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Abstract 
Diabetes, a widespread chronic ailment in the United States, imposes significant economic and health burdens, 

impacting quality of life and life expectancy. This study analyzes a clinical dataset of 253,680 patients from the Behavioral 

Risk Factor Surveillance System (BRFSS). The dataset encompasses 21 predictors, including high blood pressure, cholesterol, 

body mass index (BMI), smoking, stroke, heart disease, physical activity, fruit consumption, vegetable consumption, alcohol 

consumption, insurance coverage, lack of medical visits due to financial constraints, general health, days with mental health 

issues, days with physical injuries in the past 30 days, difficulties in walking, gender, age, income, and education level. The 

objective is to balance the training dataset, compare different supervised machine learning models, and identify critical clinical 

features contributing to diabetes using unsupervised feature selection methods. A total of 34 machine learning models in 

MATLAB2023a were trained and compared. Quadratic Support Vector Machine (SVM), Coarse Gaussian SVM, and Narrow 

Neural Networks achieved the highest training accuracy (76.3%), while the Bilayered Neural Network attained 74.7% on an 

unseen test dataset. Among all, Quadratic SVM demonstrated the best overall performance based on average accuracy, 

precision, recall, and F1 score. Feature selection highlighted nine key predictors: high blood pressure, high cholesterol, BMI, 

heart disease, physical activity, general health, recent bodily injuries, mobility issues, and age. A model trained on these 

features achieved a commendable accuracy of 75.4%, demonstrating the feasibility of a simplified, efficient diagnostic tool 

with a diagnostic efficacy of 0.7. 

This study underscores the potential of streamlined models to predict diabetes with fewer parameters while maintaining 

high accuracy, offering a valuable tool for healthcare diagnostics. 
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1.  Introduction 

Diabetes mellitus, a metabolic condition 

marked by high blood glucose levels, is significant in 

medical history, with roots tracing back to ancient 

civilizations. The word "diabetes" derives from a 

Greek term meaning "siphon," which refers to the 

observation of sweet-tasting urine in people with the 

disease (Anupongongarch et al., 2022). Diabetic 

patients were notably recorded by Apollonius of 

Memphis around 250 to 300 BC, who documented 

this peculiar symptom, marking one of the earliest 

accounts of diabetes (Ahmed, 2002). 

Throughout the centuries, our understanding of 

diabetes has evolved, propelled by critical discoveries 

and advancements. One pivotal moment occurred in 

1922 when Banting, Best, and Collip successfully 

isolated insulin from cow pancreas, introducing a life-

saving therapy for individuals with diabetes. Despite 

such breakthroughs, diabetes remains a formidable 
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global health challenge, ranking among the top causes 

of morbidity and mortality worldwide (Sims et al., 2021). 

The landscape of diabetes encompasses 

various forms, each with its unique etiology, clinical 

presentation, and management considerations. Type 1 

diabetes is defined by the autoimmune obliteration of 

cells that produce insulin, typically manifesting in 

youth but can occur at any age. On the other hand, 

Type 2 diabetes, frequently linked with insulin 

resistance and lifestyle factors, primarily impacts 

adults but is progressively identified in children and 

teenagers (Niramitmahapanya et al., 2023). Gestational 

diabetes, arising during pregnancy, poses risks to 

maternal and fetal health, underscoring the importance 

of timely intervention (Popoviciu et al., 2023). 

Emerging subtypes, such as Type 3c and 

maturity-onset diabetes of the young (MODY), 

further diversify the diabetes spectrum, highlighting 

the complexity of this condition. Type 3c diabetes 

results from pancreatic damage unrelated to 

autoimmunity, while MODY stems from genetic 

mutations affecting insulin production. Acknowledging 

these nuances is essential for crafting individualized 

treatment approaches and ultimately enhancing 

patient outcomes (Hart et al., 2016). 

Despite medical advancements, the prevalence 

of diabetes continues to escalate globally, driven by 

factors like sedentary lifestyles, poor dietary habits, 

and rising obesity rates. In the United States, 

approximately 37.3 million people are living with 

diabetes, with the bulk of these cases being Type 2 

diabetes. Globally, an estimated 537 million adults 

grapple with diabetes, with projections indicating a 

steady rise in prevalence in the coming decades 

(Sugandh et al., 2023).  

The pathophysiology of diabetes revolves 

around the dysregulation of glucose metabolism, 

leading to hyperglycemia and subsequent complications 

that have an impact on multiple organ systems. Insulin 

therapy remains a cornerstone in Type 1 diabetes 

management, while lifestyle modifications are pivotal 

in Type 2 diabetes prevention and treatment 

(Manosroi et al., 2023; Banday et al., 2020). 

Recent research has delved into innovative 

treatments, including verapamil therapy and the use of 

artificial intelligence, to enhance diabetes management. 

These advancements promise to improve patient 

outcomes and address the evolving challenges posed 

by diabetes (Guan et al., 2023). 

Applying Machine Learning (ML) techniques 

for predicting diabetes has gathered significant 

attention in recent research, utilizing various algorithms 

and datasets to enhance prediction accuracy and early 

detection capabilities. Recent studies focus on the 

importance of selecting appropriate ML algorithms, 

preprocessing techniques, and feature engineering to 

address the challenges of diabetes prediction 

effectively (Panda et al., 2024). Recent studies have 

compared the efficiency of multiple ML algorithms 

like Random Forest, K-Nearest Neighbors (KNN), and 

multilayer perceptrons in predicting diabetes, showing 

the potential of these algorithms to achieve high 

accuracy rates. For instance, Almahdawi et al., (2022) 

demonstrated that Random Forest has superior 

efficiency classifiers with a 98.8% accuracy rate using 

a dataset of Iraqi patients (Almahdawi et al., 2022). 

