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Abstract  

Early detection of melanoma skin cancer is crucial for effective treatment, and computer-aided diagnostic 

technologies offer promising advancements for dermatologists to make faster, more precise diagnoses of skin lesions. 

Segmenting skin lesions is a crucial first step towards automated Computer-Aided Diagnosis for skin cancer. This paper 

aims to use SnakeCut, a foreground extraction approach, to automatically segment skin lesions in HSV color space with 

little human interaction. Active contour (otherwise called Snake) and Improved GrabCut are the two popular methods. 

By decreasing the energy function of the related contour, the active contour acts as a deformable segmentation contour. 

Improved GrabCut uses updated iterated graph cuts to store color attributes used as segmentation signals in order to 

achieve foreground segmentation from close-by pixel similarities in its foreground segmentation algorithm. The proposed 

integrated solution, which is predicated on a probabilistic framework, is termed “SnakeCut.” We removed the outer black 

border using preprocessing. Later feature extraction is done using HOG and HSV and classifies the benign or melanoma 

state using Naïve Bayes, Decision tree, and K-nearest neighbor classifiers. The efficiency of the segmentation strategy 

was measured using the Jaccard Index. We compared the classification results of our method with existing state-of-the-

art approaches. The study demonstrates the efficacy of Automatic SnakeCut in accurately segmenting skin lesions, 

thereby enhancing the performance of subsequent classification tasks. The average F-score was 0.75 on the 2017 ISIC 

challenge training dataset of 100 images. Compared to other methods, this study’s findings reveal that the suggested 

method is highly accurate.  
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1.  Introduction 

In recent days, computers and intelligent 

portable gadgets are already ubiquitous and can 

thus assist in the early detection of melanoma. It is 

possible to combine these technologies with CAD 

technology to create an intelligent system that aids 

dermatologists in the detection of malignant 

melanoma. Melanoma, the deadliest form of the 

disease, causes about 75% of all skin cancer 

fatalities (Titov et al., 2019; Siriwath et al., 2021). 

Early detection of melanoma improves survival 

rates, but manual diagnosis requires skilled 

specialists and results may vary among observers. 

To help pathologists work more accurately and 

efficiently, it's important to develop an accurate, 

dependable, automated melanoma detection system 

https://ph04.tci-thaijo.org/index.php/JCST/issue/view/49
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(Takruri, & Abubakar, 2017). Automatic melanoma 

diagnosis from dermoscopy images, however, is 

still a laborious process because of many 

limitations. First, it is difficult to accurately 

segment lesions because of the weak contrast 

between lesions and normal skin. Second, there 

may be a considerable degree of visual resemblance 

between melanoma and non-melanoma lesions, 

making them challenging to recognize. Third, 

people with varied skin issues, such as different 

skin colors, hair types, or vein patterns, will have 

various melanoma appearances in terms of color, 

texture, and other features.  

Traditional CAD algorithms for melanoma 

diagnosis rely on three steps: segmenting the lesion, 

extracting features, and classifying these features 

(Singh et al., 2017; Sayed et al., 2024). 

Segmentation is the splitting of an image into 

disjointed areas uniform in terms of features such as 

brightness, color, and texture. The purpose of 

segmentation is to make it easier to extract useful 

information from an image by simplifying its 

representation. Many comparative studies analyze 

the performance of various segmentation methods 

(Katapadi et al., 2018; Jaworek-Korjakowska, 

2016). Once the lesion has been identified, relevant 

features are extracted using different chromatic and 

morphological parameters for categorization. 

Skin lesion segmentation is usually the initial 

stage in classification procedures. Celebi et al. 

(2015) provided a recent analysis of automated skin 

lesion segmentation techniques. Accurate 

segmentation can lead to more effective lesion 

classification accuracy. Several research studies 

(Celebi et al., 2009; Iyatomi et al., 2008; Nagaoka 

et al., 2012; Celebi et al., 2007; Garnavi et al., 2010; 

Peng et al., 2009) have been conducted to obtain 

acceptable lesion segmentation outcomes. Despite 

all the work that has been done in terms of skin 

lesion segmentation and classification, more work 

needs to be done. Since 2016, the International Skin 

Imaging Collaboration's (ISIC) databases for 

autonomously analyzing skin lesions have been 

increasing progressively. Using the annotation-

based datasets published at ISIC 2017 for lesion 

segmentation, dermoscopic feature extraction, and 

lesion classification, researchers can enhance the 

accuracy of automated melanoma detection 

systems. The work by Wang et al. (2018) focuses 

on the CV model's energy function, reconstructed 

by mixing HSV models, and the k-means method 

was used to pre-segment the algorithm to achieve 

unsupervised segmentation. Full advantage was 

taken of color image information to address various 

color image segmentation challenges.  

