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Abstract 

Heart failure (HF) and congestive heart failure (CHF) have recently been classified as a growing and 

widespread epidemic worldwide that significantly impacts morbidity and mortality, especially in the aged 

groups. This study used a publicly available clinical dataset on 299 HF patients with 12 variables potentially 

contributing to their mortality: age, anemia, creatinine phosphokinase, diabetes, ejection fraction, high blood 

pressure, platelets, serum creatinine and sodium levels, sex, smoking, and follow-up time. Several studies 

previously used this dataset to identify critical factors influencing patient mortality. Here, we curate the data 

to ensure it is unbiased, then apply principal component analysis and machine learning models to identify 

factors influencing crucial variables contributing to patient mortality. We investigate and compare the 

classification accuracy of different machine learning models, including the tree, linear discriminant, quadratic 

discriminant, logistic, naïve Bayes, support vector machine, nearest-neighbor ensemble, and kernel models. 

We found the ensemble bagged tree model to have the highest cross-validation classification accuracy of 

96.4% and require only three variables: platelets, creatinine phosphokinase, and follow-up period. 

 
Keywords: heart failure classification; machine learning; mortality rate prediction; smart healthcare. 
________________________________________________________________________________________________

 

1.  Introduction 

Heart failure (HF), and congestive heart 

failure (CHF) in particular, is a life-threatening 

disease that affects more than 64.3 million people 

worldwide (Groenewegen, Rutten, Mosterd, & 

Hoes, 2020). It is an alarming healthcare problem in 

numerous countries, including the United Kingdom 

(Taylor et al., 2019), the United States (Osenenko, 

Kuti, Deighton, Pimple, & Szabo, 2022), Thailand 

(Tankumpuan et al., 2019), Canada, Germany, 

India, and Northern China (Groenewegen et al., 

2020). Moreover, it occurs in older people and 

healthy adolescents (Seferović et al., 2021). This 

ailment is caused by the inability of the heart muscle 

to efficiently pump blood and carry sufficient 

oxygen around the body, leading to reduced blood 



PECHPRASARN ET AL. 
JCST Vol. 12 No. 2 May-Aug. 2022, pp. 336-348 

. 

337 

flow and shortness of breath (van Riet et al., 2014). 

In addition, it may develop from coronary artery 

disease, high blood pressure, heart attack, high 

cholesterol, heart valve disease, or diabetes (Lehrke 

& Marx, 2017). This condition typically arises in 

older people since the main artery will become 

thicker, stiffer, and less flexible as we mature. In 

addition, its significant risk factors include 

unhealthy behaviors such as smoking, eating high-

fat food, excessive alcohol intake, physical 

inactivity, and being overweight, as well as 

heredity, congenital disease, and sex (Prochaska et 

al., 2004). 

Generally, the survival rate for patients 

diagnosed with heart failure is marginally low. 

About three-fourths of patients survive for one year, 

45.5% for five years, 24.5% for ten years, and 

12.7% for 15 years. Furthermore, women have 

worse short-term and long-term survival rates than 

men (Taylor et al., 2019). Sex, advanced age, 

history of diabetes, smoking, and chronic kidney 

disease are critical factors that can increase the 

mortality rate (Henkel, Redfield, Weston, Gerber, 

& Roger, 2008). Furthermore, the medical 

procedure for diagnosing HF includes an 

examination of the sounds of the heartbeat and lung 

congestion to diagnose any abnormal cardiac 

rhythm and performing physical tests such as an 

electrocardiogram (ECG), chest X-ray, magnetic 

resonance imaging (MRI), computerized 

tomography (CT) cardiac scan, or coronary 

angiogram (Fonseca, 2006). 

The open-source dataset from the UC 

Irvine Machine Learning Repository has a database 

containing medical record information for 299 

patients with HF, with 13 clinical features collected 

during their follow-up sessions. The patients 

consisted of 105 women and 194 men between 40 

and 95 years old with left ventricular systolic 

dysfunction classified as class III and IV under New 

York Heart Association (NYHA) criteria and who 

have experienced HF. Chicco and Jurman (2020) 

reported the dataset and developed a machine 

learning (ML) model based on 13 clinical variables 

that can contribute to death: age, anemia, high blood 

pressure (HBP), creatinine phosphokinase (CPK), 

diabetes, ejection fraction (EF), platelets, sex, 

serum creatinine level, serum sodium level, 

smoking, follow-up period, and death event. In 

addition to providing the graphical forecast of 

survival probability and a nomogram, their study 

had the potential to alter clinical practice by 

providing clinicians with a new tool for predicting 

HF patient survival. Indeed, when determining 

whether a patient will survive HF, clinicians rely 

heavily on serum creatinine levels and EF. 

