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Abstract  
The proposed work performs secure data fusion using homomorphic encryption, specifically the Paillier cryptosystem. 

The Paillier cryptosystem allows computation to be performed on encrypted data without decrypting it first, thus ensuring the 

privacy and security of the computation. The experiment measures the algorithm's performance based on execution time, 

memory usage, security, accuracy, and scalability. The data-level Paillier cryptosystem approach is generally slower than the 

feature-level fusion method due to its more complex operations and computations. Scalability is limited by the time required 

for encryption, homomorphic addition, and decryption. Improving scalability can be achieved by parallelizing the encryption 

and decryption steps, optimizing the homomorphic addition algorithm, or using more efficient cryptographic primitives. The 

article compares the performance of the Paillier cryptosystem with differential privacy in terms of their advantages and 

disadvantages. By adopting a preemptive approach to data fusion security, healthcare organizations can minimize the risk of 

data breaches and protect patient privacy. Data fusion security is an important factor when dealing with medical records. In 

the field of medical records, data fusion refers to the method of combining multiple sources of data into a distinct record. This 

can include data from electronic health records (EHRs), medical imaging devices, wearable devices, and other sources. There 

are several security considerations that must be addressed when fusing data from multiple sources.  

 

Keywords: artificial intelligence; data Fusion; differential privacy; data privacy; homomorphic; medical; paillier 

cryptosystem; radar data set 

 

 

Symbols  

Symbol Description Symbol Description 

𝑆1 First data source 𝐿 Large prime 

𝑆2 First data source 𝑀 Large prime 

𝑆1
𝐼 Perturbed version of 𝑆1 𝑁 Product of 𝐿 and 𝑀 

𝑆1𝑑 Vector representation of 𝑆1 𝑔𝑒𝑛 Generator 

𝐶(𝛽) Perturbation term 𝑟𝑎𝑛𝑑𝑚 Random number 

∆ Parameter defining the level of perturbation 𝐶𝑌𝑃 Ciphertext 

𝑦 Random variable following a normal distribution 𝑝𝑐_𝑓𝑢𝑠𝑒 Fused data 

𝑃 Protection mechanism 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 Decrypted feature 

𝜆 
Result of least common multiple operation on two  

𝜇 
Result of mathematical operation involving  

large primes a generator 
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1.  Introduction 

Artificial Intelligence (AI) systems often 

process large volumes of data from multiple sources, 

such as sensors, databases, and external Application 

Programming Interface (external APIs), to gain 

insights and make predictions. However, the accuracy 

and usefulness of these predictions can be limited by 

incomplete or conflicting data. Data fusion techniques 

aim to overcome these limitations by combining data 

from numerous sources to create a completer and 

more accurate picture of the situation at hand.  

There are various techniques used in data 

fusion, including sensor fusion. This engages 

combining data from multiple sensors to obtain more 

accurate measurements of a particular phenomenon. 

Feature fusion involves combining features obtained 

from multiple data sources to create a more 

comprehensive representation of the data (Singh, & 

Barde, (2024). Decision fusion involves combining 

multiple decisions made by different AI models to 

make a final decision or prediction (Dai et al., 2023; 

Alipour et al., 2023). Data fusion using machine 

learning trains a machine learning model to integrate 

data from multiple sources and make predictions 

based on the combined data. Data fusion is an 

important aspect of AI because it allows machines to 

make more accurate and informed decisions by 

leveraging data from multiple sources. Data fusion is 

used in medical imaging to improve the accuracy of 

diagnoses. By combining different imaging 

modalities, such as Magnetic resonance imaging 

(MRI), Computed tomography (CT), and Positron 

emission tomography (PET), doctors can obtain a 

complete picture of the patient's condition. This can 

help them make a more accurate diagnosis and plan 

the appropriate treatment. Data fusion can be used to 

combine information from different electronic health 

records (EHRs) to create a more complete patient 

profile. This can lead to better diagnoses and more 

effective treatments.  