A critical comparison of ML techniques 

reveals the superiority of specific algorithms in 

certain contexts. For instance, a study comparing the 

performance of various ML algorithms found that 

Logistic Regression and Support Vector Machines 

showed promising results in diabetes prediction, 

emphasizing the importance of algorithm selection 

based on the dataset characteristics (Khanam, & Foo, 

2021). 

The application of ML for the early detection 

of diabetes is focused as a key advantage, allowing for 

timely intervention and management. Lu et al., (2023) 

achieved an accuracy of 99.1% using the XGBoost 

classifier, demonstrating the potential for early and 

accurate diabetes prediction (Lu et al., 2023). 

The exploration of ensemble methods and 

novel ML approaches for diabetes prediction shows 

promising results, with studies reporting improved 

accuracy and predictive performance. For example, 

the fusion of Support Vector Machine and Artificial 

Neural Network models demonstrated a prediction 

accuracy of 94.87%, underscoring the effectiveness of 

combined techniques in disease prediction (Ahmed et 

al., 2022). 

Therefore, recent advancements in ML for 

diabetes prediction are marked by the exploration of 

various algorithms, the critical role of data preprocessing, 

and the adoption of innovative techniques such as 

ensemble methods. These studies underscore the 

potential of ML to revolutionize diabetes prediction, 

facilitating early detection and contributing to more 

effective disease management strategies. 

After examining numerous studies, it's evident 

that the accuracy of forecasting tools for type 2 

diabetes is remarkably impressive. The magic 

number, the area under the curve (AUC), ranged from 

.7182 to .7949 across the board. Now, if you are 

talking sheer precision, the neural network model 
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stole the show with an accuracy of 82.4%, specificity 

hitting 90.2%, and an AUC that topped the charts at 

.7949. But here is a twist: when pinpointing type 2 

diabetes with the finesse of a detective, the decision 

tree model was the one to beat, boasting the highest 

sensitivity at 51.6%. The plot thickens with lifestyle 

and health habits playing a pivotal role. Individuals 

clocking in 9 or more hours of sleep nightly found 

themselves at a slightly higher risk, with an adjusted 

odds ratio (aOR) of 1.13 and a confidence interval that 

whispered a tale of caution (1.03–1.25). And those 

who made less frequent visits to their doctor than once 

a year? Their risk skyrocketed, with an aOR of 2.31 

and a 95% confidence interval screaming warning 

signs (1.86–2.85). Among the contenders, eight 

models were scrutinized, and though the neural 

network emerged as the champion in AUC regarding 

the front lines of type 2 diabetes screenings, the 

decision tree model takes the cake. Its unmatched 

sensitivity offers hope for catching the condition early 

on (Xie ZiDian et al., 2019).  

Despite the considerable progress in applying 

machine learning within the healthcare sector, 

particularly in diagnosing chronic diseases like 

diabetes, several gaps remain in the current research 

landscape. Firstly, there is a noticeable deficiency in 

studies that systematically compare the performance 

of various ML models using the same dataset, which 

includes a wide range of clinical variables and patient 

characteristics. The absence of comprehensive 

comparisons makes it challenging to determine the 

most effective models for diabetes diagnosis. 

Secondly, existing research has insufficient 

consideration for the interpretability of ML models in 

clinical settings. Understanding and explaining 

predictions is crucial for clinical acceptance and 

application, yet many studies focus primarily on 

predictive accuracy without sufficient emphasis on 

how these predictions are derived and how they can 

be integrated into clinical workflows. 

Furthermore, while numerous studies have 

applied ML models to diabetes diagnosis, there is a 

significant variation in the quality and diversity of 

datasets used, leading to potentially biased or non-

generalizable findings.   

Another critical gap is the limited exploration 

of the impact of patient characteristics on the accuracy 

of diabetes diagnoses. Understanding how different 

factors influence model predictions can provide 

insights into disease mechanisms and help tailor 

diagnostic processes to individual patients, enhancing 

personalized medicine. 

Finally, there is a scarcity of research that 

benchmarks newly developed ML models against 

existing diagnostic standards and models reported in 

the literature. Such benchmarking is essential to 

demonstrate the added value of new models and 

justify their implementation in clinical practice. 

Our study aims to fill these gaps by conducting 

a rigorous comparative analysis of statistical machine 

learning models. We emphasize accuracy and 

prioritize model interpretability to facilitate seamless 

integration into clinical practice. By using a 

comprehensive and diverse dataset for training and 

employing a 5-fold cross-validation approach, we 

intend to ensure the robustness and generalizability of 

our findings. Furthermore, our research will explore 

the impact of patient characteristics on model 

accuracy, offering valuable insights for personalized 

medicine approaches. By setting clear benchmarks for 

model performance comparison with existing 

literature, our study seeks to make a significant 

contribution to the field of diabetes diagnosis using 

ML, paving the way for more effective and 

personalized diagnostic processes. 

The behavioral risk factor surveillance system 

(BRFSS), a vital tool in public health surveillance, 

offers crucial data on diabetes prevalence and 

associated risk factors. All 21 predictors were utilized 

in this study. The objective is to reduce this number to 

the minimum number of parameters that can still yield 

substantial accuracy. Consequently, the parameter 

count is reduced to 9, although this reduction entails a 

trade-off in a slight decrease in classification 

performance. 

 

2.  Objectives 
The main objective of this study is to employ 

statistical machine learning models to identify key 

clinical variables crucial for diagnosing diabetes and 

evaluate the accuracy of these models in categorizing 

diabetes cases, while comparing the predicted 

accuracy rates with those reported in existing 

literature to provide insights into the effectiveness of 

ML models in the context of diabetes. 
 

