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Abstract  

Chronic kidney disease (CKD) is a major public health issue that necessitates accurate diagnostic methods for effective 

management. This study involved training an open-source clinical dataset of 200 patients from Enam Medical College, 

comprising 28 clinical features, obtained from the UCI machine learning repository. After preprocessing to ensure a balanced 

dataset for objectivity, the data was split into training and testing sets in an 80:20 ratio. The research trained 22 machine 

learning models, including Naïve Bayes, decision trees, support vector machines (SVM), logistic regression, ensemble 

methods, kernel models, and neural networks. These models were evaluated using several metrics-accuracy, precision, recall, 

F1-score, and the area under the receiver operating characteristic (ROC) curve-computed through 5-fold cross-validation to 

assess their performance and ensure they were not overfitting or underfitting. The best-performing model was the Kernel Naïve 

Bayes, achieving a 96.55% accuracy, 95% precision, 98.28% recall, and 96.61% F1-score on the training dataset. For the test 

dataset, it showed a slight performance drop but remained robust with 92.86% accuracy, 87.50% precision, 100% recall, and 

93.33% F1-score. Furthermore, feature selection techniques such as minimum-redundancy-maximum-relevance, Chi2, 

ANOVA, and Kruskal-Wallis tests were used to determine the most significant predictors. It was found that only four features-

packed cell value, stages of glomerular filtration rate, specific gravity of urine, and albumin content in urine-were necessary 

for maintaining similar model performance. This systematic approach not only highlighted critical clinical features but also 

helped in simplifying the model complexity, which could benefit broader medical applications like lung cancer screening by 

reducing screen time, resources, and medical costs. 

 

Keywords: chronic kidney disease classification; chronic kidney disease; machine learning; feature selection methods; 

artificial intelligence 

 

 

1.  Introduction 

Chronic kidney disease (CKD), often known as 

chronic kidney failure, is a medical disorder with 

substantial morbidity and no cure wherein the kidneys 

lose their ability to function optimally (Kalantar-

Zadeh et al., 2021). Consequently, waste products and 

excess fluids accumulate in the bloodstream, leading 

to electrolyte imbalances. If these imbalances are left 

unaddressed, they can contribute to various health 

complications such as heart disease, anemia, and 

nausea, and may ultimately result in the complete 

cessation of kidney function (Drawz, & Rahman, 

2015). It poses significant global health challenges, 

affecting countless individuals worldwide, with the 

global estimated prevalence of CKD being 13.4% and 

between 4.902 and 7.083 million individuals requiring 

renal replacement therapy (Lv, & Zhang, 2019). 
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Additionally, there are various forms of kidney 

diseases, including Polycystic kidney disease, Lupus 

nephritis, Interstitial nephritis, Glomerulonephritis, 

APOL1-mediated kidney disease, conditions associated 

with long-lasting viral illnesses, and Pyelonephritis 

(Murphy et al., 2016). Each of these conditions 

presents distinct challenges and implications for 

kidney health. Signs and symptoms of CKD can 

develop over time depending on how severe it is and 

can cause vomiting, urinating more or less, chest pain, 

and swelling of feet and ankles (Rainey, 2019).  

However, patients with CKD are usually 

asymptomatic until the final stage, so early diagnosis 

becomes crucial (George et al., 2022). According to 

The National Kidney Foundation, numerous clinical 

practice guidelines advocate for a risk-based 

screening approach, especially for people over 60 

years old or with a history of diabetes (Levey et al., 

2003). The utilization of artificial intelligence (AI) in 

diagnosing CKD marks a paradigm shift in healthcare. 

AI algorithms, particularly machine learning models, 

exhibit significant potential in analyzing datasets, 

including patient records and lab results, to identify 

early signs of CKD. These advanced technologies 

offer a more efficient and accurate detection method 

than traditional methods (Sawhney et al., 2023). 

CKD is often hard to detect early due to 

reliance on traditional diagnostic methods like serum 

creatinine and proteinuria, which have limitations. 

CKD's asymptomatic early stages delay diagnosis 

until it's advanced (Khwanchum et al., 2024). Artificial 

intelligence, especially machine learning, offers 

promise by analyzing complex data to detect subtle 

CKD patterns earlier (Durga &, Karthikeyan, 2023). 

However, challenges like selecting relevant features 

and translating predictions into clinical action remain. 

This study addresses these challenges by evaluating 

machine learning models and feature selection 

methods for efficient and early CKD detection  

According to Islam et al., (2020), their study 

examines twelve machine learning-based classifiers, 

achieving an accuracy of 0.98, as well as precision, 

recall, and an F1 score of 0.98 for the XgBoost 

classifier. Haratian et al., (2022) developed several 

models, with their optimal models being random 

forest and LightGBM, which can achieve an AUC of 

0.90 and an accuracy of 0.74. Ashafuddula et al., 

(2023) established the dominance of adaptive 

boosting, logistic regression, and passive-aggressive 

ML classifiers with 96.48% accuracy. Dritsas, & 

Trigka (2022) aimed to build efficient tools for 

predicting CKD occurrence, following an approach 

that exploits ML techniques and highlights the 

Rotation Forests (RotF), which prevailed in 

comparison to other models with an AUC of 100%, a 

precision, a recall, an F1-score, and an accuracy equal 

to 99.2%. However, the research on CKD detection is 

based on a single dataset published in the UCI 

Machine learning repository. In addition to enhancing 

classification performance using this dataset, this 

study attempted to reduce the number of input 

characteristics using feature selection methods and to 

construct a machine learning-based model that 

achieved the best accuracy. A total of 22 different 

machine learning-based classifiers were evaluated.  