Wearable devices, such as fitness trackers and 

smartwatches, can collect a wide range of data on the 

wearer's health, such as heart rate, sleep patterns, and 

activity levels. By combining this data with other 

health information, such as EHRs, doctors can gain a 

more complete understanding of the patient's health 

and identify potential health risks. Data fusion holds 

immense potential to revolutionize healthcare by 

providing doctors with more complete and accurate 

information on patients, a critical caveat prevails. It is 

imperative to ensure that the handling of patient data 

adheres to stringent standards of security and ethics, 

safeguarding patient privacy. This ethical 

consideration underscores the responsible use of data, 

aligning with regulatory frameworks to ensure the 

integrity and confidentiality of sensitive healthcare 

information.  

Data fusion can also be used in genomics to 

combine information from different genetic tests. By 

integrating genetic data with other health information, 

doctors can gain a better understanding of the patient's 

risk for certain diseases and tailor treatments to their 

specific genetic makeup. 

Data fusion has the potential to revolutionize 

healthcare by providing doctors with more complete 

and accurate information on patients. However, it is 

important to ensure that patient data is handled in a 

secure and ethical manner to protect patient privacy.  

 
2.  Related Work 

Data fusion is the process of integrating 

multiple sources of data to provide a comprehensive 

and accurate understanding of a particular situation. 

In the medical field, data fusion can be used to 

combine data from different sources, such as EHRs, 

medical imaging systems, and medical devices, to 

gain a more complete picture of a patient's health 

status (Steyaert et al., 2023; Albahri et al., 2023; 

Anita, & Kumaran, 2023). Fusion techniques are used 

for medical diagnosis. The presence of nonlinear 

deterministic structures in brain electrical activity, 

and their dependence on recording region and brain 

state (Rainio et al., 2023) are studied. Data fusion 

approach is applied for accurate classification of 

electro-cardiogram signals. Data mining techniques 

are used for medical image classification. While data 

fusion can be useful in improving medical care, it can 

also raise security concerns. Medical data is highly 

sensitive and valuable, making it a prime target for 

cybercriminals. There are several strategies that can 

be employed to ensure data security. One approach is 

to use encryption and access controls to secure the 

data and limit access to authorized personnel. Another 

approach is to implement robust authentication and 

identity management systems to prevent unauthorized 

access to the data. It is important to have a 

comprehensive security plan that includes regular 

security audits and vulnerability assessments, as well 

as contingency plans in case of a security breach. This 

involves backing up data, establishing disaster 

recovery plans, and having protocols in place to detect 

and respond to security incidents. The articles 

demonstrate that data fusion of wearable sensor 
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data is a promising approach for human activity 

recognition, with the potential to improve accuracy 

and enable new applications in various fields (Albahri 

et al., 2023; Jemili, 2023; Mohsen et al., 2022). The 

proposed approaches vary in terms of the sensors 

used, the fusion techniques applied, and the machine 

learning algorithms employed, highlighting the 

diversity of approaches in this area of research. A 

novel deep learning-based method for identifying 

disease-related genes by integrating multiple types of 

genomic data (Al-Hawawreh, & Hossain, 2023; 

Nguyen et al., 2023). The method combines a deep 

neural network with a Bayesian network to model the 

dependencies between genes and different types of 

genomic data. The authors evaluate the proposed 

method on several real-world datasets and show that 

it outperforms other state-of-the-art methods in terms 

of identifying disease-related genes.  

The frameworks and methods for multimodal 

medical image fusion using deep learning techniques 

(Mergin, & Premi, 2023; Babu, & Narayana, 2023; 

Sunitha et al., 2022) are also examined. They propose 

different architectures and approaches for combining 

data from different medical imaging modalities, such 

as CT and MRI, to improve the accuracy and 

comprehensiveness of medical diagnosis. These 

methods involve the use of convolutional neural 

networks (CNNs), sparse representation, fuzzy 

entropy, and multiscale analysis to learn and extract 

features from the input images and to fuse them into a 

single output image. The proposed methods are 

evaluated and compared based on various metrics, 

including peak signal-to-noise ratio (PSNR), 

structural similarity index (SSIM), and fusion quality 

index (FQI), to assess their effectiveness in improving 

image quality and clinical performance. 