3.  Materials and Methods 
This section elaborates on the methodology, 

including the software utilized, data source, data 

management procedures, training dataset and testing 

dataset preparation, supervised classification training, 

and feature selection tool. The process flow of this 

research is depicted in Figure 1 and provided in the 

subsections below. 
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3.1 Dataset 
The Diabetes Health Indicators dataset analyzed 

here was obtained from the open-source Kaggle 

(Teboul, 2022) (assessed January 2, 2024). It contains 

data from 253,680 survey responses to identify 

diabetes, including the following 22 attributes, which 

comprise 21 predictors and 1 label. These features 

include questions directly asked of participants or 

calculated variables based on individual participant 

responses. The 22 attributes are shown in Table 1 

below. The 21 predictors have 2 classes, 0 indicating 

a non-diabetic person, whereas 1 indicates prediabetes 

and diabetes cases. This dataset has 21 clinical 

predictors and is not balanced. While the dataset 

utilized in our study is available under a Creative 

Commons (CC) license, which permits the use and 

analysis of the data, we recognize that ethical 

considerations in research extend beyond legal 

licensing agreements. To this end, even though the CC 

license provides certain freedoms concerning the use 

of the data, we proactively sought to adhere to the 

highest ethical standards related to the protection of 

patient data. This included removing all potentially 

identifiable information from the dataset before 

analysis and ensuring that our research practices 

strictly complied with ethical guidelines for human 

subject’s research, affirming our commitment to 

ethical research practices and protecting individual 

privacy. 

 

 
Figure 1 Process flow of the ML analysis in this research 
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3.2 Data Curation 
In this study, we utilized a dataset comprising 

253,680 rows without any reduction despite inherent 

bias. The dataset was divided into a training dataset 

and a testing dataset. The training dataset consists of 

67,158 rows. Within this training dataset, 33,579 rows 

were dedicated to cases with no diabetes (0), while the 

remaining 33,579 rows represented prediabetes or 

diabetes cases (1). Additionally, a test dataset was 

formed, containing 186,522 rows. The test dataset has 

184755 rows of no diabetes cases (0). However, the 

other 1767 rows represented prediabetes or diabetes 

cases (1). Notably, this test dataset had a bias towards 

the no diabetes (0) case, which is unsuitable for 

machine learning training since bias testing may cause 

the machine learning to predict more output of no 

diabetes than prediabetes or diabetes cases. However, 

we opted not to decrease the dataset size, ensuring 

training was conducted using a balanced dataset, 

while acknowledging that the test dataset could be 

imbalanced. 

 

3.3 Dataset for Training and Testing 

The 253,680 rows were then divided into 2 

datasets: the training dataset (67,158 rows) and the 

test dataset (186,522 rows) at a ratio of 95% to 5%. 

The training and test datasets were selected randomly 

by ensuring that training datasets contained the same 

number of 0 case and 1 case, in other words, unbiased 

training datasets and biased test datasets.

 
Table 1 Predictors and labels obtained from the Kaggle Diabetes Health Indicators dataset 

Predictors Details 

High BP 0: no high blood pressure, 1: high blood pressure 

HighChol 0: no high cholesterol, 1: high cholesterol 

CholCheck 0: no cholesterol check in 5 years, 1: yes cholesterol check in 5 years 

BMI Body mass index 

Smoker Have you ever smoked more than 100 cigarettes in your life? 0: No, and 1: Yes 

Stroke (Ever told) you had a stroke. 0: No, and 1: yes 

HeartDiseaseorAttack Diagnosed for myocardial infarction (MI) or coronary heart disease (CHD)? 0: No, and  1: Yes 

PhysActivity 
Physical activity in the past 30 days, excluding physical activities due to occupation. 0: No, and 

1: Ye 

Fruits Consume some fruits at least one time per day. 0: No, and 1: Yes. 

Veggies Consume some vegetables at least one time per day. 0: No, and 1: Yes. 

HvyAlcoholConsump 
Adult men consumed at least 14 drinks per week, and adult women consumed at least 7 drinks 

per week.  

0: No, and 1: Yes. 

AnyHealthcare Have any health care coverage, including health insurance and prepaid plans? 0: No, and 1: Yes. 

NoDocbcCost 
Was there a time in the past 12 months when you needed to see a doctor but could not because 

of financial constraints? 0: No, and 1: Yes. 

GenHlth 
Would you say that, in general, your health is on a scale of 1-5?  

1 means excellent, 2 means very good, 3 means good, 4 means fair, and 5 means poor. 

MentHlth Days of poor mental health: 1 day to 30 days. 

PhysHlth Physical illness or injury days in the past 30 days on a scale of 1-30. 

DiffWalk Do you experience significant challenges with walking or ascending stairs? 0: No, and 1: Yes 

Sex 0: female, and 1: male 

Age 13-level age category (AGEG5YR see codebook) 1 = 18-24 9 = 60-64 13 = 80 or older 

Education 
Education level (EDUCA see codebook) scale 1-6 1 = Never attended school or only 

kindergarten 2 = elementary. 

Income 
Income scale (INCOME2 see codebook) scale 1-8 1 = less than $10,000 5 = less than $35,000 8 

= $75,000 or more 

Label Details 

Diabetes_binary 0 = no diabetes 1 = prediabetes or diabetes 
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3.4 Machine Learning Training 
The built-in Classification Learner in 

MATLAB 2022b was utilized to train 34 machine 

learning models using a training dataset. These 

methods encompass Fine Tree, Medium Tree, Coarse 

Tree, Linear Discriminant Analysis, Quadratic 

Discriminant Analysis, Binary Generalized Linear 

Model (GLM) Logistic Regression, Efficient Logistic 

Regression, Efficient Linear Support Vector Machine 

(SVM), Gaussian Naive Bayes, Kernel Naive Bayes, 

Linear SVM, Quadratic SVM, Cubic SVM, Fine 

Gaussian SVM, Medium Gaussian SVM, Coarse 

Gaussian SVM, Fine K-Nearest Neighbors (KNN), 

Medium KNN, Coarse KNN, Cosine KNN, Cubic 

KNN, Weighted KNN, Boosted Trees, Bagged Trees, 

Subspace Discriminant Analysis, Subspace KNN, 

RUSBoosted Trees, Narrow Neural Network, 

Medium Neural Network, Wide Neural Network, 

Bilayer Neural Network, Trilayer Neural Network, 

Kernel SVM, and Logistic Regression Kernel. 

