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Abstract 

This study introduces hybrid forecasting models integrating the Whale Optimization Algorithm (WOA) with Holt-

Winters (HW) and decomposition methods, applied in both additive and multiplicative models, for time series forecasting. 

Focusing on monthly water inflow into four dam reservoirs in Southern Thailand, the study compares these hybrid models 

against classical statistical models, Grid Search for Holt-Winters (Grid-HW) and Classical Decomposition (Classic-D). 

The analysis comprises two phases: the training dataset phase and the testing dataset phase. In the training phase, WOA 

demonstrates superior parameter optimization, enhancing both HW and decomposition methods, resulting in lower Mean 

Absolute Error (MAE) values compared to classical models. In the testing phase, performance metrics such as Root Mean 

Square Error (RMSE), MAE, and Symmetric Mean Absolute Percentage Error (sMAPE) are employed. The findings 

reveal that the Whale Optimization Algorithm with Holt-Winters (WOA-HW) and Decomposition (WOA-D) models 

surpass classical approaches in long-term forecasting accuracy for three dam reservoirs. Over 24 data points, the WOA 

with Multiplicative Holt-Winters (WOA-HWx) is optimal for Pran Buri dam, the WOA with Additive Decomposition 

(WOA-D+) for Bang Lang dam, and the WOA with Multiplicative Decomposition (WOA-Dx) for Kaeng Krachan dam. 

The Box-Jenkins approach, further refined through a Box-Cox transformation employing a natural logarithm, emerged 

as the superior forecasting model for Rajjaprabha dam. This model satisfied all critical statistical criteria, including 

normality of residuals (Anderson-Darling: 0.359, p-value: 0.433), homoscedasticity (Levene's test: 1.24, p-value: 0.274), 

independence (Ljung-Box test: 14.10, p-value: 0.169), and zero mean (t-test: -0.39, p-value: 0.702), establishing its 

robustness and reliability for forecast analysis. 

 

Keywords: dam reservoir; decomposition; forecasting; Holt-Winters; whale optimization algorithm 

________________________________________________________________________________________________ 

 

1.  Introduction 

The convergence of time series forecasting 

and metaheuristics has ignited a continuous wave of 

development over the past three decades. This 

emerging synergy thrives on the persistent pursuit 

of optimal solutions through the application of 

metaheuristics. The early 1990s witnessed the 

pioneering efforts of Dorigo (1992) with Ant 

Colony Optimization (ACO) and Kennedy, & 

Eberhart (1995) with Particle Swarm Optimization. 

The dawn of the millennium ushered in a new era 

of algorithmic ingenuity. Geem et al. (2001) 
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unveiled Harmony Search, and Karaboga (2005) 

presented the Artificial Bee Colony (ABC) 

algorithm. While Yang (2009) ignited the field with 

the Firefly Algorithm. The same year, Yang, & Deb 

(2009) introduced the Cuckoo Search. Yang (2010) 

further enriched the landscape with the Bat 

Algorithm. The subsequent years saw Pan's (2011, 

2012) introduction of the Fruit Fly Optimization 

and Yang's (2012) conception of the Flower 

Pollination Algorithm. Gandomi, & Alavi (2012) 

contributed the Krill Herd Algorithm, and Mirjalili 

et al. (2014) marked a significant milestone with the 

Grey Wolf Optimizer. The momentum continued 

with Mirjalili, & Lewis's (2016) Whale 

Optimization Algorithm (WOA) and Mirjalili's 

(2016) Dragonfly Algorithm. Finally, Heidari et al. 

(2019) expanded the toolbox with the Harris Hawks 

Optimization. 

As time series forecasting continues to 

evolve, the integration of diverse approaches has 

opened up exciting possibilities. Among these, the 

Quantum-behaved Particle Swarm Optimization 

(QPSO) method, introduced by Sun et al. (2004), 

has sparked particular interest. Its remarkable 

flexibility has been showcased in various 

forecasting applications, suggesting its potential to 

become a valuable tool for tackling complex 

forecasting challenges. Cheng et al. (2015) 

harnessed QPSO to develop a daily reservoir runoff 

forecasting model that integrates Artificial Neural 

Networks (ANNs). Niu et al. (2018) furthered its 

reach by utilizing QPSO alongside the Extreme 

Learning Machine (ELM) to predict hydrologic 

time series for the Xinfengjiang reservoir in China. 

Feng et al. (2020) expanded its utility to monthly 

runoff forecasting by combining it with variational 

mode decomposition (VMD) and support vector 

machines (SVMs). Hadavandi et al. (2010) used 

particle swarm optimization to develop a time series 

model for gold price forecasting. Kaewpaengjuntra 

et al. (2010) applied into monthly electricity 

consumption forecasting in Thailand with a hybrid 

approach that fused Holt-Winters (HW) 

exponential smoothing with the Artificial Bee 

Colony algorithm. Assis et al. (2013) explored the 

integration of HW with the Ant Colony 

Optimization algorithm, while Zhang et al. (2019) 

successfully combined Support Vector Regression 

(SVR) with the Firefly algorithm for stock price 

forecasting. Expanding the potential of the Firefly 

algorithm, Das et al. (2019) applied it alongside 

various machine learning techniques, including 

Extreme Learning Machine, Online Sequential 

Extreme Learning Machine, and Recurrent Back 

Propagation Neural Network, for stock market 

forecasting. Jiang et al. (2020) enhanced the 

capabilities of HW smoothing by employing the 

Fruit Fly Optimization algorithm for monthly 

electricity consumption forecasting. 

This collaboration continues to evolve. Bas 

et al. (2021) introduced the Bootstrapped Holt 

Method with Autoregressive Coefficients based on 

the Harmony Search Algorithm. Sun et al. (2022) 

developed a hybrid short-term runoff prediction 

model utilizing optimal VMD, an enhanced Harris 

Hawks algorithm, and a Long Short-Term Memory 

network for forecasting runoff in four distinct study 

areas: Shigu, Panzhihua, Pingshan, and Zhongjiang. 

