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Abstract 

This article presents a novel framework for enhancing the integrity and availability of data stored on multi-cloud storage 

systems. The proposed technique leverages a combination of interleaving and Luby transform (LT) codes, specifically 

employing either ideal or robust soliton distribution during the LT encoding stage. The proposed technique is rigorously 

designed, incorporating data preparation facilitated by a cloud broker and culminating in the measurement of key performance 

indicators (KPIs).  A central component of the framework is data processing, which involves interleaving followed by the LT 

encoding with soliton distribution selection. The performance of the proposed technique is evaluated through data integrity, 

data availability, and others. The results demonstrate that using the robust soliton distribution offers a pragmatic balance 

between computational efficiency and robust data integrity, particularly crucial in dynamic multi-cloud environments. 

Additionally, the proposed technique achieves a high level of data integrity of more than 0.97 and strong resilience with 

average data availability of 98%. However, further optimization is necessary to address storage overhead, retrieval time, and 

computational overhead. Despite these considerations, the framework remains significant, especially within the context of 

confidentiality, integrity, and availability for multi-cloud storage protection. The proposed technique underscores the potential 

of integrating interleaving and LT codes to revolutionize data storage and access within cloud environments, paving the way 

for future innovations in the field. 
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1.  Introduction 

Multi-cloud storage has emerged as a pivotal 

technology, addressing the growing demands for data 

storage, accessibility, and security (Jagruthi et al., 

2022). The advent of multi-cloud environments 

represents a significant shift from traditional, 

monolithic storage solutions to a more distributed, 

dynamic, and scalable approach. Generally, multi-

cloud storage refers to the use of multiple cloud 

services from different providers to store, manage, 

and process data. This approach offers several 

advantages over single-cloud solutions (Imran et al., 

2021). Firstly, it mitigates the risks associated with 

vendor lock-in, providing flexibility and freedom to 

choose the best services based on cost, performance, 

and features (Ahmed et al., 2022). Secondly, multi-

cloud environments enhance data availability and 

disaster recovery capabilities (Gu et al., 2014). By 

distributing data across multiple clouds, organizations 

can ensure continuous access to their data, even in a 

service outage or failure in one cloud (Song et al., 

2023). Another critical aspect of multi-cloud storage 

is its contribution to data security and privacy (Antu 

et al., 2022). With the increasing concerns over data 
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breaches and cyber threats, multi-cloud storage 

provides an added layer of protection. Distributing 

data across various clouds can prevent total data loss 

or compromise, as the risk is dispersed and not 

concentrated in a single location. Moreover, multi-

cloud storage enables compliance with various 

regional data protection regulations by allowing data 

to be stored in specific geographic locations as 

required by law (George, & Pramila, 2021). 

However, multi-cloud storage also presents 

unique challenges data integrity and availability. 

While data integrity is crucial for maintaining trust 

and accuracy in business operations, availability 

ensures that data is accessible when needed, 

contributing to an organization’s operational 

efficiency (Izham Jaya et al., 2017). Ensuring data 

remains unaltered and consistently accessible across 

different cloud platforms is a complex task (Abdalla, 

& Varol, 2019). As such, multi-cloud architectures are 

a testament to the relentless pursuit of enhanced 

security and operational resilience. Some studies in 

this field have critically examined the intricacies of 

deploying and managing disparate cloud services, 

forging a path toward more robust data protection 

mechanisms. These research efforts have introduced 

advanced cryptographic techniques, novel access 

control models, and sophisticated risk assessment 

methodologies.  

This research focuses on addressing these 

challenges, particularly the risks of data corruption 

and unauthorized alterations across different cloud 

platforms (Witanto et al., 2023). To address these 

challenges, combining innovative solutions involving 

advanced coding techniques, such as LT codes and 

data interleaving methods, are gaining prominence in 

enhancing data integrity and availability in multi-

cloud environments. By enhancing data integrity and 

availability, the proposed technique seeks to address 

the core challenges of multi-cloud storage, paving the 

way for more resilient, efficient, and secure data 

management practices in the cloud computing era. 

 

1.1 Current Solutions and Limitations 

The quest for optimal solutions to ensure data 

integrity and availability has led to the development 

of various approaches in multi-cloud storage. This 

section provides an overview of these existing 

solutions, intensively analysis of their strengths and 

identification of the limitations that have necessitated 

exploring more innovative approaches, such as the 

hybrid use of Interleave and LT codes. 