The growth of artificial intelligence (AI) and 

machine learning (ML) in the field of chronic kidney 

disease diagnosis has resulted in the development of 

various models (Pradeepa, & Jeyakumar, 2022; 

Dubey et al., 2023), each claiming to be superior in 

terms of accuracy, precision, and efficiency (Iftikhar 

et al., 2023). However, a large gap exists in 

systematically evaluating these models' relative 

efficacy in CKD prediction (Nishat et al., 2018). Prior 

research has frequently concentrated primarily on 

individual or a small number of models, preventing a 

comprehensive understanding of their performance 

under varied settings and datasets. A comparative 

study is necessary for a variety of reasons. First, it 

facilitates it easier to identify the most successful 

models for CKD prediction based on various 

parameters. Second, it assists researchers in picking 

the best model depending on study objectives or data 

features. Finally, it promotes innovation by identifying 

opportunities for model improvement and stimulating 

the development of novel approaches (Kumari & 

Singh, 2022). To close this gap, we thoroughly tested 

22 machine learning models, ranging from classical 

methods to more complex ensemble and kernel 

models. This comprehensive comparison identifies 

the most effective CKD prediction models and 

evaluates their scalability and real-world applications. 

Through this approach, we hope to advance the field 

of CKD diagnostics towards early, accurate, and 

efficient detection techniques, ultimately improving 

patient outcomes and management approaches. 

This study employs feature selection methods 

and ML models to identify the essential predictors that 

should be considered when diagnosing CKD. 

Strategic feature selection is critical for improving 

ML model efficacy in CKD diagnosis, aiming to 

reduce complexity and increase clinical applicability. 

The existing literature lacks integration of various 

feature selection strategies. Our unique approach uses 
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numerous techniques to prioritize diagnostic indicators, 

improving prediction accuracy and interpretability. 

This discovery closes a major gap in CKD 

diagnostics, promising to accelerate early detection 

and management. The prediction of CKD using ML 

models is particularly efficient, especially when 

boosting methods are used. A 5-fold cross-validation 

procedure was used to quantify precision, recall, F1 

score, and accuracy. Supervised machine learning 

models were trained to assess their prediction 

accuracy through an unseen test dataset to ensure that 

the trained models were generalized. In this paper, we 

utilize the dataset from a publicly available database 

from the University of California Irvine's website 

(UCI Machine Learning Repository website) to 

analyze a dataset of 200 individuals with CKD (Islam 

et al., 2020). We utilize various ML models to predict 

chronic kidney disease and highlight the most relevant 

links to the disease. 

 

2.  Objectives 

To enhance the diagnosis of chronic kidney 

disease (CKD) by developing and evaluating machine 

learning models that accurately classify CKD and 

non-CKD cases. This involves curating and cleaning 

the dataset to ensure unbiased training, identifying 

crucial predictors to reduce model complexity, and 

demonstrating the potential impact of these simplified 

models on clinical practice. 

 

3.  Materials and Methods 

This study started from data curation and data 

splitting into training and test datasets, followed by 

data preparation for supervised classification tasks 

and the application of feature selection methods. 

There is no widely recognized standard criterion in 

machine learning to determine whether a model 

outperforms another based on dataset analysis, as 

there is no one-size-fits-all solution. All 22 models 

available in MATLAB R2022b have been included 

here. The flow of this research is depicted in Figure 1. 

 

3.1 Dataset Details 

The CKD dataset examined in this paper was 

obtained from the UCI database on January 1st, 2024. 

It includes data from 200 observations, including 28 

predictors and 1 label, to identify risk factors of CKD. 

Although we acknowledge that the obtained dataset 

for this work was available under a Creative 

Commons (CC) license, we know that ethical issues 

go beyond the license. Although a study of publicly 

available data does not require ethical approval, we 

took preemptive steps to guarantee the highest ethical 

standards surrounding patient data privacy. We have 

carefully followed the ethical standards for research 

involving human subjects and deleting any potentially 

identifiable information from the dataset. 

The study encounters potential limitations, 

including biases in the dataset, which will be 

addressed by preparing a balanced training dataset, 

constraints of machine learning models, and 

uncertainties about the broader applicability of the 

results. These could impact the model's accuracy. 

Furthermore, the complexity of certain machine 

learning approaches presents challenges in 

interpretation, particularly in clinical settings. 

Concerns arise regarding how well the findings can be 

applied across different contexts. Future research 

should focus on gathering more diverse datasets, 

improving model interpretability, and validating 

findings with external data to enhance their 

generalizability. 
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Figure 1 Process flow of the data. Data curation, ML training, ML testing, and performance metrics analysis in this study. 