Groenewegen et al. (2020) have shown HF 

to be a diverse condition, complicating case 

identification and patient categorization in 

epidemiological research. Left ventricular ejection 

fraction (LVEF) is a clinically valuable trait 

indicative of underlying pathophysiological 

processes and medication sensitivity. Currently, HF 

patients are classified as having HF with decreased 

(HFrEF; LVEF <40%), mid-range (HFmrEF; 

LVEF 40%–49%), or maintained EF (HFpEF; 

LVEF ≥50%). The thresholds are arbitrary and vary 

across standards, and LVEF classification has been 

criticized for simplifying a complicated illness. 

Based on clinical trial data, Lehrke and 

Marx (2017) have shown that people with diabetes 

and HF may benefit most from treatment with 

sodium-glucose transport protein 2 (SGLT2) 

inhibitors that lower glucose levels. This effect 

might be related to glucose clearance via the kidney, 

with a net reduction in energy substrate availability 

due to SGLT2 inhibition and other plausible 

pathways. Lifestyle management also reduces 

energy substrate availability, which improves 

cardiac function in obese individuals with and 

without diabetes. Furthermore, there is evidence 

that metformin, which lowers energy substrate 

availability by lowering endogenous glucose 

synthesis, may benefit diabetic patients with HF. In 

contrast, no benefit in HF or potential adverse 

consequences has been observed with glucose-

lowering techniques that enhance the availability of 

insulin either directly or indirectly. 

 

2.  Objectives 
1. This research aims to use statistical models 

to identify crucial clinical variables that 

clinicians should pay particular attention to 

and evaluate their classification accuracy 
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for HF mortality to determine factors 

affecting prediction accuracy in HFpatients. 

2. Use ML to predict the survival rates affected 

by each factor compared to those reported in 

the literature. 

3. Apply principal component analysis (PCA) 

and ML models (Onan, 2020; 2022), 

comparing the HF classification and 

predictive accuracy of different statistical 

models (Onan, 2019; Onan & Korukoğlu, 

2017): tree, linear discriminant, quadratic 

discriminant, logistic regression, naïve 

Bayes, support vector machine (SVM), and 

ensemble (Onan, Korukoğlu, & Bulut, 

2016; Onan, Korukoğlu, & Bulut, 2017). 

 

3. Materials and methods 

3.1 Dataset and data curation 

The HF dataset analyzed here was obtained from 

the open-source University of California Irvine 

(UCI) Machine Learning Repository (Chicco & 

Jurman, 2020; assessed January 14, 2022). It 

contains data for 299 patients (105 women and 194 

men) between 40 and 95 years old who have a left 

ventricular systolic dysfunction classified as class 

III or IV based on the New York Heart Association 

(NYHA) criteria based on previous HF that include 

the following 13 features: 

1. The death event was defined as the number 

of patients who died during the follow-up 

period, coded 0 if the patient is alive and 1 

if they are deceased. Of the 299 patients in 

the dataset, 96 were dead, and 203 were 

alive. This dataset is biased toward 

patients who have survived. Since the 

main objective of this study is to identify 

factors affecting patient mortality rates, 

this parameter is the label used for 

supervised learning. The information for 

107 random surviving patients was 

removed during the data curation process 

to create an unbiased dataset, leaving 192 

entries, 96 coded 1 and 96 coded 0. 

2. The age (in years) of these 192 patients 

was between 40 and 95, with an average of 

61.7483 years and a standard deviation 

(SD) of 12.6811. The overall age 

distribution had a slight positive skewness. 

3. Anemia was defined as decreasing red 

blood cells (hemoglobin), coded 0 if false 

and 1 if true. Of the 192 patients in the 

dataset, 78 had anemia, and 114 did not. 

The overall anemia distribution had a 

slight positive skewness. 