This paper deals with SnakeCut, a simple yet 

strong image segmentation algorithm, used to 

segment a skin lesion using the improved HSV 

color space and analyze the results. This SnakeCut 

technique uses active contours, or snakes, as 

flexible, deformable curves to outline object 

boundaries in images. Although it accurately 

delineates the boundaries of melanoma lesions, 

aiding in analysis and diagnosis. It also contributes 

to feature extraction, crucial for melanoma 

classification, and provides high-quality 

segmentation results, which are essential for 

subsequent classification algorithms. The results 

were validated using a publicly available dataset, 

ISIC 2017, containing RGB images of various 

resolutions normalized using the proposed method 

titled "SnakeCut" because it utilizes a probabilistic 

framework to combine the results of Snake and 

Improved GrabCut. The user is required to provide 

a rectangle or polygon enclosing the foreground 

object in SnakeCut (lesion) without requiring post-

corrective editing. 

 

1.1 Related Work 

This section discusses some of the most 

common skin cancer diagnostic methods. The main 

aim of the SnakeCut approach is to focus on the 

automatic foreground extraction of skin lesions and 

their segmentation into HSV channels with very 

minimal human intervention. Early detection of 

melanoma skin cancer is crucial for effective 

treatment, and computer-aided diagnostic 

technologies offer promising advancements for 

dermatologists to make faster, more precise 

diagnoses of skin lesions.  

Shan et al. (2020) presented the FC-DPN 

segmentation architecture to overcome these 

challenges, based on the Dual-Path Network (DPN) 

and Fully Convolutional Network (FCN). These 

techniques may effectively reuse and re-exploit 

existing features because of the DPN's residual and 

densely linked route advantages. There are two types 

of Sub-DPN blocks used in fully convolutional 

DenseNets, called FC-DenseNets. These sub-DPN 

blocks were used to replace dense blocks. FC-DPN 

now has more informative and discriminative 

features for better segmentation, according to this 

framework. The original dataset ISBI comprises 

inaccurate ground truth images, so, to rectify them, 
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they replaced it with the new ISBI 2017 dataset (i.e., 

the Skin Lesion Challenge dataset). The simulation 

results on the proposed system yield a Jaccard index 

of 80.02% on the PH2 dataset.  

Ding et al. (2021) used MobileNetV3-U-Net, 

a lightweight encoder-decoder, to conduct 

automatic SLS while utilizing minimal resources. 

Semantic segmentation requires encoder-decoder 

architecture, learning algorithms, and post-

processing methods. They changed the decoder to 

use the BCDU-bidirectional Net's ConvLSTM layer 

and separable-UNet blocks to improve SLS. They 

randomly added images to the training dataset to 

avoid overfitting. Averaging several local optima 

using stochastic weight averaging (SWA) learning 

increased generalization. They used three publicly 

accessible datasets to test their method: ISIC-2017, 

ISIC-2018, and PH2. Tests conducted on this model 

have shown that it outperforms various other 

leading-edge approaches.  

Wei et al. (2019) discussed how computer-

aided diagnosis (CAD) of skin cancer relies heavily 

on accurate, automatic identification of skin lesions. 

They presented a new method for automatically 

segmenting skin lesions to get an exact border. 

Otsu's threshold is used to remove the initial lesion. 

The second phase involves inspecting the 

surroundings. To separate small homogeneous sub-

regions, Simple Linear Iterative Clustering (SLIC) 

is used, followed by supervised learning to classify 

them as background skin or lesion, resulting in an 

accuracy borderline. The suggested technique 

outperforms four existing modern automated 

segmentation techniques in a series of tests. 

das Chagas et al. (2020) and Wibowo et al. 

(2021) showed how time and efficiency can be 

balanced. To automatically separate skin lesions 

based on probabilistic features, the Parzen window 

(SPPW) was used. The PH2 and ISIC datasets were 

used to obtain the method's findings. Based on these 

two datasets, the SPPW approach produced average 

results of 98.55% in terms of specificity, accuracy, 

Dice, and sensitivity, as well as a Jaccard Index 

score of 88.45%. Two of the method's best points 

are its quick average segmentation time per image 

and metric values that are often higher than those 

achieved by competing methods. The SPPW 

segmentation approach provides dermatologists an 

easy-to-use, rapid way to classify diseased skin. 