The current state of research on data fusion 

techniques for EHR analysis implies future directions 

for research in this area (Raman et al., 2023; Liang et 

al., 2022). Data fusion in the medical field involves 

techniques such as deep learning-based frameworks, 

multi-sensor data fusion, and machine learning 

techniques. These techniques address various 

challenges related to medical data integration, such as 

accuracy, reliability, and efficiency, and propose 

novel solutions to improve medical diagnosis, 

monitoring, and treatment. 

.  

3.  Proposed Method 

Genomic data fusion is the integration of 

multiple genomic data types, such as DNA 

sequencing, gene expression, and epigenetic data to 

provide a more comprehensive assessment of the 

underlying biological mechanisms. Despite the 

potential benefits of genomic data fusion, there are 

various issues that need to be addressed. Genomic 

data fusion often involves integrating data from 

different sources with varying levels of quality and 

resolution, which makes it difficult to harmonize the 

data for analysis. To address this issue, 

standardization of data formats and metadata could 

help improve data integration and interoperability. 

 As the amount of genomic data being generated 

continues to grow exponentially, scalable and 

efficient data fusion methods are needed. This 

requires the development of new computational 

algorithms and tools that can handle large-scale data 

sets and complex data structures. Integrating multiple 

data types can result in complex and heterogeneous 

data sets, making it challenging to interpret the results. 

More effective visualization and data exploration 

tools are needed to help researchers better understand 

the underlying biological processes. Some data types 

may not be available for all samples, leading to 

missing data.  

This can affect the accuracy of the results and 

make it difficult to draw meaningful conclusions. 

Addressing missing data requires the development of 

new imputation methods accurately estimate missing 

values. Genomic data contains sensitive information, 

and there are apprehensions about data privacy and 

security. To address these concerns, there is a need for 

new privacy-preserving methods that can enable 

secure sharing and analysis of genomic data fusion 

will be critical for understanding the full potential of 

this approach and for advancing understanding of 

complex biological systems. Data fusion in the 

medical field requires a secure process to protect 

patient privacy and prevent unauthorized access to 

sensitive information. Here are some key steps to 

ensure secure data fusion in the medical field.  

Steps to ensure that patient data is de-identified 

or anonymized before it is integrated. It is also 

important to establish clear policies and procedures 

for handling patient data and to limit access to patient 

data to authorized personnel only. During the transfer 

of data between different sources, it is important to 

use secure methods to ensure that the data is not 

intercepted or compromised. This may involve using 

encryption, firewalls, and other security measures to 

protect data in transit. 

To prevent unauthorized access to patient data, 

it is important to implement access controls that 

limit who can view and manipulate the data. This 
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may involve using role-based access controls, 

authentication, and other security measures to ensure 

that only authorized personnel can access patient data. 

To ensure that patient data is being used appropriately 

and securely, it is important to monitor data access 

and use. This may involve logging data access and 

use, using analytics tools to identify unusual patterns 

of data access or use, and regularly auditing data 

access and use to ensure compliance with policies and 

procedures. To ensure data fusion in the medical field 

is secure and compliant with relevant regulations and 

standards, it is important to establish a data 

governance framework. This may involve developing 

policies and procedures for data handling, 

establishing a data stewardship program, and 

regularly reviewing and updating these policies and 

procedures to ensure that they remain current and 

effective. A secure data fusion block diagram 

typically consists of several components working 

together to ensure the secure aggregation of data from 

multiple sources.  