4. CPK was defined as the blood level of the 

CPK enzyme (mcg/L). Across the 192 

patients in the dataset, CPK was between 

23 and 7861 mcg/L, with an average of 

606.5938 mcg/L and an SD of 1030.6 

mcg/L. The overall CPK distribution had a 

slight positive skewness. 

5. Diabetes was defined as the patient’s 

diabetes status, coded 0 if false and 1 if 

true. Of the 192 patients in the dataset, 83 

had diabetes, and 109 did not. The overall 

diabetes distribution had a slight positive 

skewness. 

6. EF was defined as the percentage of blood 

leaving the heart with each contraction. Of 

the 192 patients in the dataset, EF was 

between 14% and 70%, with an average of 

36% and an SD of 11.2724%. The overall 

EF distribution had a slight negative 

skewness. 

7. HBP was defined as the hypertension 

status of the patient, coded 0 if false and 1 

if true. O the 192 patients in the dataset, 65 

had HBP, and 127 did not. The overall 

HBP distribution had a slight positive 

skewness. 

8. The platelet value was defined as the 

number of platelets in the blood (kilo-

platelets/mL). Of the 192 patients in the 

dataset, the platelet value was between 

25,100 and 742,000 kilo-platelets/mL, 

with an average of 263,700 kilo-

platelets/mL and an SD of 102,820 kilo-

platelets/mL. The overall platelet value 

distribution had a slight positive skewness. 

9. Serum creatinine levels in the blood 

(mg/dL) were used. Of the 192 patients in 

the dataset, serum creatinine levels were 

between 0.5000 and 9.4000 mg/dL, with 

an average of 1.5141 mg/dL and an SD of 

1.1735 mg/dL. The overall distribution of 
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serum creatinine levels had a slight 

positive skewness. 

10. Serum sodium levels in the blood (mEq/L) 

were used. Of the 192 patients in the 

dataset, their serum sodium levels were 

between 113 and 148 mEq/L, with an 

average of 136.1198 mEq/L and an SD of 

4.8139 mEq/L. The overall distribution of 

the serum sodium levels had a slight 

negative skewness. 

11. Sex was coded as 0 if female and 1 if male. 

Of the 192 patients in the dataset, 69 were 

male, and 123 were female. The overall 

sex distribution had a slight negative 

skewness. 

12. Smoking was defined as the patient’s 
smoking status, coded 0 if false, and 1 if 
true. Of the 192 patients in the dataset, 59 

were smokers, and 133 were nonsmokers. 
The overall smoker distribution had a 
slight positive skewness. 

13. The follow-up time was recorded in days. 

Of the 192 patients in the dataset, follow-

up time was between 4 and 285 days, with 

an average of 146.3750 days and an SD of 

89.5326 days. The overall distribution of 

follow-up time had a slight positive 

skewness. 

 

3.2 Training and applying MLmodels 

The 13 variables were first treated as 

predictors and labels for supervised ML training and 

classification tasks. Death status was used as the 

label. The 12 predictor variables are summarized in 

Table 1.

 

Table 1 Classification model predictors and labels 

Variables Type Variables Type  

Age Predictor HBP Predictor  

Anemia Predictor Platelets Predictor  

CPK Predictor Serum creatinine Predictor  

Diabetes Predictor Serum sodium Predictor  

EF Predictor Sex Predictor  

Smoking Predictor Death event Label  

Follow-up time Predictor    

 

Table 2 The ML models evaluated 

Model Details Model Details 

Tree 

Fine tree 

K-nearest neighbor 

(KNN) 

Fine KNN 

Medium tree Medium KNN 

Coarse tree Coarse KNN 

Linear Discriminant Linear Discriminant Cosine KNN 

Quadratic Discriminant Quadratic Discriminant Cubic KNN 

Logistic Regression Logistic Regression Weighted KNN 

Naïve Bayes 
Gaussian Naïve Bayes 

Ensemble 

Boosted Trees 

Kernel Naïve Bayes Bagged Trees 

SVM 

Linear SVM Subspace Discriminant 

Quadratic SVM Subspace KNN 

Cubic SVM RUSBoosted Trees 

Fine Gaussian SVM 

Neural network 

(Onan, 2021)  

Narrow Neural Network 

Medium Gaussian SVM Medium Neural Network 

Coarse Gaussian SVM Wide Neural Network 

Kernel 
SVM Kernel Bilayered Neural Network 

Logistic Regression Kernel Trilayered Neural Network 
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We used a built-in ML application in 

MATLAB 2021b to train the supervised ML models 

listed in Table 2. Classification accuracy was 

evaluated using five-fold cross-validation. 