Wibowo et al. (2021) showed that a 

significant number of parameters and FLOPs are 

required to achieve good skin lesion segmentation 

performance using deep learning models, which 

limit the situations in which they may be used. 

Feature maps at the low level, which are crucial for 

accurately predicting certain pieces of information, 

should be more utilized in these models. They 

presented EUnet-DGF, a lightweight encoder that 

employs MBconv and boasts high encoding 

capability. They predicted pixels on small patterns 

using an insight-gated fusion block that combines 

image features from different depths and improves 

prediction accuracy. The proposed model performs 

well when tested against datasets from ISIC 2017 

and PH2. In terms of parameters and FLOPs, 

EUnet-DGF constitutes only a small fraction of 

Unet's initial size. 

das Chagas et al. (2020) utilized a topology 

known as a multi-swarm, which segregates the 

population into several smaller swarms. This 

approach was implemented using the multi-swarm 

coyote optimization algorithm (MCOA) to assess 

its efficacy across various benchmark functions. 

Additionally, they investigated a multi-level 

thresholding issue with 44 images from the PH2 

benchmark dataset of skin dermoscopic data to 

gauge its effectiveness. The findings indicate that a 

multi-swarm architecture enhances the diversity of 

the population and consequently, the exploration 

capability. Compared to traditional methods and 

other advanced meta-heuristic optimization 

techniques, the results demonstrate that MCOA is 

both more stable and accurate. MCOA is also being 

applied to develop a new segmentation model for 

skin lesions. The results suggest that, in the future, 

the detection and treatment of skin diseases could 

be significantly facilitated by this method. 

 

2.  Objective 

The primary goal of the proposed research is 

to develop a machine learning architecture 

specifically designed for the segmentation of skin 

cancer lesions. Central to this endeavor is the 

SnakeCut approach, which emphasizes automated 

foreground extraction of skin lesions segmented 

into HSV channels, requiring minimal human 

intervention. Early detection of melanoma, a 

serious form of skin cancer, is vital for effective 

treatment. Consequently, advancements in 

computer-aided diagnostic technologies are 

increasingly essential, providing dermatologists 

with the tools to make quicker and more accurate 

diagnoses of skin lesions. 
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3.  Materials and methods 

The proposed work was automatically 

executed with minimal human intervention, 

employing a modified version of the GrabCut 

algorithm. Figure 1 illustrates the workflow of the 

segmentation pipeline. This pipeline begins by 

taking a preprocessed image as input. Subsequently, 

the pixels are clustered using the enhanced "k-

means clustering," and the BGR image is converted 

to HSV. Adaptive thresholding is then applied to 

derive a probable lesion mask from the image. 

Following this, a thresholding approach is utilized 

to determine whether to apply a mask for SnakeCut 

Segmentation. 

 

3.1 Dataset description: 

The dataset utilized for this study was 

sourced from the ISIC 2017 Challenge, organized 

by the International Skin Imaging Collaboration. To 

access the dataset, one can visit the following URL 

on the ISIC website: https://challenge.isic-

archive.com/data/. This dataset is often employed to 

train and evaluate machine learning models for the 

detection and classification of skin cancer, 

representing the largest publicly accessible 

collection of dermoscopy images. It comprises 

2,000 ground-truth images for training purposes, 

150 segmented images for validation, and 600 

images for testing—none of which include ground-

truth labels. However, all images provide patient 

identifiers, sex, ages, and basic anatomical sites. 

Figure 2 illustrates various examples of skin lesions 

associated with melanoma. 

 

3.2 Preprocessing 

The preprocessing step is designed to correct 

image defects that occur during the acquisition 

process by removing various artifacts, such as hair 

and ruler lines, which may compromise the 

accuracy of segmentation and lead to incorrect 

classifications. Ideally, the acquired image should 

be free of these aberrations; however, removing hair 

presents challenges due to its complexity. To 

address this, an adaptive median filter is employed 

to smooth out the replaced hair pixels. This 

technique is also used to eliminate dark frames 

surrounding small images. In Figure 3, the handling 

of these preprocessing steps is demonstrated. Based 

on the pixel values in the dark areas, a mask is 

generated for each image. This mask is then utilized 

to inpaint the neighboring pixels within the black 

border area, ensuring a cleaner image presentation 

for subsequent analysis. 
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Figure 1 Proposed scheme's block diagram 

 

3.3 Color Quantification 

K-means clustering was employed to 

achieve color quantization. Subsequently, the 

image was converted from BGR to HSV color 

space. Each channel was then separated and 

subjected to adaptive histogram equalization 

independently. Following this, all the color 

channels were merged, as illustrated in Figure 4.