The Paillier cryptosystem (PC) is applied to 

perform secure data fusion (Figure 1). Paillier 

cryptosystem, a probabilistic public-key encryption 

method, supports homomorphic addition and 

multiplication. It enables computations directly on 

ciphertexts, thereby maintaining data privacy. This 

feature allows operations on encrypted data without 

requiring access to plaintext. 

 

3.1 Data Sources 
These are the various sources of data that are 

being collected, such as sensors, databases, medical 

records, radar data set, or other systems. Each source 

may have different types of data, different data 

formats, or different levels of sensitivity. In the 

proposed work, the subcellular and RNA data are 

used. 

 

 

Figure 1 Framework for Secure Data Fusion using Homomorphic Encryption. 

 



SHOBHA, & NALINI 

JCST Vol. 14 No. 3, September - December 2024, Article 57 
 

5 

3.2 Data Pre-processing 

This involves standardizing the data collected 

from various sources, which may include converting 

data into a common format or normalizing data for 

consistency. Pre-processing may also include basic 

data cleaning and filtering to remove any irrelevant or 

redundant information. Medical data is often complex 

and heterogeneous. Pre-processing steps may include 

data cleaning, anonymization, feature extraction, and 

normalization. The extracted features are represented 

in the form of vectors. 

 

3.3 Encryption   

Once the data is pre-processed, it is encrypted 

to protect it from unauthorized access or tampering. 

This can be done using standard encryption 

techniques, such as symmetric or asymmetric 

encryption, depending on the level of security 

required. 

The Paillier cryptosystem is a public-key 

cryptosystem that can be used to securely fuse data 

from multiple sources (Ifzarne et al., 2023; Tsai et al., 

2022). It is based on the homomorphic properties of 

the Paillier cryptosystem, which allow for the addition 

of encrypted data without decrypting it. This makes it 

ideal for data fusion applications, where data from 

multiple sources needs to be combined without 

revealing the individual sources. The Paillier 

cryptosystem is based on the concept of homomorphic 

encryption, which allows for the addition of encrypted 

data without decrypting it. Data from multiple sources 

can be combined without revealing the individual 

sources. The Paillier cryptosystem uses a public-key 

encryption scheme. 

 

3.4 Data Fusion 

The encrypted data is then combined or fused 

to form a unified data set that can be used for analysis 

or processing. This process may involve combining 

data from multiple sources into a single data set or 

analyzing the data to extract meaningful insights. This 

requires the use of encryption keys to unlock the data 

and ensure its integrity. The data is made available to 

authorized users or systems for analysis or use. Access 

control methods are put in place to restrict access to 

sensitive data and ensure that only authorized users 

can access it.  

Secure data fusion involves the integration of 

data from multiple sources while ensuring that the 

data remains secure and private. This can be achieved 

through various cryptographic techniques, such as 

homomorphic encryption, secure multi-party 

computation, and differential privacy by applying 

equations. (i - iv).  

 

3.5 Decryption 

 The fused data is then decrypted to reveal the 

original data from each source.  

To implement the secure fusion let us assume 

two data sources, 𝑆1and 𝑆2, given a protection 𝑃 

which takes input 𝑠1 and produces output 𝑂(𝑠1), say 

𝑃 satisfies differential privacy, if for any pair 𝑆1 and 

(𝑆1, 𝑂(𝑆1),), and all possible subsets 𝑆€𝑅𝑎𝑛𝑔𝑒(𝑂), 

 

DP[P(S1)∈S ] ≤ exp(ε) DP [P(O(S1)) ∈ S]       (i) 
  

The source S1 is represented by vector S1d, The output 

is represented by. 

 

S1d
I = S1d+C(β)  ∆/y, y ~N_d   (0,P)         (ii) 

 

where sup || P-1/ 2 (S1d- S'
1d) || 2≤∆        (iii) 

 

In PC the Key generation involves randomly selecting 

two large primes 𝐿 and 𝑀, where L|=|M|=|K|. Then 

calculating λ=LCM (L-1, M-1). Defined by a function 

L(V)=V-1/N, where N=L. M. Choose a generator 

gen ∈N2, and calculate μ = (geny mod N2) - 1 mod N. 