Numerous models were trained to compare their 

performance for the given dataset. After training, the 

models were tested using a test dataset to determine 

whether the trained models were generalized and 

could provide correct response for the unseen dataset. 

Since the test dataset is biased, the models' performance 

was assessed by computing classification accuracy. 

All the available supervised machines in MATLAB 

2022b were employed to choose the best model out of 

34 machine learning models because there is no one-

size-fits-all solution (Lyngdoh et al., 2021). Depending  

on the dataset, the best-performing model may vary. 

In this case, the best model for predicting diabetes 

performs well. 

The performance of the classification task of 

the listed models was evaluated using 5-fold cross-

validation, measuring accuracy, precision, recall, and 

F1 score, as detailed in Equations (1) through (4). 

 

Precision= 
Tp

Tp+Fp
   (1) 

 

Recall= 
Tp

Tp+Fn
     (2) 

 

F1=2
Precision×Recall

Precision+Recall
   (3) 

 

Accuracy= 
Tp+Tn

Tp+Tn+Fp+Fn
   (4) 

 

where  Tp and Tn represent true positive and true 

negative cases, respectively. 
Fp and Fn represent false positive and false 

negative cases, respectively. 
 
3.5 Feature Selection 

Feature Selection was applied to ascertain the 

optimal number of crucial variables from the set of 21 

predictors. Feature selection is an analysis to identify 

which predictors significantly contribute to the output 

function. Feature ranking algorithm, including 

MRMR, Chi2, reliefF, ANOVA, and Kruskal-Wallis, 

were applied for the unsupervised ranking task based 

on the importance of the 21 predictors from highest to 

lowest accuracy. The predictors were then trained 

from highest to lowest accuracy according to each 

feature ranking algorithm to determine the minimum 

number of predictors required, which maintains the 

accuracy with the closest when using 21 predictors. 
 

4.  Results 
4.1 Models Training using all 21 Predictors and 

Training Dataset 
The 34 ML models were first trained using all 

21 predictors with no diabetes (0) and prediabetes or 

diabetes (1) labels, as listed in Table 1. The accuracy 

of each model is shown in Table 2. The top three ML 

models were the Quadratic SVM (SVM), Coarse 

Gaussian SVM (SVM), and Narrow Neural Network 

(Neural Network), with the same accuracy of 76.3%. 

The confusion matrices corresponding to the top three 

ML models are illustrated in Figures 2a, 2b, and 2c, 

respectively. These data are utilized to compute 

validation accuracy, precision, recall, and the F1 score 

by employing Equations (1) through (4) and referencing 

the confusion matrices depicted in Figure 2.
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Table 2 Classification validation accuracy of models trained with all 21 predictors using a 5-fold cross-validation method 

Model Details Accuracy Precision Recall F1  Score Average 

Tree 

Fine Tree 74.9% 72.6% 79.9% 76.1% 75.9% 

Medium Tree 73.8% 72.3% 77.1% 74.6% 74.5% 

Coarse Tree 71.2% 69.2% 76.5% 72.6% 72.4% 

Linear Discriminant Linear Discriminant 75.8% 74.4% 78.5% 76.4% 76.3% 

Quadratic Discriminant Quadratic Discriminant 73.5% 71.5% 78.4% 74.8% 74.5% 

Binary GLM Logistic 

Regression 
Binary GLM Logistic Regression 75.9% 75.0% 77.8% 76.4% 76.3% 

Efficient Logistic Regression Efficient Logistic Regression 75.9% 75.0% 77.8% 76.4% 76.3% 

Efficient Linear SVM Efficient Linear SVM 75.9% 73.9% 80.0% 76.9% 76.7% 

Naive Bayes 

 

Gaussian Naive Bayes 72.6% 73.1% 71.5% 72.3% 72.4% 

Kernel Naïve Bayes 73.5% 68.9% 85.4% 76.3% 76.0% 

SVM 

Linear SVM 75.9% 73.9% 79.9% 76.8% 76.6% 

Quadratic SVM 76.3% 72.8% 83.8% 77.9% 77.7% 

Cubic SVM 75.6% 73.7% 79.7% 76.6% 76.4% 

Fine Gaussian SVM 70.3% 65.8% 84.4% 74.0% 73.6% 

Medium Gaussian SVM 76.2% 73.7% 81.3% 77.3% 77.1% 

Coarse Gaussian SVM 76.3% 73.4% 82.6% 77.7% 77.5% 

KNN 

Fine KNN 68.0% 68.1% 67.7% 67.9% 67.9% 

Medium KNN 73.2% 73.3% 73.0% 73.1% 73.2% 

Coarse KNN 75.1% 73.1% 79.6% 76.2% 76.0% 

Cosine KNN 73.3% 73.5% 72.9% 73.2% 73.2% 

Cubic KNN 73.2% 73.2% 73.0% 73.1% 73.1% 

Weighted KNN 73.0% 71.4% 76.8% 74.0% 73.8% 

Ensemble 

Boosted Trees 75.8% 73.6% 80.4% 76.9% 76.7% 

Bagged Trees 73.4% 72.5% 75.2% 73.8% 73.7% 

Subspace Discriminant 75.3% 74.6% 76.8% 75.7% 75.6% 

Subspace KNN 56.2% 85.2% 15.0% 25.5% 45.5% 

RUSBoosted Trees 73.8% 72.3% 77.1% 74.6% 74.5% 

Neural Network 

Narrow Neural Network 76.3% 74.2% 80.6% 77.3% 77.1% 

Medium Neural Network 76.0% 73.9% 80.3% 77.0% 76.8% 

Wide Neural Network 74.6% 73.3% 77.4% 75.3% 75.1% 

Bilayered Neural Network 76.1% 74.0% 80.4% 77.1% 76.9% 

Trilayered Neural Network 76.0% 74.1% 80.2% 77.0% 76.8% 

Kernel SVM Kernel 73.2% 70.8% 79.1% 74.7% 74.4% 

 