 

 
Figure 2 Sample Images from ISIC 2017 dataset 

 

 
Figure 3 Dark outer border removal pipeline 
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(a)                                                     (b) 

  
(c)                                                (d) 

Figure 4 a) The original image b) k-means clustering c) RGB to HSV d) Adaptive Histogram Equalization 

 

3.4 Contrast Limited Adaptive Histogram 

Equalization (CLAHE) 

CLAHE (Contrast Limited Adaptive 

Histogram Equalization) concentrates on tiles that 

function as small fragments of an image (T. O. 

Sunitha et al., 2022). To eliminate false borders, 

neighboring tiles are merged using "bilinear 

interpolation." This method can also be applied to 

color images, typically utilizing the luminance 

channel. When only the brightness channel of an 

HSV image is equalized, the results are 

significantly superior compared to equalizing all the 

channels of a BGR image. 

 

3.5 Lesion/image segmentation 

The classification of a skin lesion commences 

with segmentation. A robust segmentation method is 

crucial for identifying diseased regions with higher 

accuracy and addressing various challenges such as 

color variations, the presence of hair, and lesion 

irregularity. After adjusting the images to maintain a 

consistent aspect ratio, the segmentation process is 

completed in two sequential steps: 

1) Contrast stretching is employed to 

distinguish the lesion (foreground) region 

from the background. 

2) The SnakeCut-based segmentation approach 

is used to segment the lesion region. 

 

3.6 Active Contour (Snake) Model  

In this model, one of the important forms is 

the parametric curve shown symbolically as v(s) = 

[x(s), y(s)], where's belongs to {0, 1} that minimizes 

with below energy function. 

 

( ) ( )
1 1 2 2

'( ) ''( ) ( )
1 22

0

v s v s v s dsE Esnake ext = + +
 (1) 

 

We use the weighting constants η1 and η2 to 

assess the relative importance of the material's 

elastic and bending properties. The terms v′(s) and 

v′′(s) represent are 1st and 2nd “order derivatives” 

of v(s), respectively. We constructed Eext from the 

image to capture smaller values at features of 

interest such as edges and object boundaries. The 

normal external energy required to move a snake 

towards step edges in an image I(x, y), where (x, y) 

are spatial coordinates, is defined as follows (Mei et 

al., 2016). 

 

2
( , )I x yEext = −                         (2) 

 

In color images, the intensity gradient is 

calculated using the gradient operator ∇. This is 

achieved by summing the gradients of the R (red), 

G (green), and B (blue) bands at each pixel, as 

shown in Eq. 3. The resulting composite gradient 

highlights the overall intensity variation across all 

three-color channels, providing a comprehensive 

measure of edge strength and direction at each point 

in the image. 
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( )max , ,I R G B =               (3) 

Eq. 3 generates a gradient that yields 

superior edge information. Accordingly, a snake 

that aims to minimize Esnake, must satisfy the Euler 

equation, as referenced in Mei et al. (2016). 

 

''( ) ''''( ) 0
1 1
v s v s Eest − − =                 (4) 

 

In equation (4), v′′(s) represents the second-

order derivative, and v′′′′(s) represents the fourth-

order derivative of v(s). This formula is part of what 

is known as an active contour model, or "snake," in 

certain fields. The active contour model is an 

energy-minimizing spline influenced by external 

constraint forces and image forces, which draw it 

towards features such as edges and lines. The term 

"snake" derives from its behavior, as it clings to 

neighboring edges and accurately captures their 

location. The interaction of both external and 

internal forces determines the contour's behavior in 

dynamic situations, as described by the equation 

below. 

 
intv F F extt = +

                                    (5) 

 

where ξ is a non-negative arbitrary constant and vt 

is the partial derivative of v with respect to t. As the 

deforming contour nears the object boundary, the 

total influence from the two forces—internal and 

external—equates to zero, causing the contour to 

come to a halt. This equilibrium point is critical, as 

it indicates that the contour has optimally aligned 

with the boundary of the object, fulfilling the 

primary goal of the active contour model. 