 

3.3 Principal components analysis 

We used a PCA model with a statistical 

confidence of 95% to identify predictors 

contributing to the model classification accuracy. 

While several improved PCA methods have been 

reported (Biagetti, Crippa, Falaschetti, Orcioni, & 

Turchetti, 2016; Biagetti, Crippa, Falaschetti, 

Luzzi, & Turchetti, 2021), the conventional PCA 

method was used here. 

 

 

 

4. Results 
4.1 ML classification accuracy based on all 12 

predictors 

The ML models listed in Table 2 were first 

trained using all 12 predictors and the death event 

as the label (Table 1). The classification accuracy of 

each model is shown in Table 3. The top three ML 

models in terms of accuracy were the ensemble and 

k-nearest neighbor (KNN) bagged tree models with 

a classification accuracy of 94.8 % and the coarse 

tree model with 94.3%. The fine tree, medium tree, 

and logistic regression models ranked in the top 

third for classification accuracy, with a cross-

validation accuracy of 93.2%. However, the 

boosted tree, logistic regression kernel, and SVM 

kernel models had notably low accuracy and were 

unlikely to be suitable for use as a proper model.

 

Table 3 Classification accuracy of ML models trained with all 12 predictors 

Model Details Classification accuracy  

Tree  Fine tree 93.2 %  

 Medium tree 

Coarse tree 

93.2 % 

94.3 % 

 

Linear discriminant 

Quadratic discriminant 

Logistic regression  
Naive Bayes  

 

SVM 

Linear discriminant 

Quadratic discriminant 

Logistic regression  

Gaussian naïve Bayes 

Kernel naïve Bayes 
Linear SVM 

Quadratic SVM 

Cubic SVM 

Fine gaussian SVM 
Medium gaussian SVM 

Coarse gaussian SVM 

91.1 % 

87.5 % 

93.2 % 
90.6 % 

91.7 % 

90.6 % 
89.1 % 

89.1 % 

66.7 % 
91.1 % 

90.1 % 

 

KNN Fine KNN 
Medium KNN 

Coarse KNN 

Cosine KNN 
Cubic KNN 

Weighted KNN 

81.8 % 
82.8% 

79.7 % 

84.9 % 
81.2 % 

83.9 % 

 

Ensemble 

(Onan, 2018) 
 

 

 

Neural network 

 

 
 

 

Kernel 

Boosted trees 

Bagged trees 
Subspace discriminant 

Subspace KNN 

RUSBoosted trees 

Narrow neural network 

Medium neural network 

Wide neural network 
Bilayered neural network 

Trilayered neural network 

SVM kernel 
Logistic regression kernel 

49.5 % 

94.8 % 
91.7 % 

56.2 % 

59.4 % 

90.6 % 

92.7 % 

91.7 % 
89.1 % 

91.7 % 

38.0 % 
47.4 % 

 

 

 

 

4.2 PCA analysis 

4.2.1 PCA using one variable 

ML models with the highest and lowest 

accuracy were explored with PCA using the one 
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predictor listed in Table 4. The PCA coefficients of 

the five ML models with the highest classification 

accuracy are shown in Table 5. The quadratic 

discriminant and Gaussian naïve Bayes models 

showed the highest accuracy, 52.6%, followed by 

the coarse KNN model with 51.0%. However, the 

three worst-performing ML models (ranked from 

best to worst) were the medium neural network 

model (40.1% accuracy), fine gaussian SVM model 

(38.5%), and wide neural network model (36.5%).

 

Table 4 Summary of the classification accuracy of ML models using one predictor identified via PCA with a 95% 

confidence level. 

