUC ΔAccuracy ΔAUC 

1 Predictors 

Swallowing Difficulty 
79.69% 73.68% 67.45% 67.44% 12.24% 6.24% 

2 Predictors 

Swallowing Difficulty and Peer Pressure 
73.44% 84.96% 54.00% 65.88% 19.44% 19.08% 

3 Predictors 

Swallowing Difficulty, Peer Pressure, and Gender 
85.94% 90.53% 73.10% 74.46% 12.84% 16.07% 

4 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, and 

Allergy 

81.25% 90.38% 79.85% 87.33% 1.40% 3.05% 

5 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

and Yellow fingers 

84.38% 90.48% 81.70% 87.12% 2.68% 3.36% 

6 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

Yellow fingers, and Anxiety 

82.81% 90.09% 80.05% 84.39% 2.76% 5.70% 

7 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

Yellow fingers, Anxiety, and Wheezing 

82.81% 90.97% 82.75% 88.21% 0.06% 2.76% 

8 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

Yellow fingers, Anxiety, Wheezing, and Alcohol 

Consumption 

81.25% 91.36% 83.40% 90.94% -2.15% 0.42% 

9 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

Yellow fingers, Anxiety, Wheezing, Alcohol 

Consumption, and Chronic Disease 

82.81% 91.80% 83.80% 91.81% -0.99% -0.01% 

10 Predictors 

Swallowing Difficulty. Peer Pressure, Gender, Allergy, 

Yellow fingers, Anxiety, Wheezing, Alcohol 

Consumption, Chronic Disease, Chest Pain 

82.81% 91.60% 85.70% 91.45% -2.89% 0.15% 
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5.  Discussion 

These days, the risk of getting lung cancer is 

increasing each year (Roland, & Rudd, 1998). We 

face many risks of getting lung cancer more quickly 

than in the past, whether from second-hand smoke or 

air pollution. The cost of seeing a physician to test all 

the symptoms and risks is unaffordable for most 

people. Aware of the seriousness of lung cancer, we 

developed this model to help physicians reduce time, 

predictors, and costs in diagnosing lung cancer for the 

patients. 

However, patients may be concerned about the 

accuracy of diagnosing lung cancer with the existing 

AI models, as the accuracy rate does not reach 100%. 

Furthermore, teenagers and young adults can adapt to 

and trust modern technologies, older adults, on the 

other hand, prefer traditional clinical approaches over 

AI. However, several studies and surveys have 

reported that older patients are willing to adapt and 

employ new technologies if they are reliable, protect 

their data privacy (Shandilya, & Fan, 2022) and can 

be integrated into the existing healthcare service 

(Asan et al., 2020). In the next few years, 

technological advancements will develop drastically. 

Models with precise accuracy using fewer predictors 

help ensure the validity of traditional clinical 

methods, lessen the workload for physicians, and 

reduce healthcare costs.   

Our developed artificial intelligence model can 

achieve a classification accuracy of 82.81% and 

requires only 9 predictors from the 15 variables 

available in the dataset. We trained the Linear SVM 

model due to its overall performance during the 15-

variables training and found that its accuracy 

decreased by over 10% during testing. Therefore, we 

tested another model called Gaussian Naive Bayes, 

which produced a satisfactory outcome.  

Compared to results in the literature, as 

discussed in the result section, similar accuracy levels 

were achieved, indicating that our model's accuracy is 

comparable for lung cancer screening. However, 

improvement and optimization are still needed. For 

future study, if anyone is interested in developing our 

model further, they should find appropriate datasets 

with more observations to achieve higher accuracy. In 

our study, the model we developed still has not been 

predicted clearly, with only 82.81% accuracy. 

Therefore, finding a dataset that uses more than 15 

parameters and more than 309 cases will help achieve 

higher accuracy. We still recommend that every 

clinical physician or staff member use the standard 

tumor, node, and metastasis staging system (TNM) for 

a precise prediction along with our model. 

  

6.  Conclusion 

We have utilized the dataset from Kaggle, 

containing 309 observations with 15 variables and 

machine learning models to identify crucial predictors 

for diagnosing lung cancer. First, we rearranged the 

data into training data (64 cases) and test data (245 

cases). Then, the training data were used to train the 

machine learning models. First, we trained the Linear 

SVM dataset, resulting in 93.75% accuracy and 

96.67% precision. After the training session, we tested 

the model again with a testing dataset; in this part, 

achieving only 82.55% accuracy. The accuracy of the 

Linear SVM model did not yet satisfy our requirement 

as it was overfitted. Hence, we tested the second 

model, Gaussian Naïve Bayes. Gaussian Naïve Bayes 

became the most accurate model we found. After 

training and testing the machine learning models, we 

identified 9 important variables from 15 variables and 

309 case studies, with an accuracy of 82.81%. These 

crucial features include Swallowing Difficulty, Peer 

Pressure, Gender, Allergy, Yellow fingers, Anxiety, 

Wheezing, Alcohol Consumption, and Chronic. 
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