Adapted from “Predicting Parkinson's Disease Severity using Telemonitoring Data and Machine Learning Models: A 

Principal Component Analysis-based Approach for Remote Healthcare Services during COVID-19 Pandemic”. Published in 

J. Curr. Sci. Technol, 2023, 13(2), 465-485. 
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Table 1 Predictors, their definitions, data types, and values 

 

  

Variables & Definition 
Predictor or Label 

in ML training 
Category Values/Value Range 

class Label Nominal ckd = Chronic Kidney Disease 

not-ckd = Non-Chronic Kidney Disease 

bp (diastolic): diastolic blood 

pressure 

Predictor Numerical In mm/Hg unit 

bp limit: blood pressure  Predictor Numerical In mm/Hg unit 

sg: specific gravity  Predictor Nominal The range is from 1.005 to 1.025 

al: albumin Predictor Nominal The range is from 0 to 5  

noted that the higher, the better 

rbc: red blood cell Predictor Nominal 0 = normal, 1 = abnormal 

su: sugar Predictor Nominal The range is from 0 to 5 

pc: pus cell Predictor Nominal 0 = normal, 1= abnormal 

pcc: pus cell clumps Predictor Nominal 0 = not present, 1 = present 

ba: bacteria Predictor Nominal 0 = not present, 1 = present 

bgr: blood glucose random Predictor Numerical In mg/dl unit 

bu: blood urea Predictor Numerical In mg/dl unit 

sod: sodium Predictor Numerical In mEq/L unit 

sc: serum creatinine Predictor Numerical In mg/dl unit 

pot: potassium Predictor Numerical In mEq/L unit 

hemo: hemoglobin Predictor Numerical In gms, *less than 15 indicates kidney 

failure 

pcv: packed cell volume Predictor Numerical Percentage of pcv 

rbcc: red blood cell count Predictor Numerical In millions/cumm unit 

wbcc: white blood cell count Predictor Numerical In cells/cumm unit 

htn: hypertension Predictor Nominal 0 = no, 1 = yes 

dm: diabetes mellitus Predictor Nominal 0 = no, 1 = yes 

cad: coronary artery disease Predictor Nominal 0 = no, 1 = yes 

appet: appetite Predictor Nominal 0 = good, 1= poor 

pe : peda edema Predictor Nominal 0 = no, 1 = yes 

ane : anemia Predictor Nominal 0 = no, 1 = yes 

gfr : glomerular filtration rate Predictor Numerical In mL/min unit 

stage: 5 stages (G1-G5) Predictor Nominal G1 = normal or high 

G2 = mildly decreased 

G3a = mildly to moderately decreased 

G3b = moderately to severely decreased 

G4 = severely decreased 

G5 = kidney failure 

age Predictor Numerical Age in years unit 

affected* 

(Removed attribute) 

Predictor Nominal 0 = not-CKD, 1 = CKD 
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3.2 Data Curation 

The initial dataset included 200 patient records, 

with a significant imbalance of 128 'CKD' instances 

and 72 'not-CKD' cases. This imbalance may bias 

machine learning models towards the more prevalent 

class (Masko, & Hensman, 2015). To create a balanced 

dataset with 72 examples for each class, we used 

under-sampling to remedy this problem by eliminating  

56 'CKD' cases. While this method resulted in a more 

objective learning process, it lowered the dataset size. 

Furthermore, the dataset originally comprised 29 

clinical variables as possible predictors. 

Nevertheless, one variable, designated 'affected', 

introduced redundancy, which was discovered to 

duplicate the class names precisely. This variable was 

removed, leaving a final set of 28 predictors to improve 

efficiency and minimize overfitting. These predictors 

cover different clinical parameters and conditions 

crucial to the diagnosis of CKD, as shown in Table 1. 

 

3.3 Dataset for Training and Testing 

Following dataset curation, the dataset was 

split into training and test sets in an 80:20 ratio, with 

116 rows for training and 28 for testing. This split is 

critical for effective machine learning because it allows 

models to learn from a large chunk of the data while 

evaluating performance on a distinct subset. Random 

record selection was critical to avoiding bias and 

maintaining an even distribution of 'CKD' and 'not-

CKD' cases in both sets to ensure unbiased evaluation. 

This thorough dataset preparation offers the groundwork 

for robust model training and testing, addressing 

issues such as skewed data and predictor redundancy 

while enabling precise prediction of CKD presence. 

 

3.4 Machine Learning Training and Testing 

As mentioned in the introduction section, one 

of the gaps in the CKD diagnosis using ML is that 

there has still been no direct performance comparison 

between different machine learning models using the 

same dataset and quantitative settings. In addition, 

one of our goals is to train, validate, and compare 

different machine-learning models available in the 

built-in Classification Learner program in MATLAB 

R2022b, as listed in Table 2. 

The curated training dataset was then 

employed to train the specified ML models. Several 

models were trained and tested against the 

preprocessed dataset. Afterward, we employed a 

separate test dataset to verify whether the learned 

models were generalized and could furnish an 

accurate prediction for the unseen dataset. Including a 

wide range of models in this study serves multiple 

purposes: comprehensively evaluating different ML 

approaches for CKD prediction, identifying models 

with optimal accuracy and clinical feasibility, and 

contributing valuable insights to refine ML strategies 

for enhancing CKD diagnostics and patient outcomes. 