Mauricio, & Ostia (2023) optimized forecasting 

accuracy by fine-tuning the smoothing coefficients, 

level, trend, and seasonal parameters of the HW 

method using Cuckoo Search Algorithm. Most 

recently, Minsan, & Minsan (2023) innovated by 

incorporating the additive decomposition model 

and the Additive HW model into the Whale 

Optimization Algorithm. In their study conducted 

in 2023, Minsan, & Minsan (2023) hybridized the 

Whale Optimization Algorithm with Additive Holt-

Winters (WOA-HW+) and Additive 

Decomposition (WOA-D+). The consistent 

findings of their research highlighted the superiority 

of these hybrid models when compared to other 

established approaches in the field of time series 

forecasting. This underscores the substantial 

potential that WOA-HW+ and WOA-D+ hold for 

enhancing the accuracy and effectiveness of time 

series predictions, reaffirming their significance in 

the domain of time series forecasting. Furthermore, 

Nadimi-Shahraki et al. (2023) provided compelling 

evidence of WOA growing prominence. They 

documented an impressive surge in the number of 

citations for WOA, starting with 37 citations in 

2016 and skyrocketing to a remarkable 7,410 

citations by the end of March 2023. This surge in 

citations attests to the widespread popularity and 

significant impact of WOA in addressing a diverse 

range of optimization problems. 

 

2.  Objectives 

This study introduces hybrid models that 

integrate the WOA with both the multiplicative 

Holt-Winters (WOA-HWx) and multiplicative 

decomposition (WOA-Dx) methods to improve the 

accuracy of monthly forecasting the amount of 
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water inflow into the large dam reservoirs in 

Southern Thailand, including Pran Buri, 

Rajjaprabha, Bang Lang, and Kaeng Krachan. This 

contributes to efficient water management in the 

region. We conduct a comparative analysis of the 

forecasting outcomes achieved with WOA-HWx 

and WOA-Dx against those obtained from other 

established methods, including Additive Classical 

Decomposition (Classic-D+), Multiplicative 

Classical Decomposition (Classic-Dx), Grid Search 

for Additive Holt-Winters (Grid-HW+), Grid 

Search for Multiplicative Holt-Winters (Grid-

HWx), WOA-HW+, WOA-D+, Box-Jenkins, and 

Long Short-Term Memory (LSTM). 

 

3.  Materials and Methods 

3.1 Whale Optimization Algorithm 

Harnessing the collective intelligence of 

humpback whales, WOA has emerged as a 

promising tool for parameter estimation in time 

series forecasting. Introduced by Mirjalili, & 

Lewis’s (2016), this nature-inspired optimization 

technique has demonstrated remarkable efficacy in 

navigating complex optimization landscapes across 

diverse domains. 

In the present study, we leverage the WOA's 

unique blend of exploration and exploitation 

capabilities to optimize parameters within both the 

HW method and the decomposition technique. By 

incorporating WOA's robust optimization 

capabilities, we aim to enhance the accuracy and 

efficiency of our forecasting models. A 

comprehensive overview of the WOA's formulation 

and implementation is provided in this section, 

illuminating its theoretical underpinnings and 

practical application. In a population of 𝑁 whales, 

each represented by m-dimensional positions 

xi=(xi
1, xi

2,..., xi
m), i∈{1, 2,..., N}, the optimization 

hunt unfolds through three key movements: 

encircling prey, bubble-net attacking, and searching 

for prey. At each iteration, a whale chooses one of 

these actions to update its position and progress 

towards the optimal parameter values. 

 

3.1.1 Encircling Prey 

In the context of the WOA algorithm, there 

exists a strategy known as 'encircling prey,' which 

draws inspiration from the hunting behavior of 

humpback whales. This strategy is employed when 

two conditions are met: when the random value 

p<0.5, and when the absolute value of |A⃗⃗ |<1. 

The concept behind the encircling prey 

movement involves whales coordinating their 

efforts to encircle a target effectively, thereby 

maximizing their chances of capturing it. In the 

algorithm, this behavior is emulated through a 

process of updating the positions of the whales. 

These updates are determined based on the current 

positions of the whales and the best solution found 

up to that point. The mathematical representation of 

the position update equation for the encircling prey 

movement is as follows: 

 

X⃗⃗ (t+1)=�⃑�∗(t)-A⃑⃗⃗⋅D⃑⃗⃗   (1) 

 

in this context, X⃗⃗ (t+1) represents the updated 

position of the whale in the next iteration, while 

�⃑�∗(t) denotes the best position discovered by the 

whale up to the current iteration. The vector A⃑⃗⃗ 

represents the amplitude coefficient, and D⃑⃗⃗ 

represents a vector generated randomly. This 

particular movement mechanism enables the 

whales to efficiently explore the search space and 

progressively move toward more promising 

solutions. The calculations for vectors A⃑⃗⃗ and D⃑⃗⃗ are 

carried out as follows: 

 

A⃑⃗⃗=2⋅a⃑⃗⋅r⃑-a⃑⃗ 

D⃑⃗⃗=|C⃑⃗⃗⋅�⃑�∗(t)-X⃑⃗⃗(t)| where C⃑⃗⃗=2⋅r⃑ 

 

here, a⃑⃗ undergoes a linear decrease from 2 to 0 as 

the iterations progress, applying to both the 

exploitation and exploration phases. The variable r⃑ 

is a random vector with values ranging from 0 to 1. 

Additionally, C⃑⃗⃗ is a coefficient vector. The 

operation denoted by ⋅ represents element-by-

element multiplication. 

 

3.1.2 Bubble-net Attacking (Exploitation Phase) 

Within the framework of the WOA 

algorithm, a strategic approach known as 'bubble-

net attacking' is inspired by the hunting tactics of 

humpback whales. This tactic is brought into play 

under specific conditions: when the random value 

p≥0.5. 