GrabCut: In the GrabCut algorithm, the 

user is first required to select an "area of interest" 

before the segmentation of a foreground object 

begins. Consider the image I as a pixel array 

indexed by a single single index, n.   

 

z = (z1, ..., zn, ..., zN)             (6) 

 

where zn is represented in RGB color space. The 

segmentation of the image is depicted by an array 

of "opacity" values at each pixel. 

 

α = (α1, ..., αn, ..., αN)                          (7) 

In "hard segmentation," the αn typically 

ranges between 0 and 1, where 0 denotes the 

background and 1 denotes the foreground. GrabCut 

utilizes two independent Gaussian mixture models 

(GMMs) to represent the color distributions of these 

segments. Each GMM is a K-component model 

with full covariance—one for the foreground and 

one for the background. When integrating with the 

resilience of the GMM in an optimization model, it 

is necessary to incorporate k = (k1,..., kn,..., kN), by 

each kn 1,..., K representing one of the K 

components. Each pixel is assigned to a single 

GMM component, determined by whether αn is 

equal to zero (background) or one (foreground). 

This assignment significantly influences the 

model's ability to accurately segment the image 

based on the defined foreground and background 

distributions. 

3.7 Improved Grapcut  

In the improved GrabCut approach, we 

employed two methods along with a single 

threshold value to enhance segmentation. The 

process initiates with a mask of the lesion location. 

If the mask's extracted value surpasses the 

threshold, a rectangle is generated for the GrabCut 

algorithm. 

 

3.8 Proposed Snakecut: Hybrid Active Contour  

 and Improved GrabCut 

Active contour utilizes an intensity gradient 

to construct a contour around the user’s input or 

within the item, facilitating the precise 

determination of its borders. Conversely, GrabCut 

segments pixels based on their color distribution 

and incorporates global cues, allowing it to 

effectively remove irrelevant parts (such as 

background elements) from within the object 

border. For segmentation, these two algorithms 

leverage complementary data, including region-

based and edge-based information. In this paper, we 

describe an integrated strategy, termed SnakeCut, 

which combines these complementary approaches 

for enhanced object segmentation. Figure 5 

illustrates the overall flow diagram of the 

segmentation method. SnakeCut autonomously 

employs both Active Contour and GrabCut to 

segment the input image. 

We integrated the two segmentation results 

using SnakeCut's probabilistic architecture. By 

applying probabilistic criteria, we synthesized the 

final segmentation result from these two inputs. 

Algorithm 1 outlines the principal steps of the 

SnakeCut algorithm. Implementing a probabilistic 
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framework was essential to merge the two results 

effectively. Within this framework, C0 (the active 

contour) identifies the object boundary, and each 

pixel zi is assigned two probabilities: Ps(zi) 

and Pc(zi). Ps(zi) the pixel's proximity to the 

border, whereas Pc(zi) assesses the pixel's 

similarity to the background. A high value for Ps(zi) 

suggests that pixel Ps(zi) is distant from the border, 

while a high value for Pc(zi) indicates that the pixel 

closely resembles the background. To decide 

whether a pixel belongs in the foreground or 

background, we employ the decision function p.  

 

( ) ( ) (1 ) ( )p z P z P zi c i s i = + −        (8) 

 

In Equation (8), ρ denotes empirically 

learned weight that determines relevance of two 

strategies. The probability Pc was calculated using 

distance transform (DT) of that object boundary C0. 

It can be calculated using the following formula: 

 

0,   lies on contour 0( )
, otherwise

if Czi
I zd i

d
=




      (9) 

 

Here d denotes the Euclidian distance among 

both pixel zi and the nearest contour point in 

equation (9), and before approximating Pc, distance 

transform data are normalized in [0, 1]. In is the 

“normalized distance transform image", and dn is 

the transform value of pixel zi in Id. 