 
Table 2 ML models available in Matlab2022b and trained in this study 

Models Details Models Details 

Logistic Regression Logistic Regression 

Tree 

Last Change: Fine Tree 

Ensemble 

Boosted Trees Last Change: Medium Tree 

Bagged Trees Last Change: Coarse Tree 

RUSBoosted Trees 
Naïve Bayes 

Kernel Naïve Bayes 

Neural Network 

Trilayered Neural Network Gaussian Naïve Bayes 

Bilayered Neural Network 

Support vector machine 

(SVM) 

Coarse Gaussian SVM 

Wide Neural Network Medium Gaussian SVM 

Medium Neural Network Fine Gaussian SVM 

Narrow Neural Network Cubic SVM 

Kernel 
SVM Kernel Quadratic SVM 

Logistic Regression Kernel Linear SVM 
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For the test dataset, we employed the same 

performance metrics as the training dataset for a direct 

comparison, including a K-fold cross-validation with 

a K-fold of 5 to calculate performance metrics 

including, precision, recall, accuracy, and F1-score, 

using the training dataset as demonstrated in 

Equations (1)-(4): 
 

Precision=
Tp

Tp+Fp
       (1) 

 

Recall=
Tp

Tp+Fn
      (2) 

 

F1=2
Precision×Recall

Precision+Recall
     (3) 

 

Accuracy=
Tp+Tn

Tp+Tn+Fp+Fn
     (4) 

 

where Tp and Tn are true positive cases and true 

negative cases, respectively, and Fp and Fn are false 

positive cases and false negative cases. 

The trained networks and models were then 

evaluated using the separated test dataset to determine 

their generalization and capability of accurately 

classifying the unseen test set. The 5-fold cross-

validation approach was used to validate the model 

performance metrics by comparing the training dataset 

to the test dataset, obtaining similar performance metrics 

in precision, recall, F1-score, and accuracy for the test 

dataset. 

The implementation of 5-fold cross-validation 

in this study serves numerous important functions, 

including ensuring model stability and generalizability, 

preventing overfitting, and optimizing model 

parameters for enhanced performance. This rigorous 

validation method maintains scientific integrity and 

robustness, aiming to improve CKD diagnosis 

predictions and provide significant insights to the 

medical community. 

 

3.5 Feature Selection Methods 

The built-in feature selection tool in 

MATLABR2022b was then used to identify key 

predictors contributing to model classification accuracy. 

Following identification of critical predictors, a less 

sophisticated ML model was trained to prove that with 

fewer predictors, the model could still perform 

comparably to models built with all predictors. The 

feature selection methods are based on statistical 

approaches, including minimum Redundancy-Maximum 

Relevance (MRMR), Chi2, ANOVA, and Kruskal-

Wallis. The statistical analysis in this study was 

thorough, employing both descriptive statistics for the 

training dataset and inferential statistics for the test 

dataset to explore the data and evaluate machine learning 

model performance, ensuring result validity and 

methodological rigor. By combining descriptive and 

inferential statistics, utilizing advanced software 

tools, and adhering to fundamental statistical 

principles, this study provides a strong foundation for 

future CKD prediction research. Detailed descriptions 

of the statistical methodology, tools, and assumptions 

enable replication and expansion of the research, 

fostering innovative machine learning approaches in 

CKD diagnosis advancement. 

Combining diverse feature selection techniques 

provides a comprehensive approach, accommodating 

numerical and categorical data while addressing 

redundancies and inter-variable relationships. This 

ensures that the final predictors for the CKD model 

are both statistically significant and varied, improving 

predictive accuracy and generalizability. By utilizing 

these methods, the study effectively handles the 

complexities of medical datasets, resulting in a robust, 

interpretable model at the forefront of CKD 

diagnostic methods. 

 

3.6 Statistical Analysis Using Bootstrap Analysis 

Here, we employed bootstrap analysis in 

Python using Jupyter Notebook to scrutinize the 

confusion matrices further. This statistical technique 

randomly resamples our dataset with replacement, 

using a sample size of 1,000. This process is repeated 

numerous times to ensure statistical reliability. The 

bootstrap method helps us estimate the accuracy and 

variability of our network's performance in classifying 

CKD cases. We aim to establish a 95% confidence 

interval for these estimations, providing a robust 

measure of the error range associated with CKD 

classification. 

This analysis is particularly critical as it also 

assesses the performance of a complexity-reduced 

model. This simplified model uses only the most 

critical factors previously identified through a 

rigorous feature selection process (detailed in section 

3.5). By applying bootstrap analysis, we can verify the 

stability and justify the performance of this 

streamlined model under varying data conditions. The 

outcomes highlight the reliability of error estimates 

and underscore the effectiveness of feature selection 

in enhancing model efficiency. 
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4.  Results 

4.1 Classification Models Trained using All 27 

Predictors  

All the labels and 27 clinical features from 

Table 1 were initially used to train the ML models 

listed in Table 3. Kernel Naïve Bayes was the best-

performing ML model, with classification accuracy, 

precision, recall, and F1 scores of 96.55%, 95.00%, 

98.28%, and 96.61%, respectively, as shown in Table 

3. These results were determined using a 5-fold cross-

validation approach from the training dataset.