Bubble-net attacking is characterized by the 

humpback whales encircling the prey within a 

shrinking circle while following a spiral-shaped 

path. To capture this simultaneous behavior, a 

probabilistic approach is incorporated where there 

is a 50% chance of selecting either the shrinking 

encircling mechanism or the spiral model to update 
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the positions of the whales during the optimization 

process. The mathematical definition of the spiral 

model is as follows: 

 

X⃗⃗ (t+1)=�⃑⃗⃗�′⋅𝑒𝑏𝑙⋅cos(2πl)+�⃑�∗(t)  (2) 

 

within the context of the WOA algorithm, 'bubble-

net attacking' is a strategic approach inspired by the 

hunting behavior of humpback whales. �⃗⃑⃗�′=|�⃑�∗(t)-
X⃑⃗⃗(t)| represents the distance of the ith whale to the 

prey (the best solution found so far), b=1, and, 

𝑙=((-1+t(-1/Tmax))-1)r⃑+1, where Tmax represents 

the maximum number of iterations. 

 

3.1.3 Searching for Prey (Exploration Phase) 

This exploration mechanism enables the 

whales to explore various regions within the search 

space, thereby enhancing the likelihood of 

uncovering improved solutions. During this phase, 

marked by an emphasis on exploration where the 

random value p<0.5, and when |A⃗⃗ |≥1. 

The mathematical model for the exploration 

process entails the random adjustment of the 

whales' positions based on the following equations: 

 

X⃑⃗⃗(t+1)=X⃑⃗⃗rand-A⃑⃗⃗⋅D⃑⃗⃗   (3) 

here, X⃑⃗⃗rand represents a randomly selected position 

vector, essentially a random whale, from the current 

population. Additionally, D⃑⃗⃗=|C⃑⃗⃗⋅X⃑⃗⃗rand-X⃑⃗⃗(t)| denotes 

a vector generated randomly. This mechanism, 

combined with a focus on exploration, strengthens 

the algorithm's capacity to traverse a wide spectrum 

of solutions, mitigating the risk of getting stuck in 

local optima. 

These three movements are exemplified in 

the pseudo-code presented in Figure 1, which 

provides a comprehensive outline of the procedure. 

To enhance the performance of our forecasting 

model, we leveraged all three categories of whale 

movements. 

First, we employed the 'encircling prey' 

movement, as described by Equation (1), for its 

effectiveness in optimizing local search. This 

movement focuses the algorithm's efforts on 

regions within the solution space that exhibit high 

fitness values, leading to the fine-tuning of potential 

solutions. 

Second, we complemented this with the 

'exploitation' technique, often referred to as 'bubble-

net attacking' behavior, to promote a more diverse 

search strategy. This approach enhances 

exploration across various areas of the solution 

space, as described by Equation (2).

 

The number of whales: N, the number of parameters: 𝑚, maximum iterations: Tmax , time limit: MaxTime, the fitness 

value fails to improve after a specified: Timprove, the bound of search area: Range Initialize Xi=(xi

j
,xi

2,...,xi
m), X* 

 

While (t < Tmax or time < MaxTime  or the fitness value fails to improve after a specified Timprove) 

For i = 1 to 𝑁 

Check if any search agent goes beyond the search space and amend it 

For j = 1 to m 

p=rand[0,1] 

Update  a, r, A, C, D, D′, b, l, Xrand 

If  p≥0.5 then 

Update xi

j
 the position of the current search agent by the Equation (2) #Exploitation Phase 

Elseif  p<0.5 and |A|<1 

Update xi

j
 the position of the current search agent by the Equation (1) #Encircling Prey 

Elseif  p<0.5 and |A|≥1 

Update xi

j
 the position of the current search agent by the Equation (3) #Exploration Phase 

Endif 

End for 

End for 

Calculate fitness (Xi) 

Update  X* if there is a better solution 

t=t+1 

End while 

Return X* 

Figure 1 Pseudo-code of the WOA (Mirjalili, & Lewis, 2016; Minsan, & Minsan, 2023) 
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Finally, we incorporated the 'exploration' 

movement for its broad search capabilities. This 

movement enables the algorithm to efficiently 

traverse a wider range of the solution space, 

increasing the likelihood of discovering the global 

optimum. This approach helps prevent premature 

convergence to local optima by exploring different 

areas of the solution space, as described by 

Equation (3). 

Through this strategic integration of local 

refinement, diverse search strategy, and global 

search, the WOA effectively navigates the 

optimization landscape in pursuit of the most 

optimal parameter values for our forecasting model. 

 

3.2 Forecasting Model 

3.2.1 Classical Decomposition Method 

The classical decomposition method is a 

time series forecasting approach that dissects a time 

series into its distinct constituents, which include 

the trend, seasonal, and residual components. The 

following are the typical steps employed in classical 

decomposition forecasting: 

1. Data Preparation: Begin by collecting and 

formatting a sufficient historical dataset for 

forecasting purposes. 

2. Visualization: Visualize the data through 

time series plots to discern underlying patterns, 

trends, and seasonality. 

3. Seasonal Period Identification: Determine 

the duration of recurring cycles within the data. 

4. Detrending: Eliminate the trend 

component to focus on seasonality and residuals. 

This typically involves using the centered moving 

averages. In an additive model, subtract the centered 

moving average values from the original time series. 

In a multiplicative model, divide the centered 

moving average values from the original time series. 

5. Seasonality Estimation: Calculate average 

values for each season and then adjust them to 

determine the seasonal component. In an additive 

model, adjust the seasonal component by subtracting 

the overall average from each season. In a 

multiplicative model, adjust the seasonal component 

by dividing the overall average from each season. 

6. Deseasonalization: Obtain a deseasonalized 

series by subtracting the seasonal component from 

the original time series in an additive model or 

dividing it in a multiplicative model. 

7. Trend Calculation: Utilize linear regression 

to identify and quantify the trend component. 

8. Forecasting: Predict future values by 

combining the forecasted trend and seasonal 

components. Mathematical equations, represented 

by Equations (4) - (7), are employed for both 

analytical modeling and prospective forecasting. 

 

Additive Modeling: Yt=β
0
+β

1
t+St+εt   (4) 

Additive Forecasting: Ŷt=β̂
0
+β̂

1
t+Ŝt     (5) 

Multiplicative Modeling: Yt=(β
0
+β

1
t)×St×εt (6) 

Multiplicative Forecasting: Ŷt=(β̂
0
+β̂

1
t)×Ŝt   (7) 

 

where Yt is the observed data at time 𝑡. Ŷt is the 

forecasted data at time t. εt is the residual at time t. 