The public key is (N, gen), and the corresponding 

private key is.  

 

C(β)  ≥ √2   log〖2 / β          (iv) 

 
(λ, μ)              (v) 

 

To Encrypt the feature, 𝑓1, where f1 ∈ZN, choose a 

random number 𝑟𝑎𝑛𝑑m∈ZN* , then gcd(randm, N) =1.  

 

CYP1=ENC(f1) )=gen*randm N mod N2         (v), 

 

The secured fused data is represented by.  

 

pcfuse=CYP1+CYP2         (vii) 

 

Decryption. Given the ciphertext C ∈ZN, the 

corresponding message is decrypted with the private 

key (𝜆, 𝜇) as 

 

Feature=DEC(CYP)=L (CYP λ mod N2 )μ mod N     (viii) 

 

Public and private key pairs are generated 

using (v). The public key can be used to encrypt (vi) 

to generate df the medical records, and the private key 

can be used to decrypt (vii) them. Once the keys are 



SHOBHA, & NALINI 

JCST Vol. 14 No. 3, September - December 2024, Article 57 
 

6 

generated, medical records can be encrypted using the 

public key. The encrypted records can then be 

combined using the homomorphic property of the 

Paillier cryptosystem. This property allows the 

encrypted records to be added together without 

decrypting them. 

4.  Results and Discussion 

Homomorphic Encryption and the Paillier 

Cryptosystem enable computation on encrypted data 

without decryption. The Paillier cryptosystem 

facilitates homomorphic addition for secure data 

fusion, preserving privacy and security in scenarios 

where raw data sharing is restricted.  

 

4.1 Performance Comparison with Differential 

Privacy 

Experiments are carried out to perform secure 

data fusion using homomorphic encryption and the 

Paillier cryptosystem. Homomorphic encryption is a 

cryptographic technique that allows computation on 

encrypted data without decrypting it. The Paillier 

cryptosystem is used to perform homomorphic 

addition on encrypted data from two sources. This 

allows the data to be fused without revealing any 

individual data points to the other party.  

The resulting sum can be decrypted only by the 

party who holds the private key, ensuring the privacy 

and security of the computation. This technique is 

useful in scenarios where data from multiple sources 

need to be combined, but privacy concerns or data 

ownership prevent the sharing of raw data. These are 

just a few examples, and there are many other types of 

data that can be used for data fusion. The choice of 

which data to use depends on the specific research 

question and the available data resources. The 

algorithm's performance is measured using execution 

time, memory usage, security, accuracy, and 

scalability. 

Table 1 shows sample values resulting from 

fusion using Differential Privacy (Al-Hawawreh, & 

Hossain, 2023; Zhang et al., 2023a; Zhang et al., 

2023b; Qi et al., 2023) and Paillier cryptosystem. The 

execution time of the data-level Paillier cryptosystem 

is higher than the execution time of the feature-level 

fusion method because of the Encryption and 

decryption of data: In the data-level fusion approach, 

the data needs to be encrypted and decrypted using the 

Paillier cryptosystem. Encryption and decryption are 

computationally intensive processes that can slow 

down the execution time of the program. In contrast, 

the feature-level fusion method does not require any 

encryption or decryption of data. The second reason is 

homomorphic addition. The data-level fusion 

approach uses homomorphic addition to combine the 

encrypted data. Homomorphic addition involves 

performing mathematical operations on encrypted 

data without decrypting them. Homomorphic 

operations are computationally intensive and can lead 

to higher execution times. In contrast, the feature-

level fusion method only requires simple 

mathematical operations like addition and division. 