Several solutions have been proposed to 

address multi-cloud storage issues. Early solutions 

primarily revolved around redundancy techniques, 

such as mirroring and replication across multiple 

cloud servers, offering essential data availability and 

integrity. However, they fail in term of efficiency and 

scalability (Shakarami et al., 2021). Replication, in 

particular, leads to increased storage costs and 

complexity in data synchronization, making them less 

suitable for large-scale cloud environments 

(Sabaghian et al., 2023). In addition, data 

deduplication techniques have been employed to 

reduce storage space by eliminating redundant copies 

of data. However, they often do not address the core 

issues of data availability and integrity in multi-cloud 

environments which are vulnerable to various security 

threats (Prajapati, & Shah, 2022). While different 

cryptographic techniques were proposed to address 

these concerns, they mostly ensure data 

confidentiality but do not inherently guarantee data 

availability and integrity. Furthermore, they often 

impose additional computational overhead and 

complexity in crucial data management (Por et al., 

2023). 

There are also several coding solutions 

introduced to address multi-cloud storage issues. For 

example, erasure coding emerged as a more storage-

efficient alternative to replication, especially in 

distributed storage systems (Li, & Li, 2013). By 

dividing data into fragments, encoding them, and 

storing them across various nodes, erasure coding 

ensures data recoverability even when some 

fragments are lost. However, the computational 

overhead for encoding and decoding, coupled with the 

increased latency in data retrieval, poses significant 

challenges, particularly in dynamic cloud 

environments (Xiao et al., 2020). Furthermore, 

network coding approaches have been proposed to 

improve data transfer efficiency in cloud storage 

offering advantages in data retrieval and repair 

operations. These solutions, however, introduce 

implementation complexities and require 

considerable computational resources, making them 

less practical for some cloud storage applications 

(Chen et al., 2014). 

Recently, several cloud service providers have 

developed proprietary solutions optimized for their 

specific cloud environments. However, they often 

lead to vendor login and lack the flexibility needed for 

interoperability across different cloud platforms 

(Böhm et al., 2019). While hybrid models attempt to 

combine the benefits of private and public clouds, 

https://ph04.tci-thaijo.org/index.php/JCST/issue/view/49


CHANSAENG, & KHEMAPATAPAN 

JCST Vol. 14 No. 3, September - December 2024, Article 69 

3 

offering more effective control and security, they 

often struggle with complex data management and 

integration challenges, leading to inefficiencies in 

data operation and maintenance (Park, & Song, 2013). 

In addition, vendor login issues can introduce several 

security vulnerabilities to multi-cloud storage 

systems. For instance, data privacy (Gupta et al., 

2021; Svantesson, 2016; Wylde et al., 2022), breach 

risks (Cremer et al., 2022), identity management, API 

security (Crumpler, & Lewis, 2020; Lee et al., 2020), 

and the complexities of security management. As 

such, the complexities of multi-cloud environments 

necessitate a nuanced approach to security, addressing 

varied challenges. 

Table 1 presents a comparative analysis of the 

existing solutions discussed earlier, encompassing a 

spectrum ranging from traditional redundancy to 

hybrid cloud models. These solutions exhibit varying 

degrees of success when assessed against a set of 

performance criteria, including efficiency, scalability, 

reliability, computational overhead, security, data 

integrity, data availability, and data confidentiality. 

Notably, the proposed framework demonstrates a high 

level of achievement across all aspects, except for 

computational overhead, where it achieves a low 

degree. 

 

2.  Objectives 

The objective of this research is to enhance data 

integrity and availability within a multi-cloud storage 

environment by developing and implementing a novel 

framework that integrates data manipulation with data 

interleaving and LT codes. This framework aims to 

optimize data management processes and will be 

rigorously evaluated based on six key performance 

metrics: data integrity (DI), data availability (DA), 

storage overhead (SO), retrieval time (RT), 

computational overhead (CO), and overall 

effectiveness (OE). The comprehensive assessment of 

these metrics will provide a detailed understanding of 

the framework’s impact on the efficiency and 

reliability of multi-cloud storage systems. 
 

3.  Materials and methods 

As this research aims to achieve two primary 

objectives: enhancing multi-cloud storage and robust 

data security, this research leverages a multi-faceted 

methodological approach focused on security control 

and management within a multi-cloud environment. 

The research methodology unfolds in five distinct 

steps: data preparation, processing, storage, retrieval 

and reassembly, and retrieval with validation. 

Notably, data processing encompasses four sub-steps, 

including interleaving, followed by a combination of 

LT encoding with either Ideal soliton distribution or 

robust soliton distribution. Finally, the project 

culminates in the measurement of DI, DA and other 

key performance indicators to assess the effectiveness 

of the proposed approach. 