We assume it follows a normal distribution with a 

mean of zero and constant variance, and statistical 

independence from other time points. t is the time 

index. β
0
, β

1
 are the y-intercept, and the slope 

coefficient, respectively. β̂
0
, β̂

1
 are the estimated 

coefficients of β
0
, β

1
 respectively. St is seasonal 

component at time t, which falls within a specific 

season i (i=1,...,s). We define s as a 12-month cycle. 

Each time point t is thus associated with one of 

these 12 distinct seasons. Ŝt is estimated seasonal 

component of St.  

9. Evaluation and Refinement: Assess the 

forecast against the actual data to gauge its 

accuracy and effectiveness.  

Our approach is referred to as 'Classic-D+' 

for the additive model and 'Classic-Dx' for the 

multiplicative model. 

 

3.2.2 Holt-Winters Method 

The HW method is well-regarded for its 

adaptability in handling both additive and 

multiplicative seasonal variations within time series 

data, even when the training dataset is relatively 

small in size. In the context of additive fluctuations, 

Equations (8) - (11) intricately describe the 

necessary computations, offering a thorough 

guidance. Likewise, when dealing with 

multiplicative seasonality, Equations (12) - (15) 

provide a clear and methodical framework for the 

calculations. 

Additive Forecasting: 

 

Ŷt+p=T̂t+pβ̂
t
+Ŝt-s+1+((p-1) mod s) for p=1,2,... (8) 

T̂t=α(Yt-Ŝt-s)+(1-α)(T̂t-1+β̂
t-1

)  (9) 

β̂
t
=γ(T̂t-T̂t-1)+(1-γ)β̂

t-1
   (10) 

Ŝt=δ(Yt-T̂t)+(1-δ)Ŝt-s   (11) 
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Multiplicative Forecasting: 

Ŷt+p=(T̂t+pβ̂
t
)×Ŝt-s+1+((p-1) mod s) for p=1,2,... (12) 

T̂t=α(
Yt

Ŝt-s
)+(1-α)(T̂t-1+β̂

t-1
)  (13) 

β̂
t
=γ(T̂t-T̂t-1)+(1-γ)β̂

t-1
   (14) 

Ŝt=δ(
Yt

T̂ t
)+(1-δ)Ŝt-s   (15) 

 

in the forecasting context, p is the number of time 

periods into the future for which predictions are made. 

s set at 12 months in this study, T̂t is the level of the 

time series, β̂
t
 is the trend, and Ŝt is the seasonality 

component. 

In this study, the smoothing coefficients α, γ,  
and δ are within the range of 0 to 1. These coefficients 

play a crucial role in determining the influence of the 

current observation and previous smoothed values 

when updating the model's level, trend, and seasonal 

components. A lower coefficient value, closer to 0, 

results in more pronounced smoothing, while values 

near 1 assign greater importance to recent 

observations. We can define two extreme cases in 

which smoothing coefficients are either 0 or 1. When 

researchers allow for smoothing coefficients equal to 

1, this represents the least smoothed (or unsmoothed) 

version of the original time series. Conversely, when 

smoothing coefficients equal 0, this represents the 

smoothest version of the pattern that the actual time 

series follows (Montgomery et al., 2007). In 

commercial software like Minitab, smoothing 

coefficients can specifically be defined as 0 for 

maximum smoothing and 1 for minimal smoothing.  

To optimize these parameters, we employ the 

Grid Search method. This approach involves 

systematically varying the coefficients in increments 

of 0.01, spanning the range from 0 to 1. This 

meticulous search process results in a total of 1013 =
1,030,301 iterations. We label our method as 'Grid-

HW+' for the additive model and 'Grid-HWx' for the 

multiplicative model. The selection of optimal 

parameters is based on minimizing the Mean Absolute 

Error (MAE).  

 

Objective Minimize MAE(α, γ, δ)      

Variable range {
0≤α≤1

0≤γ≤1

0≤δ≤1

 

MAE=
1

m
∑ |Yt-Ŷt|

m
t=1  (16) 

 

where m is the length of dataset, with m=48 for the 

model construction and m=72 for the future 

forecasting; Yt is the actual value, and Ŷt is the 

forecasted value produced by either Grid-HW+ or 

Grid-HWx.  

 

3.2.3 Hybrid the Whale Optimization Algorithm with 

Holt-Winters (WOA-HW) 

We utilized the WOA to optimize the α, γ, and 

δ parameters for the HW model. The computational 

steps for this process are outlined in the pseudo-code 

provided in Figure 2. 

We evaluated the performance of the HW 

model with the optimal parameters by assessing 

forecast accuracy. This assessment involves 

measuring the error between the forecasted data and 

the dataset. The objective function for the WOA-HW 

model is defined by the following Equation (16). 

Where m is for the length of dataset; Yt is the actual 

value, and Ŷt is the forecasted value produced by either 

WOA-HW+ or WOA-HWx. 

 

3.2.4 Hybrid the Whale Optimization Algorithm with 

Decomposition (WOA-D) 

The optimization of parameters has a great 

impact on the performance of the WOA-D model. In 

this study, WOA was used to solve the β̂
0
, β̂

1
, Ŝ1, Ŝ2, 

Ŝ3, Ŝ4, Ŝ5, Ŝ6, Ŝ7, Ŝ8, Ŝ9, Ŝ10, Ŝ11 and Ŝ12 parameters 

of decomposition. This process are outlined in the 

pseudo-code provided in Figure 3. 

 

Scaling Parameters 

1) Setting Constraints for Upper and Lower 

Bounds of Parameters:  

1.1) Constraints on the Upper and Lower 

Bounds of  β̂
0
 and  β̂

1
.  