 
Table 3 Classification performance metrics of the trained models using all 27 predictors and the training dataset for 

validation using a 5-fold cross-validation method 

Models Details Precision Recall F1-score Accuracy 

Tree 

Last Change: Fine 

Tree 
96.43% 93.10% 94.74% 94.83% 

Last Change: Medium 

Tree 
96.43% 93.10% 94.74% 94.83% 

Last Change: Coarse 

Tree 
96.43% 93.10% 94.74% 94.83% 

Naïve Bayes 
Gaussian Naïve Bayes FAILED FAILED FAILED FAILED 

Kernel Naïve Bayes* 95.00% 98.28% 96.61% 96.55% 

SVM 

Linear SVM 100% 81.03% 89.52% 90.52% 

Quadratic SVM 100% 82.76% 90.57% 91.38% 

Cubic SVM 100% 82.76% 90.57% 91.38% 

Fine Gaussian SVM 68.42% 89.65% 77.61% 74.14% 

Medium Gaussian 

SVM 
100% 81.03% 89.52% 90.52% 

Coarse Gaussian SVM 100% 67.24% 80.41% 83.62% 

Ensemble 

Boosted Trees 48.57% 58.62% 53.13% 48.28% 

Bagged Trees 96.43% 93.11% 94.74% 94.83% 

RUSBoosted Trees 57.63% 58.62% 58.12% 57.76% 

Neural Network 

Narrow Neural 

Network 
98.00% 84.48% 90.74% 91.38% 

Medium Neural 

Network 
98.00% 84.48% 90.74% 91.38% 

Wide Neural Network 98.00% 84.48% 90.74% 91.38% 

Bilayered Neural 

Network 
96.15% 86.21% 90.91% 91.38% 

Trilayered Neural 

Network 
98.00% 84.48% 90.74% 91.38% 

Kernel 

SVM Kernel 100% 89.66% 94.54% 94.83% 

Logistic Regression 

Kernel 
98.04% 86.21% 91.74% 92.24% 
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Figure 2 (a) Confusion matrix of the trained Kernel Naïve Bayes model 

(b) ROC plots of the trained Kernel Naïve Bayes model 

 

The models listed above have the best average 

performance metric of 96.55%, calculated by 

averaging the values of the four metrics. Figures 2a 

and 2b illustrate the model's confusion matrix and 

receiver operating characteristic (ROC) plots. 

The analysis comparing machine learning 

models for predicting CKD highlights subtle 

differences in performance and their practical 

implications, with Kernel Naïve Bayes stands out for 

its ability to handle complex interactions effectively. 

However, models like Bagged Trees and SVMs also 

hold promise despite potential difficulties in capturing 

all CKD cases. Gaussian Naïve Bayes and Boosted 

Trees encounter obstacles related to data distribution 

and overfitting assumptions. Choosing the right 

model for clinical use involves weighing precision 

and recall, considering factors such as the cost of false 

positives and how easily the model can be integrated 

into healthcare systems. Meanwhile, Kernel Naïve 

Bayes appears to be the strongest candidate in this 

study, which will be employed and tested in further 

sections. 

The confusion matrix presented in Figure 2a 

was subjected to a rigorous bootstrap analysis to 

validate the robustness of the Kernel Naïve Bayes 

model with a 95% confidence interval. The 

performance metrics-accuracy, precision, recall, and 

F1-score-demonstrated excellent stability, falling 

within the ranges of 94.87% to 98.26%, 93.33% to 

96.67%, 96.55% to 100.00%, and 94.92% to 98.31%, 

respectively. Additionally, the standard deviations for 

these metrics were notably low, all below 0.86%, 

underscoring the model's exceptional classification 

performance. This analysis confirms the Kernel Naïve 

Bayes model's high reliability in classifying data and 

highlights its precision and efficiency in handling 

diverse datasets. 

 

4.2 Validation of the Trained Model using the Test 

Dataset 

The separated test dataset was used to predict 

classification results compared to known labels. For 

the 22 validation cases, the trained Kernel Naïve 

Bayes model can predict 70 Tp cases, 12 Tn cases, 2 

Fp cases, and 0 Fn cases, as shown in Figure3a. These 

four variables offer the following performance 

metrics, including a precision of 87.50%, recall of 

100%, F1 score of 93.33%, and accuracy of and 

92.86%, respectively. Note that the test dataset was 

imbalanced. The confusion matrix was therefore 

normalized by the total number for each class, as 

shown in Figure3b, to calculate the performance 

metrics. The models listed above have the highest 

percentage of ML classification accuracy 

performance based on all 27 features. The test 

dataset's performance parameters and the validation 

cases' performance parameters in the preceding 

section differed by only 4%; in other words, the 

trained model produced a slightly overfitting model. 

The AUC values generated from the ROC curves of 

the test dataset demonstrate comparable performance 

to the training dataset, as illustrated in Figure 3c in 

contrast to Figure 2b. 

Integrating statistical tests for significance into 

machine learning model evaluation ensures more 

reliable conclusions about their effectiveness by 

determining if performance differences are 

meaningful or random. This involves selecting tests, 

setting hypotheses, determining significance levels, 

computing statistics, and interpreting results. Applied 

to CKD prediction models like Kernel Naïve Bayes, 

these tests provide insights into model superiority and 

guide further research and clinical use.  
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The confusion matrix depicted in Figure 3a 

was analyzed using the bootstrap method described in 

section 3.6. The analysis yielded the following 95% 

confidence intervals for the model's performance 

metrics: accuracy ranged from 91.06% to 93.43%, 

precision from 85.59% to 89.32%, recall remained at 

100% due to the absence of false negatives, and the 

F1-score varied between 92.24% and 94.36%. The 

narrow range of these confidence intervals indicates a 

high level of stability in the model's performance 

when validated against an unseen test dataset. 