Variable Model Accuracy Variable Model Accuracy 

Platelets (100%) Quadratic discriminant 52.6% Platelets (100%) Ensemble (subspace KNN) 47.9% 

Platelets (100%) Gaussian naïve Bayes 52.6% Platelets (100%) Ensemble (bagged trees) 47.4% 

Platelets (100%) Coarse KNN 51.0% Platelets (100%) Ensemble (boosted trees) 46.4% 

Platelets (100%) Bilayered neural network 50.5% Platelets (100%) Medium Gaussian SVM 45.8% 

Platelets (100%) Linear SVM 50.0% Platelets (100%) Narrow neural networks 45.8% 

Platelets (100%) Cosine KNN 50.0% Platelets (100%) Medium KNN 44.8% 

Platelets (100%) Coarse Gaussian SVM 49.5% Platelets (100%) Cubic KNN 44.8% 

Platelets (100%) Ensemble (RUSBoosted 

Trees) 

49.5% Platelets (100%) Medium tree 44.3% 

Platelets (100%) SVM kernel 49.5% Platelets (100%) Weighted KNN 44.3% 

Platelets (100%) Logistic regression kernel 49.5% Platelets (100%) Coarse tree 43.8% 

Platelets (100%) Quadratic SVM 49.0% Platelets (100%) Trilayered neural network 42.7% 

Platelets (100%) Cubic SVM 49.0% Platelets (100%) Fine Ttee 42.2% 

Platelets (100%) Logistic regression 48.4% Platelets (100%) Medium neural network 40.1% 

Platelets (100%) Linear discriminant 48.4% Platelets (100%) Fine gaussian SVM 38.5% 

Platelets (100%) Kernel naïve Bayes 47.9% Platelets (100%) Wide neural network 36.5% 

Platelets (100%) Fine KNN 47.9%    

 

Table 5 Summary of the PCA coefficients of the five ML models with the highest classification accuracy using one 

predictor identified via PCA and a 95% confidence level. 

One 

Variable 
PCA coefficients 

Variable 

names 

Quadratic 

discriminant (52.6%) 

Gaussian naïve 

Bayes (52.6%) 

Coarse KNN 

(51.0%) 

Bilayered neural 

network (50.5%) 

Linear SVM 

(50.0%) 

Age 0.0000 0.0000 0.0000 0.0000 0.0000 

Anemia 0.0000 0.0000 0.0000 0.0000 0.0000 

CPK 0.0005 0.0005 0.0005 0.0005 0.0005 

Diabetes 0.0000 0.0000 0.0000 0.0000 0.0000 

EF 0.0000 0.0000 0.0000 0.0000 0.0000 

HBP 0.0000 0.0000 0.0000 0.0000 0.0000 

Platelets 1.0000 1.0000 1.0000 1.0000 1.0000 

Serum 

creatinine 0.0000 0.0000 0.0000 0.0000 0.0000 
Serum 

sodium 0.0000 0.0000 0.0000 0.0000 0.0000 

Sex 0.0000 0.0000 0.0000 0.0000 0.0000 
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One 

Variable 
PCA coefficients 

Variable 

names 

Quadratic 

discriminant (52.6%) 

Gaussian naïve 

Bayes (52.6%) 

Coarse KNN 

(51.0%) 

Bilayered neural 

network (50.5%) 

Linear SVM 

(50.0%) 

Smoking 0.0000 0.0000 0.0000 0.0000 0.0000 

Follow-up 

time 0.0000 0.0000 0.0000 0.0000 0.0000 

  

Table 6 Summary of the classification accuracy of ML models using two predictors identified via PCA with a 95% 
confidence level. 

Variable Model Accuracy Variable Model Accuracy 

Platelets (100%), CPK 

(100%) 

Wide neural 

network 

57.3% Platelets (100%), CPK 

(100%) 

Quadratic 

discriminant 

50.0% 

Platelets (100%), CPK 
(100%) 

Quadratic SVM 54.7% Platelets (100%), CPK 
(100%) 

Gaussian 

naïve Bayes 

50.0% 

Platelets (100%), CPK 
(100%) 

Weighted KNN 54.7% Platelets (100%), CPK 
(100%) 

Fine KNN 50.0% 

Platelets (100%), CPK 

(100%) 

Bilayered 

neural network 

54.7% Platelets (100%), CPK 

(100%) 

SVM kernel 50.0% 

Platelets (100%), CPK 

(100%) 

Medium neural 

network 

54.2% Platelets (100%), CPK 

(100%) 

Coarse tree 49.5% 

Platelets (100%), CPK 
(100%) 

Linear 
discriminant 

53.1% Platelets (100%), CPK 
(100%) 

Kernel naïve 
Bayes 

49.5% 

Platelets (100%), CPK 

(100%) 