 

Table 1 A comparison of existing solutions and their limitations with the proposed framework 

 Criteria 

Method Efficiency Scalability Reliability 
Computational 

Overhead 
Security 

Data 

Integrity 

Data 

Availability 

Data 

Confidentiality 

Traditional 

Redundancy 
Low Poor Moderate Low Moderate Low Moderate Moderate 

Data 

Deduplication 
High Good Low Moderate Low Moderate Moderate Low 

Cryptographic 

Techniques 
Low Moderate Low High High Moderate Low High 

Erasure 

Coding 
High Good High High Moderate High High Moderate 

Network 

 Coding-Based 
High Moderate High High Moderate High High Moderate 

Cloud-Specific 

Proprietary 
Varies 

Moderate 

to High 
Varies Varies High High Moderate High 

Hybrid Cloud 
Models 

Moderate Good Moderate High High High High High 

Proposed 

Framework 
High High High Low 

Moderate 

to High 
High High High 
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This research employs a multi-faceted 

methodological approach to achieve the dual 

objectives of enhancing multi-cloud storage and 

ensuring robust data security. The methodology is 

structured into five distinct steps: data preparation, 

data processing, data storage, data retrieval and 

reassembly, and retrieval with validation. Data 

processing includes four sub-steps: interleaving, 

followed by LT encoding using either Ideal Soliton 

Distribution or Robust Soliton Distribution. The 

processed data is then stored across multiple cloud 

environments to leverage the benefits of a multi-cloud 

setup. Upon retrieval, the data is reassembled to its 

original form, ensuring data integrity and availability, 

followed by validation to confirm these attributes. The 

effectiveness of the proposed approach will be 

measured through key performance indicators, 

including data integrity (DI), data availability (DA), 

and other relevant metrics, providing comprehensive 

insights into the efficiency and reliability of the multi-

cloud storage and security framework. 

 

3.1 Data Preparation 

In a multi-cloud storage system, the cloud 

broker plays a pivotal role as the intermediary 

between the user and diverse cloud storage resources. 

The cloud broker is responsible for managing data 

processing and distribution across multiple cloud 

providers. Initially, the user uploads the original data 

to the cloud broker. To enhance security and data 

resilience, the cloud broker fragments the original 

data into 'k' parts. These fragments are then distributed 

across various cloud storage services. This dispersion 

strategy mitigates the risks associated with storing 

data in a single location, thereby enhancing the overall 

security and robustness of the multi-cloud storage 

system.

 

 

Figure 1 Outer encoder and decoder with interleave scheme 

 

3.2 Data Processing 

After fragmenting the original data into 'k' 

parts, the method employs a multi-step process to 

enhance data security, integrity, and recoverability. 

First, the split files are encoded using an interleaving 

method, which distributes data pieces across various 

storage units in a non-sequential order, enhancing data 

recoverability in case of partial data loss or corruption. 

Next, a cryptographic hash function, specifically 

SHA-256, is applied to the interleaved data to ensure 

data integrity and security by transforming the data 

into an irreversible form without the proper decoding 

mechanism. Following this, LT (Luby Transform) 

codes, a type of erasure-correcting code, are used as 

the inner encoder to enable data recovery even if some 

parts are missing, which is particularly useful in multi-

platform data distribution scenarios. The data 

processing involves four essential operations: 

interleaving, LT encoding with ideal soliton 

distribution, robust soliton distribution, and LT 
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encoding on interleaves. This comprehensive 

approach aims to create a robust, secure, and 

recoverable data storage system in a multi-cloud 

environment, addressing potential vulnerabilities in 

data storage and transmission to ensure high levels of 

data integrity and availability even in the face of 

partial data loss or corruption. 

 

3.2.1 Interleaving 

Interleaving is a technique used in digital 

systems to enhance data robustness against errors, 

especially in error-prone environments. It involves 

reordering data units (e.g., bits, bytes, symbols) before 

transmission or storage and reversing this order upon 

reception or retrieval, crucial for maintaining data 

integrity in digital communications and storage 

systems (Forney, 1965). Let F represent the original 

data file partitioned into k blocks F={B1,B2,…,Bk}. 
The interleaving function Intlv is applied to each 

block 𝐵𝑖 , resulting in an interleaved block Bi
' . If 

Bi={bi1,bi2,…,bi3} where bij is the j-th byte of the i-th 

block, the interleaving of  Bi can be represented as: 

Bi
'=IntlvBi={biπ(1),biπ(2),…,biπ(n)} where 𝜋 is a 

permutation function applied to the indices of the 

bytes within the block. 