 

4.3 Number of Predictors Reduction using 

Feature Selection Methods 

We then employed several feature selection 

methods to identify the relevance of each predictor. 

To begin, the Feature Selection Tools comprise all 27 

predictors, and Table 4 indicates which variable has 

the highest priority among all the variables. The 

feature selection tool, categorized into four types of 

statistical feature selection methods, including 

MRMR, Chi2, ANOVA, and Kruskal-Wallis, was 

employed to analyze and present the outcomes of 

different predictors, as illustrated in Table 4. 

Analyzing the feature selection outcomes gives 

a detailed understanding of how each method 

contributed to pinpointing essential predictors for 

CKD prognosis and their clinical significance. 

Through techniques like MRMR, Chi2, ANOVA, and 

Kruskal-Wallis, critical predictors such as packed cell 

volume (pcv), hemoglobin (hemo), specific gravity 

(sg), albumin (al), and serum creatinine (sc) were 

identified, highlighting their diagnostic importance 

and physiological implications in CKD. These 

predictors reflect kidney function, erythropoiesis, 

urine concentration ability, and markers of kidney 

damage and clearance efficiency, aiding in early 

detection and intervention strategies. This thorough 

feature selection process underscores the potential of 

machine learning to enhance disease diagnosis by 

leveraging complex clinical data for actionable 

insights. 

Based on the table above, each selector has 

common top-ranking criteria: hemo and pcv. On the 

other hand, there is a unique overall value for the 

selection of MRMR compared to the others. Thus, to 

ascertain the overall significance of the predictors 

ranked from highest to lowest, the choice was made 

to utilize Chi2, ANOVA, and Kruskal-Wallis for 

averaging their statistical values, as shown in Table 5. 

Using the first predictor (pcv) shown in Table 

5, we trained the ML models in the initial training 

round until the highest classification accuracy was 

reached. Note that by training the model using the first 

four variables listed in Table 6, the Kernel Naïve 

Bayes model reached up to 98.28%. 
 

 
 

Figure 3 (a) Confusion Matrix of the trained Kernel Naïve Bayes model for the test dataset 

(b) Normalized Confusion Matrix of the trained Kernel Naïve Bayes model for the test dataset  

(c) ROC plots of the trained Kernel Naïve Bayes using the test dataset 

 

 

 

 

  



PECHPRASARN ET AL. 

JCST Vol. 15 No. 1, January – March 2025, Article 76 

11 

Table 4 The significance of each predictor within the feature selection tool 

No. MRMR Chi2 ANOVA Kruskal-Wallis 

1 hemo 0.5183 hemo 35.0091 pcv 35.8042 pcv 31.5909 

2 bpDiastolic 0.0093 pcv 27.4987 stage 35.303 al 27.9565 

3 appet 0.0082 sg 26.4943 sg 31.7091 sg 27.4497 

4 dm 0.0071 stage 25.5119 al 29.8613 stage 26.5012 

5 sg 0.0052 al 23.8265 htn 21.4283 rbcc 22.8058 

6 rbc 0.005 grf 21.4112 rbcc 20.935 htn 18.6166 

7 pcc 0.0049 rbcc 19.2477 dm 19.1773 bu 17.4308 

8 al 0.0043 htn 18.7652 pc 18.1162 dm 16.9573 

9 pe 0.0039 bpLimit 18.1971 grf 16.6418 grf 16.5318 

10 htn 0.0034 dm 17.0918 bu 16.3071 pc 16.1526 

11 grf 0.0033 pc 16.2804 ane 15.1583 sc 15.1959 

12 ane 0.0031 bu 14.3381 sc 14.7984 sod 15.0455 

13 rbcc 0.0031 ane 13.9394 appet 14.2398 ane 13.8312 

14 pcv 0.0028 appet 13.1883 sod 13.21 appet 13.0863 

15 bpLimit 0.0027 sod 13.0446 bpLimit 12.2145 pe 10.9304 

16 cad 0.0026 pe 11.0143 pe 11.659 bpLimit 9.6004 

17 ba 0.0025 sc 9.8385 rbc 10.0668 rbc 9.553 

18 sod 0.0025 rbc 9.6255 pcc 6.4448 pcc 6.2818 

19 bgr 0.0023 age 7.1316 su 4.5913 su 5.0196 

20 pc 0.0021 pcc 6.3276 ba 3.8085 hemo 4.0517 

21 stage 0.0021 bgr 4.8228 wbcc 3.7318 ba 3.779 

22 age 0.0019 wbcc 3.9043 bpDiastolic 3.2204 bpDiastolic 3.2069 

23 sc 0.0019 ba 3.8049 cad 2.5191 cad 2.5185 

24 bu 0.0019 bpDiastolic 3.2284 hemo 2.4358 wbcc 1.5869 

25 su 0.0016 cad 2.5348 pot 1.1412 age 1.2532 

26 wbcc 0.0012 su 2.172 age 0.7259 pot 1.1479 

27 pot 0.0009 pot 1.1545 bgr 0.6187 bgr 0.3196 

 
Table 5 The top rank for each predictor across three distinct Feature Selection Methods 

Priority Predictors Rate Priority Predictors Rate 

1 pcv 31.63 15 bpLimit 13.34 

2 stage 29.11 16 sc 13.28 

3 sg 28.55 17 pe 11.20 

4 al 27.24 18 rbc 9.75 

5 rbcc 20.99 19 pcc 6.35 

6 htn 19.63 20 su 3.93 

7 grf 18.94 21 ba 3.79 

8 dm 17.74 22 bpDiastolic 3.22 

9 pc 16.85 23 wbcc 3.07 
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Table 5 Cont. 