 

To predict the probability Pc of zi, the 

following fuzzy distribution function is used: 

 

0,                         0 ;

2

2 ,      a ;
2

( )
2

1 2 ,   ;
2

1,                           b 1.

ad n

a a bd n
d n

b a
P zc i

b a bd n bd n
b a

d n

 

− +
 

−
=

− +
−  

−

 




 
   


  
  

 


  (10) 

 

In equation (10), a and b are constants for a 

< b. Thus, it results in a piecewise constant function 

having a transition from 0 to 1 at (a + b)/2 when a 

≥ b. We adjusted the probability distribution 

function to have a small probability value of Pc near 

contour C0 and a large probability value of Pc for 

points farther away. The nonlinear behavior of this 

fuzzy function is determined by these two values (a, 

b). By varying the parameters a and b, we can 

influence the nonlinear behavior of this fuzzy 

function. To evaluate the output response of Snake, 

parameters a and b must be defined first, followed 

by defining the parameter of GrabCut as a second 

step. 

Algorithm 1: SnakeCut Steps 

Input: RGB Image I  

Output:  Isc. 

In Isc, we set all the pixels to 0. 

begin  

Segmentation process 

1. Using Active Contour, the primary 

purpose is to ensure desired object segmentation in 

image I.  

2. Assume that the contour's object boundary 

is C0 and “Active Contour” is Iac. 

3. Using GrabCut, segment the appropriate 

object in I.  

4. Assuming that the output is Igc. 

B. Process of amalgamation of SnakeCut  

1. Locate a group of pixels Z in image I that 

fall under contour C0. 

2. Consider for every pixel zi ∈ Z, 

(a) By Eq. 10, do computation for p(zi) 

(b) if p(zi) ≤ T, then 

Isc(zi) = Iac(zi) 

else 

Isc(zi) = Igc(zi) 

end if 

By carefully selecting values for a and b, we 

can effectively regulate the size of points deemed to 

be near the contour. Pc is set to 0 when a pixel's 

distance from the border is within the range [0, a], 

and 1 when the distance spans [b,1]. All values have 

been standardized to maintain consistency. As 

illustrated in Figure 1, the region of interest 

undergoes segmentation. This segmented area is 

then leveraged to extract features, which are 

subsequently employed by classifiers to assess 

whether the image indicates the presence of 

melanoma or a benign condition. The methodology 

for feature extraction and classification is detailed 

in Figure 6, outlining each step involved in the 

process. 
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Figure 5 The proposed SnakeCut technique's flow chart 

 

 
 

Figure 6 Feature extraction and classification methodology 

 

3.9 Feature extraction 

The detection of melanoma skin cancer 

heavily relies on color features, which significantly 

influence the performance of the utilized 

framework. This is achieved by resampling the 

RGB image into HSV and YCbCr color spaces from 

their individual channels. Images within these color 

spaces are then processed to extract distinct 

features. The HSV (Hue, Saturation, Value) color 

space is complementary to RGB. In HSV, Hue 

represents the spectrum of colors available, 

Saturation indicates the percentage of grey, and 

Value describes the intensity of a color, reflecting 

the color's brightness and tint. In contrast, the 

YCbCr color space consists of three components: Y 

for brightness, Cb for chrominance, and Cr for 

saturation. From each channel of these color spaces, 

four statistical measures are extracted: mean, 

standard deviation, skewness, and entropy. For 

instance, in the HSV color space, four features are 

extracted from the Hue channel, four from the 

Saturation channel, and four from the Value 

channel, resulting in a total of 12 features from a 

single-color space. Subsequently, a 24-element 

Segmented image 

Feature extraction 

Classification 

(Naïve Bayes, Decision tree, 

K-nearest neighbor) 

HSV 

HoG 

Benign Melanoma 
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feature vector is constructed by combining the 

feature vectors from both HSV and YCbCr color 

spaces. This comprehensive approach facilitates 

robust analysis, enhancing the accuracy of 

melanoma detection. 

Color features play a crucial role in 

determining whether a tumor is cancerous or 

benign, as doctors often rely on these characteristics 

for quick analysis, despite geometric variations in 

lesion structures. Three primary color spaces—

RGB, HSI, and LAB—are used to extract these 

features. For each channel in these color spaces, 

statistical measures such as mean, standard 

deviation, skewness, and kurtosis are computed. 

HOG features, also known as shape-based 

features, focus on the form of objects. In our study, 

we extract HOG features from the shapes of 

segmented skin lesions, enabling effective 

performance. The ISIC institutional database, a 

public repository containing 1022 x 1022 RGB 

dermoscopic images of high quality, is frequently 

used in skin cancer research. Although ISIC 

encompasses a wide array of data, for our purposes, 

we accessed 290 images, comprising 130 

melanoma and 160 benign cases. We conducted 

tests on multiple features, including color and HOG 

features, to verify the efficacy of the proposed 

approach. Additionally, we evaluated three 

different types of classification systems. 