(a)  

 

 

 

 

 

 

 

 
 

Figure 2 Confusion matrices of top three trained models (a) Quadratic SVM, (b) Coarse Gaussian SVM, and (c) Narrow 

Neural Network 

(b) (c) 
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The statistical analysis was expanded to 

incorporate confidence intervals and effect sizes for 

the performance metrics of the assessed machine learning 

models to offer a more detailed understanding of the 

findings. For each model, 95% confidence intervals 

were computed for accuracy, precision, recall, and F1 

scores using bootstrap methods with 1,000 samples, 

ensuring an accurate representation of underlying 

metric distributions. This analysis not only enhances 

the reliability of our results but also aids in discerning 

the practical significance of the performance differences 

observed among the models. Including these statistical 

measures helps clarify the trustworthiness and efficacy  

of the models in predicting diabetes outcomes, 

ensuring a comprehensive evaluation suited for 

clinical decision-making. 

At 95% confidence, the Quadratic SVM 

demonstrated performance metric ranges of [78.9%, 

82.3%] for accuracy, [79.9%, 84.4%] for precision, 

[79.9%, 84.4%] for recall, and [80.3%, 83.8%] for the 

F1-score. The Coarse Gaussian SVM showed performance 

ranges of [81.0%, 84.2%] for accuracy, [82.6%, 

86.6%] for precision, [82.2%, 86.6%] for recall, and 

[83.0%, 86.1%] for the F1-score. Similarly, the 

Narrow Neural Network achieved impressive ranges 

of [82.1%, 85.4%] for accuracy, [83.8%, 87.9%] for 

precision, [83.8%, 87.9%] for recall, and [84.3%, 

87.5%] for the F1-score at 95% confidence intervals.

 

4.2 Models Testing using all 21 Predictors and the Separated Test Dataset 
Table 3 Classification Accuracy of ML Models Tested with all 21 Predictors 

Model Details Accuracy Precision Recall F1  Score Average 

Tree 

Fine Tree 73.3% 70.4% 80.1% 75.0% 74.7% 

Medium Tree 72.6% 71.7% 74.6% 73.1% 73.0% 

Coarse Tree 70.0% 67.9% 75.7% 71.6% 74.2% 

Linear Discriminant Linear Discriminant 73.6% 72.2% 76.8% 74.4% 74.2% 

Quadratic Discriminant Quadratic Discriminant 71.8% 69.6% 77.4% 73.3% 73.0% 

Binary GLM Logistic 

Regression 

Binary GLM Logistic 

Regression 
73.9% 72.7% 76.5% 74.6% 74.4% 

Efficient Logistic 

Regression 
Efficient Logistic Regression 73.9% 72.7% 76.5% 74.6% 74.4% 

Efficient Linear SVM Efficient Linear SVM 73.9% 71.7% 78.7% 75.1% 74.8% 

Naive Bayes 
Gaussian Naive Bayes 70.9% 71.3% 70.0% 70.6% 70.7% 

Kernel Naïve Bayes 71.5% 67.0% 84.6% 74.8% 74.5% 

SVM 

Linear SVM 73.9% 71.7% 78.7% 75.1% 74.8% 

Quadratic SVM 74.3% 70.6% 83.1% 76.3% 76.1%* 

Cubic SVM 74.0% 71.8% 78.8% 75.2% 74.9% 

Fine Gaussian SVM 68.5% 64.4% 82.3% 72.3% 71.9% 

Medium Gaussian SVM 74.3% 71.5% 80.9% 75.9% 75.6% 

Coarse Gaussian SVM 74.5%* 71.2% 82.2% 76.3% 76.0% 

KNN 

Fine KNN 66.0% 65.7% 66.8% 66.3% 66.2% 

Medium KNN 71.3% 71.2% 71.3% 71.3% 71.3% 

Coarse KNN 73.1% 70.9% 78.2% 74.4% 74.1% 

Cosine KNN 71.2% 71.2% 71.1% 71.1% 71.1% 

Cubic KNN 71.0% 70.9% 71.0% 71.0% 71.0% 

Weighted KNN 70.4% 68.8% 74.6% 71.6% 71.4% 

Ensemble 

Boosted Trees 74.0% 71.5% 79.9% 75.4% 75.2% 

Bagged Trees 71.9% 70.5% 75.1% 72.7% 72.6% 

Subspace Discriminant 73.3% 72.5% 75.0% 73.7% 73.6% 

Subspace KNN 54.7% 84.6% 11.5% 0.2% 37.8% 

RUSBoosted Trees 72.6% 71.7% 74.6% 73.1% 73.0% 

Neural Network 

Narrow Neural Network 74.4%* 71.9% 80.0% 75.7% 75.5% 

Medium Neural Network 74.2% 71.8% 79.6% 75.5% 75.3% 

Wide Neural Network 72.6% 70.9% 76.7% 73.7% 73.5% 

Bilayered Neural Network 74.7%* 72.1% 80.5% 76.1% 75.9% 

Trilayered Neural Network 74.4%* 71.9% 80.0% 75.7% 75.5% 

Kernel 
SVM Kernel 72.0% 69.4% 78.7% 73.8% 73.5% 

Logistic Regression Kernel 70.8% 68.8% 75.9% 72.2% 71.9% 
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The separated test dataset was then employed 