Priority Predictors Rate Priority Predictors Rate 

10 bu 16.03 24 age 3.04 

11 ane 14.31 25 cad 2.52 

12 hemo 13.83 26 bgr 1.92 

13 sod 13.77 27 pot 1.15 

14 appet 13.50    

 

Table 6 The Twenty-two models were trained using the top four priority predictors 

Model Number Model Type Accuracy % (Validation) 

1 Last Change: Fine Tree 96.55% 

2 Last Change: Medium Tree 96.55% 

3 Last Change: Coarse Tree 95.69% 

4 Logistic Regression 93.97% 

5 Gaussian Naïve Bayes 98.28% 

6 Kernel Naïve Bayes* 98.28% 

7 Linear SVM 97.41% 

8 Quadratic SVM 96.55% 

9 Cubic SVM 97.41% 

10 Fine Gaussian SVM 95.69% 

11 Medium Gaussian SVM 97.41% 

12 Coarse Gaussian SVM 87.93% 

13 Boosted Trees 48.28% 

14 Bagged Trees 95.69% 

15 RUSBoosted Trees 48.28% 

16 Narrow Neural Network 98.28% 

17 Medium Neural Network 99.14% 

18 Wide Neural Network 98.28% 

19 Bilayered Neural Network 97.41% 

20 Trilayered Neural Network 97.41% 

21 SVM Kernel 98.28% 

22 Logistic Regression Kernel 98.28% 

 

The inclusion of the 5th, 6th, and 7th predictors 

emphasized the relevance of the first four predictors. 

However, the classification accuracy of Kernel Naïve 

Bayes was significantly lowered. Thus, it can be 

summarized that four predictors are the optimal 

number for our model. Additionally, it is widely 

recognized that a larger number of parameters does 

not always provide better performance since some 

parameters might not be consistent with the label or 

may contain more noise, especially if the optional data 

gives more noise rather than useful information for 

ML training. 
Adding the 7th predictor reinforced the 

significance of the first 4 predictors. The classification 

accuracy of Kernel Naïve Bayes was a consistent 

percentage, which gradually diminishes by adding the 

5th and continues, as shown in Table 7. As a result, we 

can conclude that 4 predictors are the optimal quantity 

for our model. 
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Table 7 The percentage of Kernel Naïve Bayes model by 
using the first 8 predictors 

Number of Predictors Kernel Naïve Bayes 

1 87.93% 

2 88.79 % 

3 96.55 % 

4 98.28% * 

5 98.28% 

6 98.28% 

7 95.69% 

 

Analyzing the study's outcomes within its 

objectives enriches its depth and practical relevance, 

showcasing the findings' efficiency and potential 

clinical usefulness. The revelation that the Kernel 

Naïve Bayes model achieves an accuracy of up to 

98.28% in predicting CKD using just four predictors 

perfectly aligns with the intention to optimize CKD 

prediction.  

An important question to consider is the 

performance equivalence between the complexity-

reduced model, which utilizes only four clinical 

features, and the full model, which includes all 

predictors. The confusion matrix of the Kernel Naïve 

Bayes model, trained on these four crucial factors, 

underwent bootstrap analysis, revealing performance 

metrics within the following 95% confidence 

intervals: accuracy ranged from 96.58% to 99.15%, 

precision from 98.21% to 100%, recall from 94.83% 

to 98.28%, and F1-score from 96.49% to 99.13%. 

These metrics closely mirror those reported for the 

full model in section 4.1, suggesting that the 

simplified model maintains similar classification 

efficacy as the more comprehensive model. 

This efficiency underscores the model's 

strength and simplifies the diagnostic process, making 

it more accessible for healthcare providers. 

Identifying the four key predictors—packed cell 

volume, hemoglobin, specific gravity, and albumin—

holds significant implications, streamlining 

diagnostic testing and offering insights into CKD's 

underlying processes. Furthermore, these findings 

contribute to the broader aim of personalized 

medicine by laying the groundwork for tailored risk 

assessments and treatment plans. Ultimately, this 

study's results have profound implications for CKD 

diagnosis, suggesting the potential for machine 

learning models to effectively transform healthcare 

practices in detecting and managing chronic diseases 

like CKD. 

5.  Discussion 

CKD is a degenerative disorder in which 

kidney function gradually diminishes, frequently 

without any symptoms in the early stages, resulting in 

a delayed diagnosis. Traditional diagnostic procedures, 

such as creatinine level monitoring, have limits, 

highlighting the need for novel approaches like 

artificial intelligence (AI). Using patient data from a 

dataset of 28 clinical variables, we created an AI 

model with an impressive 96.55% classification 

accuracy, demonstrating machine learning's (ML) 

potential for improving diagnosis. 