Classification involves categorizing images 

as either benign or malignant using classifiers. In 

this research, we rigorously tested the system using 

three distinct classifiers to ensure robustness and 

accuracy in our findings. 

Naïve Bayes: Naïve Bayes is a classification 

technique grounded in Bayes' Theorem, utilizing 

probability calculations to make classifications. In 

our analysis, we rigorously tested the system by 

experimenting with various parameters that affect 

the operation of the function. 

Decision tree: Decision tree classification 

involves categorizing information by splitting it 

into multiple groups with similar characteristics. 

The accuracy of a decision tree is influenced by the 

maximum number of splits allowed and the criteria 

for establishing a split. These factors are carefully 

adjusted to optimize the tree’s performance. 

K-nearest neighbors (KNN): K-nearest 

neighbors (KNN) is another classification 

technique employed in our study. In this method, 

new instances are classified based on similarity 

measures derived from the nearest neighbors. These 

neighbors are identified during the training phase, 

where the features vector and their corresponding 

labels are stored. The validity of KNN, compared to 

other methods, is confirmed by a confusion matrix 

which demonstrates its classification accuracy on 

the ISIC 2017 dataset. 

To assess the system's efficiency, three 

performance measures are utilized, and each is 

evaluated independently. The determination of 

these metrics involved the use of four parameters: 

TP (True Positive), TN (True Negative), FP (False 

Positive), and FN (False Negative). The labeled test 

set (y) and predicted labels (y1) are critical in 

calculating these values, ensuring an accurate 

evaluation of classifier performance. 

TP
Sensitivity (Sen)

TP TN
=

+
 (11) 

TN
Specificity (Spec)

TN FP
=

+
  (12) 

TP TN
Accuracy (Acc)

TP FP FN TN

+
=

+ + +
  (13)  

1
Jaccard Coefficient (JC)

1

y y

y y


=


    (14) 

 

4.  Results and discussion 

4.1 Results 

All simulations discussed in this paper were 

conducted using Jupyter Notebook to explore skin 

lesion segmentation with the Automatic SnakeCut 

technique. The proposed approach was assessed 

using the publicly available ISIC Challenge 2017 

dataset. Performance measures were employed to 

demonstrate the efficiency of the framework. The 

system underwent training and testing through five-

fold cross-validation. The segmentation method 

was tested on 100 images from the ISIC Challenge 

2017 dataset, achieving an average Jaccard 

Coefficient (JC) of 0.71. The performance of the 

proposed pipeline, as indicated in Table 1, includes 

some segmentation. Variability in skin 

characteristics, such as wrinkles, means that 

dermoscopic image collections may contain 

numerous microscopic objects. The median filter is 

employed to eliminate objects that are too small to 

be relevant, although not all impurities are removed 

completely. This partial removal can impact the 

performance and outcomes of the algorithm. Table 

2 presents several performance parameters for five 

images randomly selected from the ISIC Challenge 

2017 dataset. To assess the performance of the 
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proposed work relative to existing methods, a set of 

widely accepted statistical evaluation metrics was 

utilized. The proposed technique underwent testing 

on 100 skin images from the ISIC dataset, which 

included both benign and melanoma lesions, 

ensuring a comprehensive evaluation. 

Figure 7 presents a list of segmentation 

results, with measurements sourced from original 

articles to evaluate the efficiency of each 

comparative approach. The proposed method 

achieves superior results compared to those 

described by Yuan et al. (2017), Al-masni et al. 

(2018), and Guo et al. (2018). It yields the highest 

values for sensitivity (98.2%), demonstrating its 

ability to effectively detect true positive cases of 

melanoma and minimize false negatives. Its 

specificity (98.9%) indicates that the system can 

accurately differentiate between benign and 

malignant lesions, reducing false positives. 

Additionally, an accuracy of 96.3% in melanoma 

detection suggests that the system can reliably 

distinguish between benign and malignant lesions. 

The high metrics underscore the system’s efficiency 

in detecting melanoma, enhancing early detection, 

accurate diagnosis, and improved patient outcomes. 