Logistic 

regression 

53.1% Platelets (100%), CPK 

(100%) 

Linear SVM 49.5% 

Platelets (100%), CPK 
(100%) 

Medium 
Gaussian SVM 

53.1% Platelets (100%), CPK 
(100%) 

Cubic SVM 49.5% 

Platelets (100%), CPK 

(100%) 

Coarse 

Gaussian 
SVM 

52.6% Platelets (100%), CPK 

(100%) 

Ensemble 

(bagged trees) 

49.5% 

Platelets (100%), CPK 

(100%) 

Ensemble 

(subspace 

discriminant) 

52.6% Platelets (100%), CPK 

(100%) 

Ensemble 

(boosted 

trees) 

48.4% 

Platelets (100%), CPK 

(100%) 

Ensemble 

(RUSBoosted 
Trees) 

52.6% Platelets (100%), CPK 

(100%) 

Cosine KNN 47.4% 

Platelets (100%), CPK 

(100%) 

Fine tree 52.1% Platelets (100%), CPK 

(100%) 

Logistic 

regression 
kernel 

47.4% 

Platelets (100%), CPK 

(100%) 

Trilayered 

neural network 

51.0% Platelets (100%), CPK 

(100%) 

Narrow 

neural 
network 

46.9% 

Platelets (100%), CPK 

(100%) 

Coarse KNN 50.5% Platelets (100%), CPK 

(100%) 

Narrow 

neural 
network 

45.3% 

Platelets (100%), CPK 

(100%) 

Ensemble 

(subspace 
KNN) 

50.5% Platelets (100%), CPK 

(100%) 

Medium 

KNN 

43.2% 

Platelets (100%), CPK 

(100%) 

Medium tree 50.0% Platelets (100%), CPK 

(100%) 

Fine Gaussian 

SVM 

42.2% 

 

The PCA indicated that platelet number 

was the most significant parameter. However, this 

single variable was not sufficient to develop an 

accurate model. 

 

4.2.2 PCA with two variables 

The ML models developed and analyzed 

using two predictors in the PCA are shown in Table 

6, and the PCA coefficients of the five ML models 

with the highest classification accuracy are shown 

in Table 7. The wide neural network model had the 

highest k-fold accuracy of 57.3%, followed by the 

quadratic SVM model, the weighted KNN model, 

and the bilayered neural network model, each with 

an accuracy of 54.7%. In contrast, the three worst-

performing ML models (ranks from best to worst) 

were the narrow neural network model (46.9% 

accuracy), the cubic KNN model (45.3%), and the 

medium KNN model (43.2%). 
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Chicco and Jurman (2020) reported that 

serum creatinine and EF were the two most 

important variables for predicting HF patient 

survival. However, according to our PCA, the two 

most important varaibles were platelets and CPK. 

However, using only these two variables was 

insufficient to provide a good prediction accuracy.

 

Table 7 Summary of the PCA coefficients of the five ML models with the highest classification accuracy using two 

predictors identified via PCA with a 95% confidence level. 

Two 

Variables 
PCA coefficients 

Variable 

Wide neural 

network (57.3%) 

Quadratic SVM 

(54.7%) 

Weighted KNN 

(54.7%) 

Bilayered neural 

network (54.7%) 

Medium neural 

network (54.2%) 

Age 0.0000 -0.0013 0.0000 -0.0013 0.0000 -0.0013 0.0000 -0.0013 0.0000 -0.0013 

Anemia 0.0000 -0.0001 0.0000 -0.0001 

s0.000

0 -0.0001 0.0000 -0.0001 0.0000 -0.0001 

CPK 0.0005 1.0000 0.0005 1.0000 0.0005 1.0000 0.0005 1.0000 0.0005 1.0000 

Diabetes 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EF 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 

HBP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Platelets 1.0000 -0.0005 1.0000 -0.0005 1.0000 -0.0005 1.0000 -0.0005 1.0000 -0.0005 

Serum 

creatinine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Serum 

sodium 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 

Sex 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Smoking 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Follow-up 

time 0.0000 -0.0030 0.0000 -0.0030 0.0000 -0.0030 0.0000 -0.0030 0.0000 -0.0030 

 

4.2.3 PCA with thee variables 

The accuracy of ML models developed 

using three predictors in the PCA is shown in Table 

8 (ranked from highest to lowest accuracy), and the 

PCA coefficients of the five ML models with the 

highest classification accuracy are shown in Table 

9. The ensemble (bagged trees) model had the 

highest accuracy (96.4%), followed by the coarse 

tree model (95.3%), the fine tree model (94.8%), 

and the medium tree model (94.8%). However, the 

worst-performing ML models (ranks from best to 

worst) were the ensemble (boosted trees) and 

ensemble (RUSBoosted trees) models that had the 

same accuracy (49.5%), the logistic regression 

kernel model (47.4%), and the SVM Kernel model 

(45.3%). 