Calculate the trend component using linear 

regression on the dataset to obtain β̂
0

′
 and β̂

1

′
. We 

recommend constraining the upper and lower bounds 

of the parameters β̂
0
 and  β̂

1
 according to the following 

equation: 

Constraint the upper bound of 

 β̂
0
 as 1.2β̂

0

′
 and β̂

1
 as 1.2β̂

1

′
 

Constraint the lower bound of 

 β̂
0
 as 0.8β̂

0

′
  and β̂

1
 as 0.8β̂

1

′
 

Note: These constraints apply when the parameter is 

positive. Conversely, if the parameter is negative, the 

upper and lower bounds should be switched. 
1.2) Constraints on the Upper and Lower 

Bounds of Ŝi (i=1, 2,..., 12). 
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The number of whales: N=100, the number of parameters: m=3, maximum iterations: Tmax=300, time limit: 

MaxTime=30 sec., the fitness value fails to improve after a specified: Timprove=50, the bound of search area: 

Range Initialize  Xi=(xi

j
, xi

2, xi
3), X* 

 

While (t < Tmax or time < MaxTime  or the fitness value fails to improve after a specified Timprove) 

For i = 1 to 𝑁 

Check if any search agent goes beyond the search space and amend it 

For j = 1 to m 

p=rand[0,1] 

Update  a, r, A, C, D, D′, b, l, Xrand 

If  p≥0.5 then 

Update xi

j
 the position of the current search agent by the Equation (2) #Exploitation Phase 

Elseif  p<0.5 and |A|<1 

Update xi

j
 the position of the current search agent by the Equation (1) #Encircling Prey 

Elseif  p<0.5 and |A|≥1 

Update xi

j
 the position of the current search agent by the Equation (3) #Exploration Phase 

Endif 

End for 

End for 

Calculate fitness (Xi) using HW by the Equation (16) 

Update  X* if there is a better solution 

t=t+1 

End while 

Return X*=(x1*, x2*, x3*) #Objective Minimize MAE(α*, γ*, δ*
) where α*=x1*, γ*=x2*, δ*

=x3* 

Figure 2 Pseudo-code of the WOA-HW 

 

The number of whales: N=100, the number of parameters: m=14, maximum iterations: Tmax=300, time limit: 

MaxTime=30 sec., the fitness value fails to improve after a specified: Timprove=50, the bound of search area: 

Range Initialize Xi=(xi

j
, xi

2,..., xi
14), X* 

 

While (t < Tmax or time < MaxTime  or the fitness value fails to improve after a specified Timprove) 

For i = 1 to 𝑁 

Check if any search agent goes beyond the search space and amend it 

For j = 1 to m 

p=rand[0,1] 

Update  a, r, A, C, D, D′, b, l, Xrand 

If  p≥0.5 then 

Update xi

j
 the position of the current search agent by the Equation (2) #Exploitation Phase 

Elseif  p<0.5 and |A|<1 

Update xi

j
 the position of the current search agent by the Equation (1) #Encircling Prey 

Elseif  p<0.5 and |A|≥1 

Update xi

j
 the position of the current search agent by the Equation (3) #Exploration Phase 

Endif 

End for 

End for 

Scaling Parameters 
Calculate fitness (Xi) using Decomposition by the Equation (17) 

Update  X* if there is a better solution 

t=t+1 

End while 

Return X*=(x1*, x2*,..., x14*)  

#Objective Minimize MAE(β̂
0

*
, β̂

1

*
, Ŝ1

*
, Ŝ2

*
, Ŝ3

*
, Ŝ4

*
, Ŝ5

*
, Ŝ6

*
, Ŝ7

*
, Ŝ8

*
, Ŝ9

*
, Ŝ10

*
, Ŝ11

*
, Ŝ12

*
) where β̂

0

*
=x1*, β̂

1

*
=x2*,..., Ŝ12

*
=x14* 

Figure 3 Pseudo-code of the WOA-D 
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Remove the trend component from the time 

series using differencing (ΔYt=Yt-Yt-1). We 

recommend constraining the upper and lower 

bounds of parameters Ŝ1, Ŝ2,..., Ŝ12 according to the 

following equation: 

Constraint the upper bound (UB) is +(extreme 

value) of amplitude of ΔYt.  

Constraint the lower bound (LB) is -(extreme value) 

of amplitude of ΔYt. 

2) We configure the WOA to search for 

parameters within the boundary of [0, 1]. Therefore, 

it is necessary to adjust the units of the parameters 

before calculating the fitness value. The following 

equation is employed for this purpose: 

Original Value = Scaled Value × (UB – LB) + LB. 

If the original values are denoted as (Ŝi), the 

seasonal adjustment can be calculated using the 

formula: 

 

Additive decomposition Adjust Ŝi=Ŝi- ∑
Ŝi

12

12
i=1  then 

∑ Ŝi
12
i=1 =0 

 

Multiplicative decomposition Adjust Ŝi=
Ŝi

∑
Ŝi
12

12
i=1

 then 

∑ Ŝi
12
i=1 =12. 

 

In this equation, the original value represents 

the parameter value based on the original data unit, 

while the scaled value is the value obtained by the 

WOA within the range of [0, 1]. This step holds 

significant importance, especially when dealing 

with parameters of different units and a 

considerable number of parameters. 

The objective function of WOA-D to the 

following equation: 

Objective Minimize  

 

MAE(β̂
0
, β̂

1
, Ŝ1, Ŝ2, Ŝ3, Ŝ4, Ŝ5, Ŝ6, Ŝ7, Ŝ8, Ŝ9, Ŝ10, 

Ŝ11, Ŝ12) 

Variable range {

0.8β̂
0

′
≤β̂

0
≤1.2β̂

0

′

0.8β̂
1

′
≤β̂

1
≤1.2β̂

1

′

LB≤Ŝi≤UB for i=1, 2,..., 12

 

MAE=
1

m
∑ |Yt-Ŷt|

m
t=1   (17) 

 

where m is the length of dataset, with m = 48 for the 

model construction and m = 72 for the future 

forecasting; Yt is the actual value, and Ŷt is the 

forecasted value produced by either WOA-D+ or 

WOA-Dx.  