The third reason is the number of operations 

performed. In the data-level fusion approach, each 

data point needs to be encrypted, decrypted, and then 

combined using homomorphic addition. This involves 

many operations for each data point, which can 

increase execution time. In contrast, the feature-level 

fusion method requires only a few operations per data 

point. Therefore, the data-level Paillier cryptosystem 

approach is generally slower than the feature-level 

fusion method because it involves more complex 

operations and computations. 

 
Table 1 Data Fusion 

Source 1 Source 2 Differential Privacy Paillier cryptosystem 

1 6 6.437678 7 

2 7 8.427249 9 

3 8 12.455011 11 

4 9 12.737888 13 

5 10 15.880387 15 
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Figure 2 Execution time  

 

 
Figure 3 Memory usage of Paillier Cryptosystem Data Fusion. 

 

The execution time (Figure 2) of the data-level 

Paillier cryptosystem is higher than that of the feature-

level fusion method because in the data-level fusion 

approach, the data needs to be encrypted and 

decrypted using the Paillier cryptosystem. Encryption 

and decryption are computationally intensive 

processes that can slow down the program's execution 

time.  

In contrast, the feature-level fusion method 

does not require the encryption or decryption of data. 

The data-level fusion approach uses homomorphic 

addition to combine the encrypted data. Homomorphic 

addition involves performing mathematical 

operations on encrypted data without decrypting it. 

Homomorphic operations are computationally 

intensive and can lead to higher execution times. In 

contrast, the feature-level fusion method requires only 

simple mathematical operations like addition and 

division.  

In the data-level fusion approach, each data 

point needs to be encrypted, decrypted, and then 

combined using homomorphic addition. This involves 

many operations for each data point, which can 

increase the execution time. In contrast, the feature-

level fusion method requires only a few operations per 

data point. Therefore, the data-level Paillier 

cryptosystem approach is generally slower than the 

feature-level fusion method because it involves more 

complex operations and computations. Scalability is 

limited by the time required for encryption, 
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homomorphic addition, and decryption. If the size of 

the data or the number of sources is small, the 

performance may be acceptable, but if the size is 

large, the execution time may become prohibitively 

long. To improve scalability, one could consider 

parallelizing the encryption and decryption steps, 

optimizing the homomorphic addition algorithm, or 

using more efficient cryptographic primitives. The 

Paillier cryptosystem is used for secure data 

aggregation or fusion, while differential privacy is 

used for preserving privacy in statistical analysis. The 

performance of the two techniques is compared in 

terms of their advantages and disadvantages. The 

Paillier cryptosystem is computationally intensive and 

requires more resources than differential privacy. It is 

suitable for situations where the data owner wants to 

share data with others while keeping it private. It 

offers strong security guarantees and enables data 

fusion without revealing the underlying data. On the 

other hand, differential privacy offers a more 

lightweight approach to preserving privacy in data 

analysis. It adds noise to the data to protect individual 

privacy while still allowing statistical analysis. 

Differential privacy is more suitable for situations 

where data needs to be analyzed in a centralized or 

distributed manner while preserving privacy. The 

choice of technique depends on the specific 

requirements of the use case, and a thorough analysis 

of the advantages and disadvantages of each technique 

should be performed before choosing one over the 

other. 

The Paillier cryptosystem involves 

computationally intensive operations such as 

encryption, decryption, and homomorphic addition. 

These operations can take a significant amount of time 

to execute, especially when dealing with large 

datasets. The Paillier cryptosystem requires data to be 

encrypted and decrypted, which incurs additional 

overhead in terms of computation time and memory 

usage (Figure 3). The time taken (Figure 4) by the 

Paillier cryptosystem for data fusion may be higher 

than the time taken by differential privacy methods 

because of computationally intensive operations. The 

Paillier cryptosystem uses homomorphic addition to 

combine the encrypted data. Homomorphic 

operations can be computationally expensive, 

especially when dealing with large datasets. In 

contrast, differential privacy methods typically 

involve simpler operations, such as adding noise to the 

data or using randomized responses. These operations 

are less computationally intensive and can be 

performed more quickly. However, it is worth noting 

that the choice of data fusion method depends on 

several factors such as data sensitivity, the desired 

level of privacy, and the specific use case. Differential 

privacy methods may be more appropriate for some 

scenarios, while the Paillier cryptosystem may be 

more suitable for others.