Interestingly, we have achieved the same 

level of accuracy using three predictors as was 

possible with all 12 predictors. Therefore, a model 

based on three predictors is sufficient to identify the 

critical factors contributing to HF patient mortality.

 

Table 8 Summary of classification accuracies for ML models trained using three predictors identified via PCA with a 

95% confidence level. 

Variable Model Accuracy Variable Model Accuracy 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

SVM kernel 45.3% Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Coarse KNN 90.6% 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Logistic regression 

kernel 

47.4% Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Medium neural 

Network 

90.6% 
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Variable Model Accuracy Variable Model Accuracy 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Ensemble 
(boosted trees) 

49.5% Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Kernel naïve 
Bayes 

91.1% 
 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Ensemble 

(RUSBoosted 
trees) 

49.5% Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Weighted KNN 

 

91.1% 

 

Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Ensemble 

(subspace KNN) 

58.9% Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Linear 

discriminant 

91.7% 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

 Narrow neural 
network 

86.5% Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Gaussian naïve 
Bayes 

91.7% 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Fine Gaussian 

SVM 

88.0% Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Quadratic SVM 91.7% 

Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Fine KNN 88.5% Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Coarse Gaussian 

SVM 

91.7% 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Cosine KNN 89.1% Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Ensemble 
(subspace 

discriminant) 

91.7% 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Trilayered neural 

network 

89.6% Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Wide neural 

network 

91.7% 

Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Cubic KNN 90.1% Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Linear SVM 92.7% 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Bilayered neural 
network 

90.1% 
 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Logistic 
regression 

93.2% 
 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Quadratic 

discriminant 

90.6% 

 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Fine tree 94.8% 

 

Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Cubic SVM 90.6% Platelets (100%), CPK 

(100%), follow-up time 

(99.87%) 

Medium tree 94.8% 

 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Medium Gaussian 
SVM 

90.6% 
 

Platelets (100%), CPK 
(100%), follow-up time 

(99.87%) 

Coarse tree 95.3% 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Medium KNN 90.6% 

 

Platelets (100%), CPK 

(100%), follow-up time 
(99.87%) 

Ensemble 

(bagged trees) 

96.4% 
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Table 9 Summary of the PCA coefficients of the five ML models with the highest classification accuracy using three 

predictors identified via PCA with a 95% confidence level. 

Three variable Variable 

PCA Coefficients 

Ag

e 

Ane

mia 

CP

K 

Diabe

tes EF 

HB

P 

Platel

ets 

Serum 

creatinine 

Serum 

sodium Sex 

Smok

ing 

Ti

me 

Ensemble (96.5%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

Coarse tree 
(95.3%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

Fine tree (94.8%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

Medium tree 

(94.8%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

Logistic regression 
(93.2%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

Linear SVM 

(92.7%) 

0.00

00 0.0000 

0.00

05 0.0000 

0.00

00 

0.00

00 1.0000 0.0000 0.0000 

0.00

00 0.0000 

0.00

00 

-

0.00

13 -0.0001 

1.00

00 0.0000 

0.00

01 

0.00

00 -0.0005 0.0000 0.0005 

0.00

00 0.0000 

-

0.00

30 

-

0.04

70 -0.0010 

0.00

29 0.0002 

0.01

88 

-

0.00

13 0.0000 -0.0029 0.0089 

-

0.00

01 -0.0002 

0.99

87 

 

4.2.4 PCA with more than three variables 

We found that three predictor variables were 

sufficient to build an accurate ML prediction model 

for HF patient survival. We computed the PCA 

responses for 4 to 12 predictor variables. For each 

number, the ML model with the highest accuracy is 

reported in Table 10. The accuracy increased 

gradually from one to two predictor variables, then 

markedly increased with three predictor variables 

(Figure 1). However, accuracy remained stable after 

three predictor variables. Therefore, three predictor 

variables are sufficient to develop an ML model to 

predict the mortality rate of HF patients.
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Figure 1 The relationship between the number of predictor variables and classification accuracy 

 

Table 10. Summary of the classification accuracy of ML models trained using 1 to 12 predictors selected via PCA with 
a 95% confidence level. 