 

3.3 Data Preparation 

This study utilizes secondary data from the 

Royal Irrigation Department (2024) regarding 

water inflow into four major southern Thai dam 

reservoirs (Big Dams or large reservoirs): Pranburi, 

Rajjaprabha, Bang Lang, and Kaeng Krachan 

Dams. The dataset inherently displays both 

seasonality and a time trend. Analysis using the 

Autocorrelation Function (ACF), depicted in Figure 

4 provided compelling evidence for these 

characteristics and solidified the case for using this 

dataset in our experiments. (Definition: A large 

reservoir is defined as one with a water storage 

volume exceeding 100 million cubic meters, a 

reservoir area exceeding 15 square kilometers, or an 

irrigation area exceeding 80,000 rai.) 

The dataset spans January 2018 to December 

2023, comprising 72 data points. This data was 

divided into training (48 points, Jan 2018 - Dec 

2021) and test (24 points, Jan 2022 - Dec 2023) 

datasets. The training dataset formed the basis for 

constructing the forecasting model, while the test 

dataset evaluated its accuracy. Finally, upon 

obtaining the appropriate model, all 72 data points 

were used to forecast the water inflow into these 

large dam reservoirs for the period of January 2024 

to December 2025 (24 data points). 

 

3.4 Evaluation Criteria 

Our evaluation framework is divided into 

two distinct categories: 

The initial category's objective is to 

determine the most effective modeling approach by 

evaluating which one results in the lowest MAE 

during the training dataset phase. Here 

MAE=
1

n1

∑ |Yt-Ŷt|
n1
t=1 , n1=48 is the length of the 

training dataset, while Yt and Ŷt are the actual and 

forecasted values of the training dataset, 

respectively. We will choose the modeling 

approach with the lowest MAE after comparing 

Classic-D with WOA-D and Grid-HW with WOA-

HW.
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Figure 4 ACF of water inflow for each dam 

 

The second category, to accurately evaluate 

the effectiveness of our water inflow prediction 

model for large dam reservoirs in Southern 

Thailand, and draw meaningful conclusions about 

its strengths and weaknesses, we will utilize three 

established metrics: Root Mean Square Error 

(RMSE), MAE, and Symmetric Mean Absolute 

Percentage Error (sMAPE). RMSE captures the 

average magnitude of prediction errors, giving us a 

sense of overall accuracy. MAE focuses on the 

average absolute difference, highlighting how 

consistently close the predictions are to actual 

values. Finally, sMAPE expresses the average error 

as a percentage of the actual inflow, allowing for 

fair comparison across dam reservoirs with varying 

inflow rates. By analyzing these metrics together, 

we gain a comprehensive understanding of the 

model performance and can confidently use this 

information to optimize water resource 

management for large dam reservoirs in Southern 

Thailand. 

 

RMSE=√
1

24
∑ (Yt-Ŷt)

2n2

t=49
   (18) 

MAE=
1

24
∑ |Yt-Ŷt|

n2
t=49    (19) 

sMAPE=100 ×
1

24
∑

|𝑌𝑡-�̂�𝑡|

(𝑌𝑡+�̂�𝑡)

2

n2
t=49  (Hyndman, & 

Koehler, 2006) (20) 

where n2=72, which is the length of the test dataset; 

Yt and Ŷt  are the actual value and forecasting value 

of the test dataset, respectively. 

The experiments were carried out using a 

Google Colab (2023) environment, which offers 

seamless access to Python programming 

capabilities. 

 

4. Results  

4.1 Analysis of Comparative Performance  

 During the Training Dataset Phase 

This section assesses the performance of the 

WOA-HW and WOA-D models in forecasting 

water inflow into large dam reservoirs, with their 

effectiveness being compared against two classical 

forecasting models, namely Classic-D and Grid-

HW, all applied to the same dataset. The outcomes 

of this analysis are detailed in Table 1. The 

parameter optimization capabilities of the WOA 

models seamlessly integrate with both HW and 

decomposition techniques. 

- WOA-HW vs. Grid-HW: The WOA's 

parameter optimization significantly improved the 

HW model. In pairwise comparisons, the WOA-

HW model demonstrated lower MAE for three 

dams (Pran Buri, Bang Lang, and Kaeng Krachan) 

compared to Grid-HW. However, for Rajjaprabha 

Dam, the Grid-HW model (in both its additive and 
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multiplicative models) had lower MAE values than 

WOA-HW. 

- WOA-D vs. Classic-D: Across all dams, 

WOA-D, in both its additive and multiplicative 

models, consistently showed lower MAE values 

than Classic-D, indicating a stronger performance 

of the WOA-enhanced Decomposition approach 

over the traditional method. 

Integrating the WOA with HW and 

decomposition methods proves advantageous, 

leading to more precise model fitting compared to 

classical forecasting approaches. This improvement 

is evident in the pairwise comparisons and across 

all dams, underscoring the effectiveness of WOA in 

enhancing forecasting models. 

 

4.2 Analysis of Comparative Performance  

During the Testing Dataset Phase 

In this phase of the study, we generated long-

term forecasts spanning a two-year period, 

equivalent to 24 months. To evaluate the 

performance of various forecasting models, we 

employed key metrics including RMSE, MAE, and 

sMAPE. We conducted a comprehensive 

comparative analysis, pitting two traditional 

statistical models, Grid-HW and Classic-D, against 

advanced models incorporating the WOA, namely 

WOA-HW and WOA-D. Additionally, we included 

the Box-Jenkins model and the Long Short-Term 

Memory (LSTM) technique for thorough 

evaluation. 

For the Box-Jenkins model, parameter 

identification followed a multi-step process. This 

included analyzing the time series curve, the 

Autocorrelation Function (ACF), and the Partial 

Autocorrelation Function (PACF). We employed 

the Dickey-Fuller (DF) test to detect unit roots, with 

a maximum lag order set at 12. Model selection was 

facilitated by minimizing the Akaike Information 

Criterion (AIC) value. Non-stationary time series 

data were transformed into stationary forms through 

differencing to obtain d and D values or via the 

Box-Cox transformation (natural logarithm 

transformation). The hyperparameters p, q, P, and 

Q were all set within a range of 0 to 2. We utilized 

a grid search, a machine learning optimization 

technique, for hyperparameter tuning and to 

identify models that achieved the minimum AIC 

values. The process of selecting the order with the 

lowest AIC continued until all tests were passed for 

the model residuals. Minitab was used to test 

residual values. These tests included assessing 

normality using the Anderson-Darling test (AD), 

verifying a mean of zero using the t-test, ensuring 

constant variance with Levene's test, and checking 

for statistical independence from other time points 

using the Ljung-Box (Lag 12) test. The model that 

met these criteria and had the minimum AIC value 

was chosen as the forecasting model. 