 

 
Figure 4 Comparison of time taken by Paillier vs Differential Privacy. 
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Table 2 Mean Square Error of Paillier and Differential Privacy. 

Method Mean Squared Error 

Paillier 32.597 

Differential Privacy 3.8964 

 

The mean square error (MSE) is a metric used 

to measure the difference between the original data 

and the data after it has been processed. In the context 

of data fusion, MSE can be used to compare the 

accuracy of different data fusion methods. In the case 

of the Paillier cryptosystem and differential privacy 

(Table 2), both methods are used to perform secure 

data fusion. However, the Paillier cryptosystem uses 

homomorphic encryption to combine encrypted data, 

while differential privacy adds random noise to the 

data before combining it. Homomorphic encryption 

allows for secure computation on encrypted data 

without the need to decrypt it. However, 

homomorphic operations are computationally 

expensive and can result in a higher MSE. On the 

other hand, differential privacy adds random noise to 

the data, which can result in a lower MSE. The amount 

of noise added by differential privacy can be adjusted 

to balance the privacy and accuracy requirements. 

This makes differential privacy more flexible in terms 

of balancing privacy and accuracy compared to 

homomorphic encryption. Therefore, the MSE of the 

Paillier cryptosystem may be higher than that of 

differential privacy in data fusion because 

homomorphic encryption is computationally 

expensive and may result in a higher error rate 

compared to differential privacy. 

 

4.2 Applications of Data Fusion in Healthcare 

Settings   

Combining data from various imaging 

modalities such as Magnetic Resonance Imaging 

(MRI), Computerized Tomography (CT), and 

Positron Emission Tomography (PET) improves 

diagnostic accuracy. Data fusion enables a more 

comprehensive understanding of a patient's condition. 

Integrating information from different EHRs creates a 

more complete patient profile, aiding in better 

diagnoses and treatment planning. 

Challenges: Ensuring interoperability and 

standardization of data formats across different 

healthcare systems. Fusion of data from fitness 

trackers and smartwatches with other health 

information provides a holistic view of a patient's 

health, helping identify potential risks. Combining 

genetic data with other health information enhances 

the understanding of a patient's disease risk and 

supports personalized treatment plans. 

 

4.3 Challenges Encountered in Healthcare Data 

Fusion  

Diverse data sources may have varying levels 

of quality, formats, and standards, making it 

challenging to harmonize and standardize for 

meaningful fusion. Healthcare data is highly sensitive, 

and data fusion requires robust privacy measures to 

prevent unauthorized access. Compliance with 

regulations like Health Insurance Portability and 

Accountability Act (HIPAA) is crucial. Ensuring the 

seamless integration of data from different healthcare 

systems and devices requires addressing 

interoperability challenges, including data format and 

protocol differences. Data fusion techniques, 

especially those involving encryption and 

homomorphic operations, can be computationally 

intensive, affecting system performance and response 

times. Balancing the benefits of data fusion with 

ethical considerations, such as patient consent, 

transparency, and the responsible use of healthcare 

data is crucial. Incomplete data from certain sources 

or missing values can affect the accuracy of the fused 

data. Developing robust imputation methods is 

essential. Handling the exponential growth of 

healthcare data, especially in genomic and medical 

imaging applications, requires scalable data fusion 

methods and infrastructure. Adhering to regulatory 

frameworks and standards, such as GDPR in Europe 

or local healthcare regulations, is crucial to ensure 

legal compliance and patient trust. 