 

3.2.2 LT Codes and Ideal soliton Distribution 

LT codes, which are rateless erasure code, are 

designed for reliable data transmission over lossy 

channels, such as the Internet. They differ from 

traditional error correction codes by being flexible and 

efficient, making them well-suited for distributed 

storage and streaming applications. Key features 

include their rateless nature, which allows for the 

generation of an infinite number of encoded symbols 

from a set amount of source data, optimizing for 

erasure correction rather than error correction, and 

employing probabilistic encoding for resilience, and 

facilitating efficient decoding with minimal overhead 

(Luby, 2002). In this case, the Ideal soliton 

distribution is essential in the LT code encoding 

process, guiding the selection of degrees for encoded 

symbols. In LT codes, encoded symbols are formed 

by randomly merging a specific number of original 

data symbols or ‘degree’. The Ideal soliton 

distribution determines the distribution of these 

degrees, optimizing the encoding process for efficient 

data transmission and recovery in environments prone 

to data loss. The distribution formulas are defined 

below. The probability distribution ρ(i) for a degree i 

is given by: 

ρ(1)=
1

k
    (1) 

 

ρ(i)=
1

i*(i-1)
; where i= 2,3,4,…,k  (2) 

 

∑ ρ(i)=1i ; where i=1,2,…,k.  (3) 

 

3.2.3 LT Codes and Robust Soliton Distribution 

The robust soliton distribution is a crucial 

enhancement of the Ideal soliton distribution, 

specifically designed for use in LT codes. This 

distribution modifies the Ideal soliton distribution to 

improve the practical performance of LT codes, 

particularly in the decoding process. The robustness it 

introduces is especially valuable in ensuring 

successful decoding with a high probability, even 

when some encoded symbols are lost or corrupted 

during transmission. The operation of the robust 

soliton distribution is defined below. 

1. The robust soliton distribution adds an 

additional layer to the probability distribution. This 

distribution is overlaid on top of the Ideal soliton 

distribution to increase the likelihood of having more 

encoded symbols with smaller degrees. 

2. The τ distribution (Tau distribution) is 

calculated based on δ (the failure probability of the 

decoding process), R (the size of the original data set 

and δ), and k (the number of original data symbols).  

 

RSD =C* ln(k/δ)√k    (4) 

 

3. The robust soliton distribution is formed by 

combining the Ideal soliton Distribution (ρ) and the τ 

distribution, then normalizing to ensure that the 

probabilities sum up to 1; where 𝛽 is a normalization 

factor to ensure the sum of the distribution equals 1. 

The combined distribution is given by: 

 

μ(i)=
ρ(i)+τ(i)

β
     (5) 

 

4. The distribution ensures that the low-degree 

symbols are enough for the decoding process to start 

effectively (thanks to the Ideal soliton  part). 

Moreover, intermediate-degree symbols to maintain 

the decoding momentum (contributed by the τ part) 

are concerned to avoid stalls and ensure robustness. 

τ(i)=

{
 
 

 
 

R

ik
 , i=1,…, (

k

R
) -1

R* ln
R

δ

k
 , i=

k

R

0 , i>
k

R

  (6) 
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where ∑ 𝜌(𝑖) + 𝜏(𝑖)𝑘
𝑖=1 .  (7) 

 

3.2.4 LT Codes and Interleaves 

The LT codes encoding function 𝐿𝑇𝐸𝑛𝑐 

operates on the interleaved blocks 𝐵𝑖
′. Let Ω(𝑥) be the 

degree distribution used by LT codes. For each 

encoded symbol 𝑠, a degree 𝑑 is chosen from Ω(𝑥), 
and 𝑑 interleaved blocks are randomly combined to form 

𝑠 . The encoding of a symbol can be mathematically 

represented as: s=LTEncBi
'=⨁j=1

d Bπ(j)
'  where ⨁ 

denotes the bitwise 𝑋𝑂𝑅  operation, and 𝜋(𝑗)  is an 

index chosen according to a pseudo-random number 

generator as illustrated in Figure 2. 

 

3.3 Data Storage 

These entities represent the various cloud 

storage services that act as repositories for the 

encoded data fragments. The adoption of a multi-

cloud storage architecture, where data is dispersed 

across CS1 (Cloud Storage 1) to CSn (Cloud Storage 

n), is a well-established strategy for achieving data 

redundancy. This approach enhances data availability 

by ensuring that the data remains accessible even 

if one or more cloud storage providers experience 

an outage or service disruption. Furthermore, 

geographically distributed cloud storage backends can 

offer additional benefits, such as improved latency for 

geographically dispersed users and enhanced 

compliance with data residency regulations in specific 

regions. Using multiple storage clouds is a common 

strategy to achieve redundancy and improve data 

availability. For the cloud storage distribution model, 

let CS = {CS1, CS2, …, CSn} denote the set of cloud 

storage nodes. The distribution function D maps each 

encoded symbol s to one or more cloud storage nodes: 

D(s) → {Cα1, Cα2, …, Cα3} where Cα is the storage 

node selected for the symbol 𝑠, and 𝑚 is the number 

of copies of the symbol distributed across the cloud 

storages. 