 

Table 1 Qualitative and Quantitative results of segmentation 

Original Image Ground Truth Segmented Image JC 

   

0.68 

   

0.87 

 

   

0.78 

   

0.85 

   

0.75 
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Table 2 Comparison of proposed work with existed works on ISIC 2017 database 

Authors Sensitivity in % Specificity in % Accuracy in % 

(Yuan et al. 2017) 82.5 97.5 93.4 

(Al-masni et al. 2018) 85.4 96.69 94.03 

(Guo et al. 2018) 97.5 88.8 95.3 

Our work 98.2 98.9 96.3 

 

 
Figure 7 Performance comparison of three evaluation metrics of existed works and proposed work on ISIC 2017 

database 

 

 
Figure 8 K-Means Clustering 

 

The proposed approach demonstrates superior 

performance, outperforming related methods in 

segmenting skin lesions. The study significantly 

surpasses approaches used by other researchers with 

the ISIC 2017 database in terms of sensitivity, 

specificity, and accuracy. Figure 8 displays the 

results of K-Means Clustering, illustrating both the 

original and the segmented images. 

Figure 9 The BGR2 HSV result in which it 

shows the original, inpainted, segmented, and HSV 

images respectively. 

Table 3 presents the results of various feature 

sets, highlighting that the basic classifier, Decision 

Tree (DT), performs well in comparison to other 

approaches. Figure 10 illustrates the preprocessing 

results using CLAHE, showcasing all the color 

channels.
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Figure 9 BGR2 HSV 

 
Table 3 Results for individual extracted set of features using ISIC-2017 dataset 

 Classifier Selected features Performance measures 

 Color Hog Sen Prec Spec Acc 

NB 
√  89.4 89.65 91.9 89.7 

 √ 90.1 91.2 91.9 90.2 

KNN 
√  88.3 88.12 89.3 88.3 

 √ 89.4 90.2 90.3 89.6 

DT 
√  91.5 91.6 92.3 90.9 

 √ 92.3 92.6 92.7 92.3 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10 Preprocessing using CLAHE  
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Table 4 Confusion matrix for ISIC 2017 dataset 

Class 
Classification class 

TPR (%) FNR (%) 
Benign Melanoma 

Benign 91 9 91 9 

Melanoma 14 86 86 14 

Data in bold are significant. 

 

Table 4 displays the results of the confusion 

matrix for the ISIC 2017 dataset, indicating that the 

benign class has 91 instances while the melanoma 

class contains 86 instances. 

 

4.2 Discussion 

This paper introduces a SnakeCut-based 

segmentation framework designed to tackle the 

challenges of automated melanoma classification in 

dermoscopy images. The proposed framework 

consists of three interconnected steps: 

Segmentation, Feature Extraction, and 

Classification, which operate seamlessly without 

requiring manual intervention. Initially, the lesion 

region is segmented using the SnakeCut algorithm, 

which leverages machine learning techniques. 

Subsequently, a variety of color, texture, and shape 

features are extracted from the segmented images 

employing HSV and HOG methods. These features 

are then input into DT, NB, and KNN classifiers. 

Among these, the DT classifier yields the most 

favorable outcomes in terms of accuracy, precision, 

and specificity scores. This experiment was carried 

out using the open challenge dataset from the Skin 

Lesion Analysis toward Melanoma Detection on 

ISIC 2017. The findings suggest that the proposed 

melanoma classification system could integrate into 

a broader framework for skin lesion analysis. In the 

future, this approach might be expanded to enhance 

accuracy further by incorporating deep learning 

techniques for both segmentation and classification. 

 

5.  Conclusion 

When the color distribution of certain 

foreground objects closely resembles that of the 

background, GrabCut alone tends to yield 

suboptimal segmentation results. In response, this 

paper introduces an automatic skin lesion 

segmentation framework employing the SnakeCut 

algorithm. The segmentation process is automated 

and generalized using auto-extracting masks and 

rectangle initialization procedures, simplifying the 

user's task to merely drawing a rectangle around the 

foreground object of interest. This approach 

leverages a probabilistic framework to automate 

object segmentation effectively. The proposed 

method is adept at preserving parts of the object that 

share the background's color and removing internal 

inconsistencies within the object. Furthermore, 

evaluation using the ISIC-2017 dataset 

demonstrates that the decision tree classifier excels, 

achieving a sensitivity of 92.3%, precision of 

92.6%, specificity of 92.7%, and accuracy of 

92.3%, outperforming both KNN and NB 

classifiers. 
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