Number of 

variables 
Variables Model Accuracy 

1 Platelets (100%) Quadratic discriminant, 

Gaussian naïve Bayes 

 

52.6% 

2  Platelets (100%), CPK (100%) Wide neural network 

 

57.3% 

3  Platelets (100%), CPK (100%), follow-up time (99.87%) 
 

Ensemble (bagged trees) 96.4% 

4  Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%) 
 

Coarse tree 94.8% 

5  Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%), EF (84.40%) 

Fine tree, medium tree, 

coarse tree, bagged trees 

94.3% 

6  Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%), EF (84.40%), serum sodium (99.51%) 

 

Ensemble (bagged trees) 94.8% 

7  Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%), EF (84.40%), serum sodium (99.51%), serum 

creatinine (99.74%) 
 

Ensemble (bagged trees) 94.8% 

8  Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%), EF (84.40%), serum sodium (99.51%), serum 
creatinine (99.74%), sex (66.64%) 

 

Ensemble (bagged trees) 94.8% 

9  Platelets (100%), CPK (100%), follow-up time (99.87%), age 
(84.56%), EF (84.40%), serum sodium (99.51%), serum 

creatinine (99.74%), sex (66.64%), anemia (81.54%) 

 

Ensemble (bagged trees) 94.8% 

10 Platelets (100%), CPK (100%), follow-up time (99.87%), age 

(84.56%), EF (84.40%), serum sodium (99.51%), serum 

creatinine (99.74%), sex (66.64%), anemia (81.54%), diabetes 
(75.45%) 

 

Ensemble (bagged trees) 94.8% 

11 Platelets (100%), CPK (100%), follow-up time (99.87%), age 
(84.56%), EF (84.40%), serum sodium (99.51%), serum 

creatinine (99.74%), sex (66.64%), anemia (81.54%), diabetes 

(75.45%), HBP (69.18%) 
 

Ensemble (bagged trees) 94.8% 

12 Platelets (100%), CPK (100%), follow-up time (99.87%), age 
(84.56%), EF (84.40%), serum sodium (99.51%), serum 

creatinine (99.74%), sex (66.64%), anemia (81.54%), diabetes 

(75.45%), HBP (69.18%), smoking (-67.33%) 

Ensemble (bagged trees) 94.3% 
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5.  Discussion 

Based on an open-source dataset 

consisting of 13 variables, we have identified three 

predictor variables that contribute most to mortality 

rates in HF patients using the PCA. These variables 

are platelets, CPK, and follow-up time. We found 

no significant improvement in classification 

accuracy when more than three predictor variables 

were used in ML model training. Our findings will 

enable clinicians to pay particular attention to these 

three critical predictors when assessing HF patient 

survival. Moreover, the PCA-based framework we 

have used here is not limited to the HF dataset; it is 

equally applicable to other datasets that contain 

potentially predictive variables. Our approach will 

facilitate the elimination of uninformative 

variables, reducing the time and cost required to 

collect data from patients. The future application of 

more sophisticated algorithms and models can 

further enhance classification accuracy (Gianfelici, 

Turchetti, & Crippa, 2009). 

 

6.  Conclusion 

We have identified critical factors 

contributing to mortality in HF patients using a 

dataset from the UCI Machine Learning Repository 

containing 13 mortality-associated variables and 

assessed the accuracy of ML models in predicting 

HF patient survival. We first curated the dataset, 

removing data for 107 randomly selected patients to 

minimize potential survivor bias and provide an 

unbiased training environment. Then, we developed 

and applied PCA and supervised ML models to 

predict HF patient mortality in MATLAB 2021, 

comparing them by their cross-validation 

classification accuracy. PCA models were 

developed using 1 to 12 variables, excluding the 

label. We found the critical predictive variables to 

be platelets, CPK, and follow-up time, which 

clinicians should pay special attention to when 

assessing HF patient survival. 
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