 

 

 
Figure 2 Symbol creation from LT code 

 

3.4 Data Retrieval and Reassembly 

Retrieving data stored within a multi-cloud 

storage system necessitates the reversal of the 

fragmentation and encoding processes. When the data 

needs to be retrieved, the parts must be assembled 

back into the original file. To achieve this, the cloud 

broker initiates a coordinated retrieval operation 

across CS1 to CSn. The dispersed data fragments are 

then reassembled in the correct order, leveraging the 

redundancy introduced during the initial 

fragmentation stage. This reassembly process ensures 

the reconstruction of the original file in its entirety, 

ready for user access or further processing. Notably, 

the employed erasure-correcting codes play a crucial 

role during retrieval. These codes enable the system 

to tolerate a certain level of data loss or corruption 

within the fragments. Even if a limited number of 

fragments are unavailable or compromised, the 

remaining fragments can be mathematically utilized 

to reconstruct the missing data, ensuring complete file 

retrieval. 

During data retrieval, an objective function 𝑂 

is used to determine the weight or priority for 

retrieving symbols from each cloud storage. The 

retrieval function 𝑅 selects the symbols based on their 

weights: R(s)←O(Cα) The LT codes decoding 
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function 𝐿𝑇𝐷𝑒𝑐 takes the retrieved symbols to 

reconstruct the original interleaved blocks: 

{B1
' ,B2

' ,…,B3
' =LTDec({s1,s2,…,sm})}. After that, the 

original data file 𝐹 is reconstructed from the decoded 

interleaved blocks by reversing the interleaving 

function 𝐼𝑛𝑡𝑙𝑣−1 and concatenating the blocks in their 

original order: F=⋃i=1
k Intlv

-1(Bi
'). 

 

3.5 Data Retrieval and Validation 

The data retrieval process culminates in data 

validation, ensuring the integrity and accuracy of the 

retrieved data, as illustrated in Figure 3. This 

validation phase involves a series of decoding steps 

that reverse the encoding operations performed during 

data storage. First, the SHA-256 hash, acting as the 

outer decoder, is used to verify data integrity. Any 

alterations to the data during storage or transmission 

result in a mismatch between the calculated hash and 

the stored hash value, effectively detecting potential 

data corruption. Subsequently, the interleaving 

process is reversed, reordering the data fragments 

back to their original sequence. Finally, the LT codes, 

employed as the inner decoder, are utilized to rectify 

any errors or data losses that might have occurred 

during storage or transmission. This error correction 

capability ensures that even if a limited number of 

fragments are corrupted or unavailable, the remaining 

fragments can be leveraged to reconstruct the missing 

data, guaranteeing the complete and accurate retrieval 

of the original file for user access or further 

processing. To verify the integrity of the data, a 

cryptographic hash function 𝐻, such as SHA-256, is 

applied to each block before and after storage. 

VerifyIntegrity(Bi
')=(H(Bi

')==Hi) is the hash of the 

block 𝐵𝑖
′ before it was stored.

 

Figure 3 Data Retrieval and Validation 

 

3.6 Measuring DI, DA, and other key performance 

indicators 

To ensure the validity and robustness of the 

research results, a comprehensive mathematical 

methodology for performance evaluation has been 

established. This approach focuses on measuring key 

performance indicators that are critical to assessing 

data integrity and availability in the multi-cloud 

storage system. The study employs six essential 

metrics: Data Integrity (DI), Data Availability (DA), 

Storage Overhead (SO), Retrieval Time (RT), 

Computational Overhead (CO), and Overall 

Effectiveness (OE). These metrics provide a holistic 

view of the system's performance, allowing for a 

thorough assessment of the proposed multi-cloud 

storage solution.  