For the LSTM model, we configured 

hyperparameters as follows: the loss function was 

set to MAE, the optimizer was Adam, and the 

number of epochs was fixed at 100. We 

experimented with three different look back 

hyperparameter values: 12, 18, and 24. The number 

of neurons in the LSTM layer was set to 50. The 

implementation was carried out in Python. We 

determined the forecasting model based on the one 

that yielded the lowest MAE values in the test 

dataset. 

This comprehensive approach allowed us to 

thoroughly evaluate and compare the performance 

of these forecasting models during the testing 

dataset phase. 

A summary of the model performance 

metrics for various dams is detailed in Table 2 

(RMSE), Table 3 (MAE), and Table 4 (sMAPE). 

Notably, the WOA-HWx model demonstrated the 

most accurate forecasts for Pran Buri dam, 

achieving the lowest MAE and sMAPE values. 

Similarly, the WOA-D+ model outperformed other 

models in all metrics at Bang Lang dam, while the 

WOA-Dx model excelled in all metrics at Kaeng 

Krachan dam. These findings indicate that the 

integration of the WOA models with HW and 

decomposition methods is effective for forecasting 

water inflow into these reservoirs and will be 

utilized for the forecast period from January 2024 

to December 2025. In the case of Rajjaprabha dam, 

the Box-Jenkins model, enhanced with a Box-Cox 

transformation using a natural logarithm, emerged 

as the superior model. It met all the necessary 

statistical assumptions, including residual normal 

distribution (AD = 0.359, p-value = 0.433), constant 

variance (homoscedasticity) (Levene = 1.24, p-

value = 0.274), independence of residuals (Ljung-

Box (Chi-square) = 14.10, p-value = 0.169), and 

residuals with zero mean (t = -0.39, p-value = 

0.702). The model also recorded the lowest MAE 

and sMAPE values. Based on its strong 

performance, the Box-Jenkins method will be the 

preferred forecasting model for Rajjaprabha dam 

for the period January 2024 to December 2025. 
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Specific forecasting methods to the entire 

time series dataset for a two-year period from 

January 1, 2024, to December 31, 2025, which 

spans 24 months. The results, illustrated in Figure 5 

and Table 5, demonstrate a close alignment between 

the actual and forecasted water inflow values for 

each dam reservoir, indicating the accuracy of the 

forecasting methods.  

 

Table 1 MAE of training dataset for each dam 

Model 
Dam reservoir 

Pran Buri Rajjaprabha Bang Lang Kaeng Krachan 

Decomposition  Additive  Classic-D+ 24.7008 79.1668 53.6908 53.6645 

WOA-D+ 24.0992 69.6281 49.2657 43.4409 

Multiplicative  Classic-Dx 24.5530 73.7793 57.4436 48.2138 

WOA-Dx 18.1602 68.2925 48.1075 42.3196 

Holt-Winters  Additive Grid-HW+ 31.8431 98.2238 68.8142 67.7132 

WOA-HW+ 31.6274 98.5740 68.6812 67.6597 

Multiplicative Grid-HWx 31.9394 85.6059 68.8875 67.7132 

WOA-HWx 31.9394 86.1263 68.8567 67.6952 

Note: The lowest MAE value between Classic-D and WOA-D, and between Grid-HW and WOA-HW is highlighted 

 

Table 2 RMSE of test dataset for each dam reservoir 

Model 
Dam reservoir 

Pran Buri Rajjaprabha Bang Lang Kaeng Krachan 

Decomposition  Additive  Classic-D+ 53.26 105.75 108.83 61.73 

WOA-D+ 44.60 113.24 100.55 43.96 

Multiplicative  Classic-Dx 118.92 104.34 111.76 49.67 

WOA-Dx 81.19 101.98 104.80 33.77 

Holt-Winters  Additive  Grid-HW+ 51.51 128.10 113.04 60.28 

WOA-HW+ 50.69 220.46 113.08 60.15 

Multiplicative  Grid-HWx 51.13 258.68 110.11 60.28 

WOA-HWx 51.04 290.77 110.28 60.32 

Box-Jenkins 61.63 109.66 172.36 44.04 

LSTM 53.70 116.34 150.44 33.84 

Note: The lowest RMSE value for each dam reservoir is highlighted 

 

Table 3 MAE of test dataset for each dam reservoir 

Model 
Dam Reservoir 

Pran Buri Rajjaprabha Bang Lang Kaeng Krachan 

Decomposition  Additive  Classic-D+ 42.70 77.07 90.41 41.88 

WOA-D+ 38.98 75.31 76.78 30.10 

Multiplicative  Classic-Dx 72.92 72.26 93.64 32.02 

WOA-Dx 48.33 70.09 88.56 22.10 

Holt-Winters  Additive  Grid-HW+ 35.13 88.89 87.57 42.75 

WOA-HW+ 34.64 188.26 87.56 42.57 

Multiplicative  Grid-HWx 33.05 180.22 87.55 42.75 

WOA-HWx 33.00 203.07 87.78 42.77 

Box-Jenkins 38.39 69.33 126.03 30.20 

LSTM 33.71 76.62 96.98 25.26 

Note: The lowest MAE value for each dam reservoir is highlighted 
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Table 4 sMAPE of test dataset for each dam reservoir 