to predict the classification output compared to its 

known label. The classification accuracy of the 

evaluated 34 models using 21 predictors and the test 

dataset is shown in Table 3. The top 4 models that 

obtained the highest accuracy were Bilayered Neural 

Network (Neural Network) with an accuracy of 

74.7%, Coarse Gaussian SVM (SVM) with an 

accuracy of 74.5%, Narrow Neural Network (Neural 

Network) and Trilayered Neural Network (Neural 

Network) with an accuracy of 74.4%. The Quadratic 

SVM (SVM), Coarse Gaussian SVM (SVM), and 

Narrow Neural Network (Neural Network) that 

achieved the highest accuracy in the trained model of 

76.3% were now reduced their accuracy to 74.3%, 

74.5%, and 74.4%, respectively in the testing. 

However, the model that obtained the highest average 

of classification performance was Quadratic SVM 

(SVM) with 76.1%; therefore, Quadratic SVM (SVM) 

was the most reliable model. The confusion matrix of 

the model, when tested using the unseen test dataset, 

is shown in Figure 3. The tested model of Quadratic 

SVM exhibited performance metric ranges of [81.6%, 

84.8%] for accuracy, [83.7%, 87.8%] for precision, 

[83.7%, 87.6%] for recall, and [84.3%, 87.2%] for the 

F1-score at 95% confidence intervals. The range of 

the test performance metrics at a 95% confidence 

interval was similar to the training performance, with 

a slight underfitting within 3%. 
 

4.3 Number of Predictors Reduction using Feature 

Selection 
In the previous sections, we have demonstrated 

that accurate classification models can be trained 

using all the available 21 predictors, which are (1) 

HighBP, (2) HighChol, (3) Cholcheck, (4) BMI, (5) 

Smoker, (6) Stroke, (7) HeartDiseaseorAttack, (8) 

PhysActivities, (9) Fruits, (10) Veggies, (11) 

HvyAlcoholConsump, (12) AnyHealthcare, (13) 

NoDocbsCost, (14) GenHLth, (15) MentHlth, (16) 

PhysHlth, (17) DiffWalk, (18) Sex, (19) Age, (20) 

Education, (21) Income. Here, we performed 

principal component analysis (PCA), but since the 

dataset had numerous data rows, an error occurred; 

therefore, feature selection analysis in the built-in 

Matlab feature selection was used to identify crucial 

predictors based on unsupervised statistical approaches. 

 

 
Figure 3 Confusion matrix of tested Quadratic SVM model 

 

Table 4 statistical values of each predictor from each algorithm within the feature selection tool 

No. MRMR Chi2 ReliefF ANOVA Kruskal Wallis 

1 GenHlth 0.0964 HighBP Inf GenHlth 0.0098 Income Inf Income Inf 

2 CholCheck 0.079 HighChol Inf Age 0.008 
Educatio

n 
Inf Education Inf 

3 Age 0.0584 BMI Inf Income 0.0057 Age Inf Age Inf 

4 
HvyAlcoho

lConsump 
0.0458 

HeartDis

easeorAt

tack 

Inf BMI 0.0056 
DiffWal

k 
Inf DiffWalk Inf 

5 BMI 0.0285 
PhysActi

vity 
Inf PhysHlth 0.0047 

PhysHlt

h 
Inf PhysHlth Inf 

6 HighChol 0.0228 GenHlth Inf Education 0.0033 GenHlth Inf GenHlth Inf 
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Table 4 Cont. 
No. MRMR Chi2 ReliefF ANOVA Kruskal Wallis 

7 Veggies 0.0216 
PhysHlt

h 
Inf 

HvyAlcoholC

onsump 
0.0024 

PhysActi

vity 
Inf 

PhysActivit

y 
Inf 

8 HighBP 0.0214 
DiffWal

k 
Inf CholCheck 0.0022 

HeartDis

easeorAt

tack 

Inf 
HeartDiseas

eorAttack 
Inf 

9 Stroke 0.0182 Age Inf Stroke 0.0021 BMI Inf BMI Inf 

10 Income 0.0175 Education Inf HighBP 0.0015 HighChol Inf HighChol Inf 

11 HeartDisea

seorAttack 
0.0173 Income Inf 

HeartDiseaseo

rAttack 
0.0013 HighBP Inf HighBP Inf 

12 PhysActivity 0.015 Stroke 527.184 HighChol 0.0012 Stroke 531.2916 Stroke 527.1762 

13 DiffWalk 0.0125 CholCheck 412.902 Sex 0.0009 
CholChe

ck 
415.4049 CholCheck 412.8959 

14 Smoker 0.0084 

HvyAlco

holCons

ump 

345.8317 NoDocbcCost 0.0009 

HvyAlco

holCons

ump 

347.5785 
HvyAlcohol

Consump 
345.8266 

15 Education 0.0082 Veggies 344.2773 DiffWalk 0.0008 Veggies 346.0081 Veggies 344.2722 

16 PhysHlth 0.0072 MentHlth 306.9365 PhysActivity 0.0005 Smoker 261.9452 Smoker 260.9559 

17 Fruits 0.0056 Smoker 260.9597 Fruits 0.0004 MentHlth 235.0599 Fruits 182.3295 

18 MentHlth 0.0028 Fruits 182.3322 Smoker 0.0001 Fruits 182.8065 Sex 56.2867 

19 Sex 0.0021 Sex 56.2875 MentHlth 0 Sex 56.3289 MentHlth 51.6536 

20 
AnyHealthc

are 
0.0017 

NoDocb

cCost 
40.9089 AnyHealthcare 

-

0.0001 

NoDocb

cCost 
40.9299 

NoDocbcCo

st 
40.9084 

21 
NoDocbcC

ost 
0.001 

AnyHeal

thcare 
27.8667 Veggies 

-

0.0005 

AnyHeal

thcare 
27.8758 

AnyHealthc

are 
27.8663 

 