1. DI: A quantitative assessment of the likelihood 

that a stored file can be flawlessly reconstructed 

following multiple retrieval attempts. This metric is 

operationalized through the following equation:  

 

DI=
Number of correctly reconstructed blocks

Total number of blocks
 (8) 

 

2. DA: A probabilistic metric characterizing 

the likelihood of successful data access despite 

potential failures within the underlying cloud storage 

https://ph04.tci-thaijo.org/index.php/JCST/issue/view/49


CHANSAENG, & KHEMAPATAPAN 

JCST Vol. 14 No. 3, September - December 2024, Article 69 

8 

infrastructure. The calculation of this metric relies on 

the following equation: 

 

DA=
Number of successful retrievals

Total number of retrieval attempts
  (9) 

 

3. SO: This metric quantifies the additional 

storage space necessitated by the encoding process 

when comparing the two systems under study. We can 

mathematically represent this metric as follows: 

 

SO=
Total storage used after encoding

Original data size
  (10) 

 

4. RT:  This metric quantifies the temporal 

expenditure associated with locating and 

subsequently interpreting stored data. This metric is 

operationalized through the following equation: 

 

RT= Average time taken for data retrieval and decoding (11) 

 

5. CO: This metric quantifies the additional 

computational resources necessitated by the encoding 

and decoding processes employed for data security. 

The calculation of this metric is governed by the 

following equation: 

 

CO = Average CPU time for encoding and decoding 

operations     (12) 

 

6. OE: To comprehensively evaluate system 

performance, an all-encompassing metric, OE will be 

calculated. This metric will be derived from a 

weighted formula that incorporates all six 

performance indicators (DI, DA, SO, RT, CO). 

Weights (𝑤𝑖) will be assigned to each metric, 

reflecting their relative significance in the context of 

the specific application. The calculation of this metric 

relies on the following equation:  

 

OE=w1*DI+w2*DA+w3*(1-SO)+w4*(1-RT)+w5*(1-CO) (13) 

 

4.  Results  

4.1 Degree of distribution for LT Codes 

A comparative analysis of ideal soliton and 

robust soliton degree distributions for LT codes in 

multi-cloud storage, as shown in Figure 4, revealed 

that the robust soliton distribution is better suited for 

practical applications, offering greater resilience to 

adverse conditions. Though imposing slightly higher 

overhead, the robust soliton redundancy and 

uniformity of the robust soliton distribution mitigated 

the data integrity risks inherent in complex multi-

cloud ecosystems. Its recovery capabilities, despite 

disruptions, align with the principal aims of 

availability and reliability. Thus, when combined with 

interleaving techniques, the robust soliton distribution 

provides a prudent balance between computational 

efficiency and the paramount priority of robust data 

integrity assurance in volatile multi-cloud 

environments. 

 

4.2 Data Integrity 

In the 100-iteration simulation of the DI 

experiment, the results, as demonstrated in Figure 5, 

indicated a high level of data integrity in a multi-cloud 

storage framework utilizing interleaving and LT 

codes, with DI values primarily above 0.97. The 

consistency in DI metrics suggests reliable 

performance despite fluctuations attributed to 

simulated random errors, highlighting the 

framework’s resilience. Even with some data blocks 

corrupted, the integrity rarely dropped below 0.97, 

demonstrating its potential suitability for multi-cloud 

environments where data integrity is critical. 

Although the high DI indicated effective maintenance 

of data accuracy, the variations suggest opportunities 

for further optimization in encoding and decoding 

algorithms. The experiment provides strong evidence 

of the framework’s effectiveness in maintaining data 

integrity, pointing towards its reliability for multi-

cloud storage applications and indicating areas for 

future research and system optimization. 

 

4.3 Data Availability 

A 100-iteration Python script simulation 

evaluated DA within a multi-cloud storage 

framework, as depicted in Figure 6. The system 

demonstrated strong resilience, maintaining a 98% 

average DA despite a simulated 10% node failure 

probability. This high availability highlights the built-

in redundancy and fault tolerance vital for 

uninterrupted access. The integrated interleaving and 

LT coding techniques significantly bolstered data 

recovery capabilities. However, a 2% DA failure rate 

under simulated node failures indicates room for 

optimizing error correction and distributed data 

mechanisms to further strengthen multi-cloud storage 

reliability for mission-critical services. Overall, the 

positive results affirm the framework’s efficacy in 

ensuring consistent data access while pointing toward 

future enhancements to mitigate the failure risks 

inherent to complex multi-cloud ecosystems.
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Figure 4 The distinction between ideal soliton and robust soliton degree distribution  

 

 
Figure 5 Data Integrity (DI) over multiple iterations 

 

 
Figure 6 DA with occasional drop in multi-cloud storage. 
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Figure 7 Consistent storage overhead in multi-cloud storage framework simulation 

 

4.4 Storage Overhead  

The simulation across 100 iterations was 

conducted using Python programming to determine 

the storage overhead as the result shown in Figure 7. 