 

4.4 Discussion: 

Subcellular Location Dataset contains 

information about the subcellular localization of 

proteins. Subcellular localization refers to the specific 

compartment or organelle within a cell where a 

protein is found to be located. This dataset may 

include details such as the name of the protein, its 

corresponding subcellular location, and additional 

information such as experimental evidence supporting 

the localization. The RNA Cell Line Dataset contains 

RNA expression data across different cell lines. RNA 

expression data provides insights into the level of gene 
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expression in various cell types or conditions. This 

dataset includes information such as the gene name, 

cell line identifier, and the expression level of the 

corresponding gene in each cell line. Table 3 presents 

sample encryption parameters used in the Paillier 

cryptosystem, as well as the resulting fused 

ciphertexts obtained from secure data fusion. It 

includes the public and private keys, the original 

feature, the encrypted feature, the decrypted feature, 

and the ciphertext from the two data sources before 

fusion. 

 

5.  Conclusion  

The proposed work demonstrates how to 

perform secure data fusion using homomorphic 

encryption with the Paillier cryptosystem. It generates 

a pair of public and private keys, encrypts data from 

two sources using the public key, performs 

homomorphic addition to fuse the encrypted data, and 

then decrypts the fused data using the private key. The 

resulting fused data is stored in the database for 

analysis and diagnosis. This helps in developing 

customized medical treatments. This technique can be 

useful in scenarios where multiple parties need to 

share data to perform a computation but are unable or 

unwilling to share the raw data due to privacy or 

ownership concerns. The use of homomorphic 

encryption ensures that the computations can be 

performed securely without any party seeing the 

other's data. 

Using homomorphic encryption, specifically 

the Paillier cryptosystem, for secure data fusion can 

provide a way to combine data from multiple sources 

while ensuring privacy and security. However, the 

execution time and memory usage of the data-level 

Paillier cryptosystem approach may be higher than 

the feature-level fusion method due to the 

computationally intensive operations involved. 

Therefore, the choice of technique depends on the 

specific requirements of the use case, and a thorough 

analysis of the advantages and disadvantages of each 

technique should be conducted before choosing one 

over the other. Scalability can also be a challenge, 

but parallelizing encryption and decryption steps, 

optimizing the homomorphic addition algorithm or 

 

Table 3 Encryption Parameters and Fused Data 

Input Parameter  Value 

Public Key  

(N, gen) 

(118942756700471189375612598553605840386602410167959641729117467149813896

96268, 

453263757402699626846880100458182455215448022396831427132802844911086715

5162) 

Private Key (λ, μ) (396475855668237297918708661845352801280537216450553420846514780179247851

2916, 

111749672582696493368884154085707347984983332023815638374737838494166603

15032) 

Output Feature   10 

Encrypted Feature  535522725842784455824601121363132680014002986998322218405717883628565405

960675071712687576002617865140878118601148980729137141960519329260308014

21394784 

Encrypted Feature 535522725842784455824601121363132680014002986998322218405717883628565405

960675071712687576002617865140878118601148980729137141960519329260308014

21394784 

Decrypted Feature 897969747269146964433108732768422195542340657498315868418865009975828981

2858  

Ciphertext 1 437235195486435671115466705578167852477761586781174897225119010279698665

374549337307833170154561255204591518924267369372752936702166664356588725

45305392 

Ciphertext 2 634648994678766286897326073472885017337426898736522805361254044027321090

511813015280069350284392681628954527348095883524809991005572538918487778

12340768 

Fused Ciphertext 107188419016520195801279277905105286981518848551769770258637305430701975

588636235258790252043895393683354604627236325289756292770773920327507650

357646160 
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using more efficient cryptographic primitives can 

improve it. Differential privacy is another technique 

used for preserving privacy in data analysis, offering a 

more lightweight approach than the Paillier 

cryptosystem, and its choice depends on the specific 

requirements of the use case. A secure data fusion block 

diagram aims to ensure that data from multiple sources 

is combined in a secure and reliable way, while also 

protecting the confidentiality and integrity of the data. 
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