Table 5 Accuracy of Quadratic SVM model using a different order of predictors from different algorithm 

Number of 

Predictors 
MRMR Chi2 ReliefF ANOVA Kruskal-Wallis 

1 47.5% 69.6% 47.5% 52.2% 52.2% 

2 59.5% 69.6% 63.5% 47.1% 47.1% 

3 50.2% 52.0% 53.0% 51.6% 51.6% 

4 48.3% 58.2% 55.5% 55.7% 55.7% 

5 48.9% 59.9% 60.4% 60.5% 60.5% 

6 55.3% 69.0% 68.5% 67.9% 67.9% 

7 60.7% 72.4% 71.3% 70.6% 70.6% 

8 71.2% 71.6% 70.8% 70.8% 70.8% 

9 72.3% 75.4% 74.3% 74.7% 74.7% 

10 75.5% 75.5% 75.3% 75.2% 75.2% 

11 75.6% 75.7% 75.5% 75.7% 75.7% 

 

The feature selection tool utilized five 

algorithms: MRMR, Chi2, ReliefF, ANOVA, and 

Kruskal Wallis. The statistical values of each 

predictor from each algorithm are shown below in 

Table 4. The 21 predictors were ranked in descending 

order to indicate which predictor is the most important 

among all the predictors. 
In Table 4, each algorithm shares common top-

ranking predictors, with some having infinite values. 

All algorithms were utilized to train quadratic SVM 

models to determine the best algorithm, using a range 

of predictors from one to eleven, following the order 

specified by each algorithm. This research process is 

time-consuming, requiring 2 hours to train a single 

model, and 55 models were trained as part of this 

study. The accuracy of Quadratic SVM models is 

shown in Table 5.  

According to Table 5, among the five ranking 

algorithms, including MRMR, Chi2, ReliefF, ANOVA, 

and Kruskal Wallis, the result of using Chi2 with 9 

predictors demonstrates the highest accuracy of 

75.4% followed by ANOVA, and Kruskal Wallis with 

an accuracy of 74.7%. Here, the 9 predictors were 

chosen because Chi2 gave the highest accuracy among 

the other ranking algorithms. The confusion matrix 

for the Quadratic SVM model trained using 9 

predictors is shown below in Figure 4. 
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Figure 4 The confusion matrix of the Quadratic SVM model using 9 predictors 

 

The 9 highest accuracy predictors, namely 

HighBP, HighChol, BMI, HeartDisease, PhysActivity, 

GenHlth, PhysHlth, DiffWalk, and Age, were through 

the feature selection process. Based on each ranking 

algorithm, the predictors were then trained in 

sequence from highest to lowest accuracy. This 

approach aimed to identify the minimum number of 

predictors that could maintain accuracy closest to that 

achieved using all 21 predictors. The outcome 

revealed that employing only nine predictors from the 

Chi2 ranking algorithm resulted in a 75.4% accuracy, 

closely resembling the percentage achieved with the 

complete set of 21 predictors. At 95% confidence 

intervals, the Quadratic SVM model using 9 

predictors achieved performance metric ranges of 

[80.4%, 83.8%] for accuracy, [81.9%, 86.2%] for 

precision, [82.0%, 86.2%] for recall, and [82.5%, 

85.8%] for the F1-score.  
 

5.  Discussion 
In today's world, diabetes is a significant health 

issue affecting people globally. It occurs when the 

body struggles with high blood glucose levels due to 

insulin resistance, a vital hormone for regulating 

blood sugar. Insulin helps keep the balance in check, 

and when this balance is disrupted, it can develop into 

various complications affecting different body parts. 

Diabetes is influenced by both genetic factors and 

lifestyle choices, making it a complex health concern 

that requires ongoing attention to prevent 

complications. The study analyzed a dataset with 21 

factors (excluding labels) to identify the most crucial 

elements for diagnosing diabetes. The nine key 

predictor variables pivotal for making an accurate 

diagnosis were identified. Our innovative AI model, 

designed for efficiency, demonstrated an impressive 

classification accuracy of 75.4% using only these nine 

essential features. This discovery not only provides 

valuable insights for physicians but also has the 

potential to streamline their efforts, reducing the 

workload on healthcare staff and computational 

resources. 

Furthermore, we utilized patient information 

from Kaggle, a platform known for data science 

competitions, for specific purposes such as training 

and testing our models. Unbiased datasets processed 

in MATLAB highlighted top-performing models, 

with Quadratic SVM, Coarse Gaussian SVM, and 

Narrow Neural Networks achieving the highest 

training accuracy of 76.3%. In a test dataset with some 

bias, Bilayered Neural Networks led with an accuracy 

of 74.7%. When considering the average accuracy, 

precision, recall, and F-1 score, Quadratic SVM 

consistently emerged as the superior model. To refine 

our approach, we implemented a feature selection 

process to rank predictors based on accuracy. 

Subsequently, the selected predictors underwent 

retraining to identify the minimal subset that could 

maintain accuracy comparable to all 21 predictors. 

This process reduced the parameter count to nine 

while preserving substantial accuracy. Among the 34 

models trained, Quadratic SVM exhibited exceptional 

performance, boasting average accuracy, precision, 

recall, and F-1 score of 77.7%. When tested with 21 

predictors, Quadratic SVM maintained an average 

accuracy, precision, recall, and F-1 score of 76.1%, 
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solidifying its position as the most satisfying model. 