It indicates that a consistent doubling of the original 

data size is reflecting a fixed encoding with overhead 

factor of 2. This significant increase in storage size 

underscores a trade-off between enhanced data 

integrity and availability and increased storage costs 

and resource utilization, which is particularly relevant 

for large-scale data applications. It highlights the need 

to optimize redundancy in relation to storage 

efficiency and cost, especially for sensitive or critical 

data. It suggests that strategic adjustments to the 

encoding process could mitigate overhead impacts 

while preserving data integrity and availability. 

 

4.5 Retrieval Time 

The simulation of RL over 100 iterations in a 

multi-cloud storage framework using interleaving and 

LT codes, as illustrated in Figure 8, revealed 

significant insights into the efficiency of the data 

retrieval process. The results showed variability in 

RL, reflecting the real-world influences of network 

conditions, server load, and data complexity on the 

time taken to retrieve and decode data. The latency 

was influenced by both the retrieval time from the 

cloud and the decoding time, with variations 

attributable to network speed and algorithm 

efficiency. This variability indicated that some data 

retrieval processes were faster than others, potentially 

impacting applications that require rapid data access. 

The need for optimization became apparent, 

particularly in improving cloud architecture and 

decoding methods to reduce latency. As the system 

scales, maintaining acceptable latency levels becomes 

crucial. Benchmarking against other systems could 

provide context on performance, and implementing 

real-time monitoring and adaptive techniques might 

help manage RL dynamically. Overall, the simulation 

highlighted areas for optimization in the multi-cloud 

storage framework to ensure fast and consistent data 

access.

 

Figure 8 Variability in RL Across Iterations in Multi-Cloud Storage 
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Figure 9 Proportional increase in CO with data size in multi-cloud storage 

 

4.6 Computational Overhead 

The simulation and analysis of the CO in a 

multi-cloud storage framework using interleaving and 

LT codes with real-world data, as shown in Figure 9, 

yielded insightful results. It was observed that CO 

increased with the data size, establishing a direct 

correlation between data volume and computational 

resources needed for encoding and decoding. This 

trend indicated the framework’s scalability 

challenges, especially for larger datasets. The nearly 

linear relationship between data size and CO 

suggested a proportional increase in computational 

workload, underlining the need for efficient resource 

allocation in cloud storage systems. The increasing 

CO with larger datasets emphasized the necessity of 

optimizing encoding and decoding algorithms for 

efficiency, particularly vital for large-scale 

applications like big data analytics. These findings 

pointed towards potential improvements in LT codes 

and interleaving techniques to reduce CO and 

highlighted the importance of resource planning and 

management based on computational demands. 

Furthermore, the results served as a benchmark for 

comparing different cloud storage frameworks, aiding 

in the selection of the most suitable system for specific 

applications. Overall, the experiment underscored the 

importance of balancing performance and 

computational overhead in the storage framework, 

especially as data volumes scale. 

 

4.7 Overall Effectiveness 

A structured approach was employed to 

experimentally determine the weights w sub i. for each 

performance metric in a multi-cloud storage 

framework, focused on aligning with the CIA triad of 

real-world applications. The first step involved 

understanding the relevance of each aspect of the CIA 

triad in the context of the cloud storage system. 

Confidentiality, although not directly measured by 

metrics like DI, DA, SO, RT, or CO, influences the 

importance placed on DI and DA. DI was emphasized 

for maintaining data trustworthiness, and DA is 

critical to ensuring consistent data access. 

In the second step, weights were assigned to 

each metric based on their significance in the 

framework. For example, a higher weight was given 

to DI if data integrity was paramount, reflecting the 

‘Integrity’ aspect of the CIA triad. Similarly, DA was 

weighted more heavily if constant data access is 

crucial, aligning with ‘Availability’. Weights for SO 

and CO are prioritized if minimizing resource usage 

is a key concern, and RT is given more importance in 

systems where quick data access was essential. 

Additionally, conducting surveys or panels with 

industry experts and stakeholders helps assess the 

significance of each CIA aspect, aiding in assigning 

appropriate weights. After initial assignments, 

experiments are conducted to observe the impact of 

these weights on the OE. Based on outcomes, weights 

are adjusted to better reflect system priorities and 

performance. For instance, a scenario where data 

integrity and availability are primary concerns might 

lead to weights like 𝑤1 (DI Weight) = 0.4 and 𝑤2 (DA 

Weight) = 0.3, aligning with the focus on Integrity and 

Availability in the CIA triad. This systematic 

approach ensures that the OE calculation accurately 

reflected real-world priorities and the core principles 

of the CIA triad. 