Model 
Dam Reservoir 

Pran Buri Rajjaprabha Bang Lang Kaeng Krachan 

Decomposition  Additive  Classic-D+ 94.44 42.00 45.04 88.74 

WOA-D+ 93.48 30.75 39.13 51.33 

Multiplicative  Classic-Dx 99.03 33.02 47.46 40.02 

WOA-Dx 85.57 31.56 44.59 31.71 

Holt-Winters  Additive  Grid-HW+ 84.81 35.64 43.72 49.05 

WOA-HW+ 85.23 69.31 43.75 48.80 

Multiplicative  Grid-HWx 80.23 56.08 43.92 49.05 

WOA-HWx 80.19 59.77 44.01 49.09 

Box-Jenkins 81.32 29.59 54.66 37.45 

LSTM 89.85 37.53 45.09 43.52 

Note: The lowest sMAPE value for each dam reservoir is highlighted 

 

Table 5 Forecasted water inflow into dam reservoirs (million cubic meters), January 2024 - December 2025 

Month/Year 

Dam Reservoir 

Pran Buri  

(WOA-HWx) 

Rajjaprabha 

(SARIMA(0,0,2)(1,1,0)12) 

Bang Lang  

(WOA-D+) 

Kaeng Krachan 

(WOA-Dx) 

Jan-2024 5.93 86.41 283.38 11.43 

Feb-2024 5.97 79.61 180.94 10.22 

Mar-2024 4.62 84.40 169.81 9.53 

Apr-2024 5.31 96.28 155.66 18.19 

May-2024 7.32 142.27 214.75 17.22 

Jun-2024 18.75 168.33 192.69 21.35 

Jul-2024 19.67 497.23 179.90 40.69 

Aug-2024 68.34 362.86 162.09 108.31 

Sep-2024 81.19 410.47 160.33 78.65 

Oct-2024 63.06 356.94 263.44 76.03 

Nov-2024 34.27 174.86 320.51 19.55 

Dec-2024 7.61 108.77 375.95 8.77 

Jan-2025 5.93 81.00 302.76 8.38 

Feb-2025 5.97 61.93 200.32 7.43 

Mar-2025 4.62 66.96 189.18 6.87 

Apr-2025 5.31 81.77 175.04 12.99 

May-2025 7.32 114.73 234.12 12.18 

Jun-2025 18.75 171.83 212.06 14.95 

Jul-2025 19.67 465.52 199.27 28.18 

Aug-2025 68.34 434.91 181.47 74.12 

Sep-2025 81.19 482.13 179.71 53.15 

Oct-2025 63.06 311.96 282.81 50.70 

Nov-2025 34.27 171.93 339.88 12.85 

Dec-2025 7.61 100.77 395.33 5.68 
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Figure 5 Actual and forecasted values for each dam reservoir using the most suitable forecasting method 

 

5.  Discussion 

The results from the training dataset phase 

indicate that integrating the WOA with HW and 

decomposition methods leads to more precise 

model fitting compared to classical forecasting 

approaches. This improvement was evident in the 

pairwise comparisons and across all dams, 

underscoring the effectiveness of WOA in 

enhancing forecasting models. 

In the testing dataset phase, the WOA 

integrated with HW and decomposition methods 

demonstrated exceptional accuracy across various 

dams. Specifically, for Pran Buri dam, the model 

had the lowest MAE and sMAPE, indicating highly 

accurate forecasts. Similarly, at Bang Lang and 

Kaeng Krachan dams, it outperformed all other 

models in every metric, demonstrating its 

effectiveness in diverse forecasting scenarios. For 

Rajjaprabha dam, however, the Box-Jenkins model 

emerged as the top performer. Enhanced with a 

Box-Cox transformation, this model met all 

necessary statistical assumptions and achieved the 

lowest MAE and sMAPE values, demonstrating its 

robust performance. 

Our new hybrid model integrates advanced 

optimization techniques with forecasting methods, 

enabling more precise parameter tuning and 

improved adaptability to complex time series 

patterns. By leveraging the WOA alongside HW 

and Decomposition, our model optimizes both 

additive and multiplicative components, enhancing 

forecast accuracy through a comprehensive and 

adaptable framework represented by equations (1) 

– (3) for Encircling Prey, Exploitation Phase, and 

Exploration Phase. 

These findings demonstrate the effectiveness 

of integrating the WOA with HW and 

decomposition methods for forecasting water 

inflow into reservoirs, and they will be utilized for 

the upcoming forecast period. The success of the 

Box-Jenkins model at Rajjaprabha Dam also 

highlights the continued relevance of traditional 

methods in certain scenarios. 

 

6.  Conclusions 

When forecasting, it is beneficial to compare 

multiple models to identify the best method for a 

given dataset. This comparison often involves 

evaluating the performance of each model on a 

testing dataset using error metrics such as RMSE, 

MAE, and sMAPE, which measure discrepancies 

between actual and forecasted values. Additionally, 

visual inspection of plotted actual versus forecasted 

values can offer insights into each model fit. 

Each model, including decomposition, HW, 

Box-Jenkins, and LSTM, has unique strengths and 

Pran Buri Rajjaprabha 

Bang Lang Kaeng Krachan 
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limitations. Decomposition models excel in 

dissecting time series into trend, seasonal, and 

irregular components. HW, known for their 

simplicity, are effective in data with trend and 

seasonality. Box-Jenkins models offer greater 

flexibility but require more extensive data for 

training. LSTM models, a branch of deep learning, 

are adept at forecasting data with complex patterns. 

This research also reaffirms the efficacy of 

traditional methods, such as the Box-Jenkins 

approach, which continue to yield robust results, as 

evidenced in the Rajjaprabha dam dataset. 

Building upon the research of Minsan, & 

Minsan (2023), which utilized only the additive 

model for integrating the WOA with HW and 

decomposition methods, our study expanded the 

approach to include both additive and multiplicative 

models. This enhancement significantly improved 

the versatility and precision of model fitting, 

surpassing the performance of traditional 

forecasting methods. Notably, the models 

demonstrated robust forecasting capabilities up to 

24 months in advance, as evidenced by their 

performance in both the training and testing phases. 

In conclusion, this research has successfully 

introduced an innovative forecasting methodology 

by integrating the WOA with HW and 

decomposition models, demonstrating superior 

predictive accuracy across all four dams studied. 

Future research will focus on refining these 

techniques and expanding their application to 

various time series datasets to assess their 

adaptability and effectiveness in diverse scenarios. 
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