By training with the selected nine predictors, the 

accuracy reached 75.4%, demonstrating negligible 

deviation from employing all 21 predictors. 

Compared to the research that existed before our 

research focused on optimizing diabetes prediction by 

employing statistical machine learning models and 

identifying essential clinical variables. With an 

impressive classification accuracy of 75.4% using only 

nine key predictor variables, the study showcased the 

potential to enhance diagnostic efficiency and 

alleviate healthcare staff workload. Additionally, 

among the 34 trained models, Quadratic SVM stood 

out with superior performance, boasting an average 

accuracy, precision, recall, and F-1 score of 77.7%. In 

contrast, the existing research expanded upon this 

foundation by comparing the performance of various 

classifiers in predicting type 2 diabetes. The study 

demonstrated the efficacy of machine learning 

algorithms in diabetes prediction by achieving high test 

accuracy ranging from 74.3% to 82.4%. While the 

neural network model exhibited the highest accuracy 

and AUC values, it showed lower sensitivity than the 

decision tree model, which excelled in capturing true 

positive cases. Despite methodological differences, 

both studies underscore the potential of machine 

learning approaches in enhancing diabetes prediction 

and management. This proposed approach enhances 

diagnostic efficiency and holds promise for resource 

optimization in diabetes management, providing a 

valuable contribution to healthcare practices. This 

research predicts diabetes without relying on blood 

glucose or HbA1c. Ongoing efforts to explore 

alternative methods based on lifestyle patterns, 

genetics, and non-invasive markers enable readers to 

prescreen on themselves. Through meticulous 

analysis, our research has identified the crucial 

predictors for diagnosing diabetes, enabling the 

development of an AI model that achieves remarkable 

accuracy using just nine essential features. This 

breakthrough streamlines the diagnostic process and 

offers the potential for quicker and more precise 

diagnoses, ultimately improving patient outcomes. By 

implementing this more efficient diagnostic tool, 

healthcare professionals can alleviate their workload, 

redirecting time and resources toward providing 

personalized care and support to patients. Furthermore, 

our approach holds promise for optimizing resources 

in diabetes management, as it requires fewer 

predictors while maintaining comparable accuracy, 

leading to cost savings and better resource allocation 

within healthcare settings. Additionally, by exploring 

alternative methods beyond traditional blood tests, 

our research enhances accessibility to diabetes 

screening, allowing individuals to prescreen for risk 

factors based on lifestyle patterns and genetics, thus 

empowering proactive health management. While 

achieving an impressive classification accuracy of 

75.4% using only nine essential features is a notable 

accomplishment, there remains room for improvement 

in model performance. Further validation efforts by 

utilizing diverse datasets and external validation with 

real-world clinical data are necessary to provide a 

more comprehensive assessment of the model's 

accuracy and generalizability. Additionally, the clinical 

relevance of the AI model in predicting diabetes needs 

to be thoroughly evaluated through clinical validation 

studies involving healthcare professionals and real 

patients. These studies will help assess the practical 

utility of the model in clinical settings and its potential 

to impact patient outcomes positively. Moreover, it's 

essential to recognize that diabetes is a multifactorial 

disease influenced by various genetic, environmental, 

and lifestyle factors. While the selected predictors 

capture a subset of these factors, there may be other 

important determinants of diabetes risk that are not 

accounted for, complicating the interpretation of the 

findings. 

 

6.  Conclusion  
Our research team utilized a Kaggle-derived 

diabetes dataset encompassing 21 predictors across 

253,680 patients. After dividing the dataset into 

training (67,158 rows) and test (186,522 rows) sets at 

a 95% to 5% ratio, unbiased training and biased test 

datasets were randomly selected to ensure equal 

representation of 0 and 1 cases. Curation processes 

were applied to establish an unbiased training 

environment. Machine learning models, such as 

Quadratic SVM, Coarse Gaussian SVM, and Narrow 

Neural Networks, achieved the highest training 

accuracy at 76.3%. However, bias was detected in the 

test datasets. The Bilayered Neural Network had the 

highest validation accuracy at 74.7%, but Quadratic 

SVM emerged as the top performer when averaging 

accuracy, precision, recall, and F-1 scores. Feature 

selection employed ranking algorithms like MRMR, 

Chi2, reliefF, ANOVA, and Kruskal Wallis. Among 

the 21 predictors, the 9 selected by Chi2, including 

HighBP, HighChol, BMI, HeartDisease, PhysActivity, 

GenHlth, PhysHlth, DiffWalk, and Age, yielded the 

highest accuracy at 75.4%. 

The research objectives align closely with the 

broader context of diabetes as a complex and 
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multifactorial health issue. By utilizing statistical 

machine learning models and focusing on essential 

clinical variables for diagnosing diabetes, the study 

aims to address the pressing need for more accurate 

and efficient diagnostic tools in healthcare. 

Furthermore, comparing predicted accuracy rates with 

existing literature findings underscores the 

importance of benchmarking and advancing current 

diagnostic approaches. This research not only sheds 

light on the effectiveness of machine learning 

algorithms in improving diabetes diagnosis but also 

contributes valuable insights into the interplay of 

various clinical and patient characteristics in 

predicting diabetes. Moreover, the emphasis on model 

performance, clinical relevance, and ethical 

considerations reflects a comprehensive approach 

toward enhancing healthcare practices and patient 

outcomes in diabetes management. However, it is crucial 

to acknowledge the limitations and complexities 

inherent in predicting diabetes accurately, 

underscoring the need for further validation studies, 

considering additional influencing factors, and 

adhering to ethical standards to ensure the robustness 

and applicability of the findings in clinical settings. 
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