 

4.8 The experiment with different data sizes 

Empirical evaluations of a multi-cloud storage 

framework employing interleaving and LT codes 

disclosed significant insights into its operational 

performance, as demonstrated in Figure 10. The 
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findings highlighted a decline in encoding and 

decoding speeds with increased data sizes, attributed 

to elevated computational demands. Specifically, 

encoding speeds diminished by 59% when data sizes 

escalated from 1MB to 1000MB, whereas decoding 

speeds plummeted by approximately 98.5%. This 

indicates a potential bottleneck in the decoding phase 

for large-scale data, which recorded the experimental 

results with varying data sizes, as shown in Table 2. 

Time complexity analyses revealed a pronounced 

sensitivity of decoding times to data sizes, adversely 

affecting system responsiveness and user experience 

at larger scales. Despite high initial efficiency, 

performance inefficiencies at more significant data 

volumes underscore the necessity for algorithmic 

enhancements or more robust computational 

resources to preserve high-level performance. The 

block and symbol generation illustrated the rateless 

nature of LT codes for varied data sizes. This 

demonstrated high efficiency for small datasets, 

which is advantageous for real-time applications but 

encountered scalability issues with larger datasets, 

impacting suitability for big data and real-time 

processing needs. Future work should focus on 

optimizing decoding speeds for large datasets, 

possibly through parallel processing or hardware 

accelerations, such as GPUs, to maintain high 

performance across diverse applications in multi-

cloud environments.

 

 
Figure 10 Encoding and decoding performance by data size in a multi-cloud storage framework 

 

Table 2 Data Size vs. Encoding/Decoding Performance in Interleaving and LT Codes Implementation 

Size 

(MB) 
NumBlock Blocks Symbols Encoding Times(s) 

Encoding 

Speed (MB/s) 
Decoding Times(s) 

Decoding 

Speed (MB/s) 

1 15.26 16 32 0.001611948 1300.47 0.0014112 1968.76 

10 152.59 160 320 0.025127888 988.04 0.036130905 442.7 

20 305.18 320 640 0.047547102 770.92 0.076231956 384.53 

50 762.94 765 1530 0.12563014 784.11 0.218972921 267.11 

100 1525.88 1600 3200 0.259145975 773.16 0.565399885 209.3 

200 3051.76 3200 6400 0.523110867 765.02 1.783993959 124.23 

500 7629.39 8000 16000 1.480288029 675.55 10.32928205 51.35 

1000 15258.79 16384 32768 3.835714102 533.94 36.84235787 29.06 
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5.  Discussion 

This study presents an innovative approach to 

enhance data integrity and availability in multi-cloud 

storage through the integration of interleaving and LT 

codes. The hybrid method significantly improves data 

protection and error correction, addressing key multi-

cloud storage challenges. While introducing 

computational overheads, the framework demonstrates 

potential for broad applicability across various cloud 

storage settings, from individual to enterprise levels. 

The framework's significance lies in its ability to 

effectively tackle core multi-cloud storage issues, 

surpassing existing models in ensuring data integrity 

and availability. Empirical evidence supports its 

advantages over traditional approaches. Its potential to 

redefine industry norms for cloud data management is 

notable, offering a versatile and reliable solution across 

diverse sectors. 

Future research directions include optimizing the 

trade-off between computational overhead and system 

performance, especially considering growing data 

volume requirements. Additionally, exploring 

advanced interleaving techniques, LT code variants, 

and integration with emerging cloud technologies could 

further enhance multi-cloud environment solutions, 

addressing challenges such as data migration, cost 

optimization, and energy efficiency. 

This framework represents a pivotal advancement 

in cloud storage technology, with the potential to shape the 

future of data storage and management in an evolving 

cloud computing landscape. 

 

6.  Conclusion 

The study introduces a framework for enhancing 

data integrity and availability in multi-cloud storage 

through interleaving and LT codes, demonstrating 

significant improvements. Key achievements include 

augmented data integrity via LT codes error correction 

and interleaving risk mitigation, superior data 

availability through LT codes resilience, and efficient 

storage management leveraging LT codes rateless 

property for space optimization. These findings 

underscore the framework's potential in cloud storage 

environments, highlighting advancements in data 

restoration accuracy and uninterrupted access amidst 

cloud infrastructures. While the computational 

demands of LT codes are notable, the benefits in data 

integrity and availability justify these costs, suggesting 

future research on computational efficiency. It confirms 

the framework’s scalability and calls for algorithmic 

improvements for large-scale data. The framework’s 

practical relevance is affirmed for various cloud storage 

applications, marking a significant contribution to 

cloud storage research, particularly in multi-cloud 

environments. It underscores the potential for future 

innovations in cloud storage, driven by the integrating 

of interleaving and LT codes, to revolutionize data 

storage and access in cloud environments. 
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