Comparing our findings to past research 

reveals both similarities and differences. Islam et al., 

(2020) and Haratian et al., (2022) found that ML 

models like XGBoost and Random Forest effectively 

predicted CKD with reasonable accuracy. Similarly, 

Ashafuddula et al., (2023) and Dritsas, & Trigka 

(2022) emphasized the need for advanced ML 

classifiers for early CKD detection. Our study's use of 

the Kernel Naïve Bayes model, which achieved 

98.28% accuracy with only four predictors, is 

consistent with these findings, highlighting ML's 

diagnostic capability and the efficiency of limited 

predictors. 

Regarding clinical consequences, the global 

lack of nephrologists highlights the importance of our 

findings in improving early CKD diagnosis. 

Integrating AI and ML models into clinical practice 

could help solve this gap by automating initial 

screenings and prioritizing patients for further 

assessment, thus lowering the demand for already 

overburdened healthcare facilities. Furthermore, 

seamless integration of these technologies with 

existing Electronic Health Record (EHR) systems can 

streamline diagnostic workflows, resulting in more 

efficient patient care and resource allocation. 

Furthermore, our model's capacity to rely on only four 

important variables indicates a realistic approach to 

diagnosis that might be easily deployed in various 

clinical situations. This streamlined diagnostic tool 

can improve testing processes and allow for early 

intervention by identifying at-risk individuals earlier 

in their illness. By providing doctors with actionable 

information, our model may enable them to make 

better decisions about patient care, ultimately 

improving outcomes and lowering the burden of CKD 

on patients and healthcare systems. 

Recognizing constraints such as dataset biases 

and the danger of overfitting is critical for 

understanding the scope and trustworthiness of our 

findings. Dataset biases in all datasets can skew 
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results and limit our model's applicability to larger 

patient populations. Furthermore, the risk of 

overfitting, in which a model performs well on 

training data but fails to generalize to new data, 

emphasizes the importance of rigorous validation 

across varied patient cohorts. Moreover, although our 

model shows remarkable accuracy with a small set of 

predictors, it might not account for all pertinent 

variables influencing the diagnosis of chronic kidney 

disease. Variations in patient demographics, 

comorbidities, and environmental factors may affect 

model performance and necessitate further inquiry. In 

addition, addressing these limitations is critical to 

ensuring our model's dependability and usefulness in 

real-world clinical scenarios. Future research should 

focus on minimizing dataset biases, maximizing 

model generalizability, and refining feature selection 

approaches to improve our approach's robustness. 

The unique method we used in our work to 

apply the Kernel Naïve Bayes model with minimum 

predictors goes beyond the diagnosis of CKD and 

provides a model for effective diagnostic instruments 

for various chronic illnesses. This breakthrough could 

revolutionize illness identification worldwide and 

have wide-ranging effects. By incorporating AI and 

ML into clinical practice, we can progress toward 

proactive, tailored healthcare, lowering inequities and 

increasing outcomes. Through telehealth technologies 

and remote monitoring, this change can potentially 

democratize access to healthcare, especially for 

underprivileged people. In short, our research ushers 

in a new era of precision medicine and better patient 

care while advancing machine learning and artificial 

intelligence in the healthcare industry. 

 

6.  Conclusion 

This study highlights the critical importance of 

precise CKD diagnosis, a significant public health 

concern, through machine learning techniques on a 

comprehensive clinical dataset from Enam Medical 

College, comprising 28 features and records of 200 

Bangladeshi patients. Firstly, an unbiased training 

dataset was provided by curating the data and training 

multiple ML models, including kernel models, neural 

network tree-based models, Naïve Bayes, logistic 

regression, support vector machine, and ensemble using 

MATLAB R2022b. Model performance was assessed 

using various performance metrics such as confusion 

matrix, accuracy, precision, sensitivity, recall, F1-score, 

and receiver operating curve (ROC) analysis with the 

area under the curve (AUC). This evaluation also 

employed a 5-fold cross-validation technique to ensure the 

reliability and generalizability of the results. Furthermore, 

feature selection methods, including minimum-

redundancy-maximum-relevance, Chi2, ANOVA, and 

Kruskal-Wallis, were employed to identify the most 

significant predictors for CKD classification. 

Intriguingly, the analysis reveals that only four 

predictors, including (1) packed cell value, (2) stages 

of glomerular filtration rate, (3) specific gravity of 

urine sample, and (4) albumin content of urine sample 

suffices to achieve a comparable performance level in 

training the model. It was found that Kernal Naïve 

Bayes emerged as the optimal model, achieving an 

impressive accuracy of 96.55%. The application of AI 

in CKD diagnosis and management, as demonstrated 

in this study, holds immense promise. By leveraging 

machine learning techniques and feature selection 

methods on clinical datasets, AI facilitates the 

development of accurate CKD classification models. 

Kernel Naïve Bayes highlights the potential of AI in 

enhancing CKD diagnosis, with high accuracy, 

precision, recall, and F1-score achieved across both 

training and test datasets. Moreover, identifying key 

predictors through feature selection techniques 

highlights AI's ability to streamline diagnostic 

processes, potentially leading to more effective CKD 

management strategies. Overall, this study 

exemplifies the impactful role of AI in advancing 

healthcare analytics and improving CKD diagnosis 

and treatment outcomes.  
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