
Journal of Current Science and Technology, September-December 2022 Vol. 12 No. 3, pp. 462-481

Copyright ©2018-2022, Rangsit University ISSN 2630-0656 (Online)

Cite this article: Kaur, K., Sagar, A. K., & Chakraborty, S. (2022, September). Accelerating the performance

of sequence alignment using machine learning with RAPIDS enabled GPU. Journal of Current Science and

Technology, 12(3), 462-481. DOI: 10.14456/jcst.2022.36

462

Accelerating the performance of sequence alignment using machine learning with RAPIDS
enabled GPU

Karamjeet Kaur1*, Anil Kumar Sagar1, and Sudeshna Chakraborty2

1School of Engineering and Technology, Sharda University, Greater Noida, U.P., 201306, India

1aE-mail: karam_7378@yahoo.com; 1bE-mail: aksagar22@gmail.com
2Galgotias University, Greater Noida, U.P., 203201, India

E-mail: sudeshna2529@gmail.com

*Corresponding author: E-mail: karam_7378@yahoo.com

Received 19 April 2022; Revised 3 June 2022; Accepted 12 June 2022;

Published online 26 December 2022

__

Abstract
In bioinformatics, sequence alignment is a useful way of identifying similarities in the DNA sequences to

identify common evolutionary and structural relationships. Currently, with the number of sequences increasing in

sequence databases, traditional methods take too much time to align two or more sequences simultaneously, because these

methods are sequentially-based. Even when sequential algorithms are modified so that alignment can be done parallelly,

this modification is unable to reduce the time proportionally, as the number of sequences in databases is increasing at an

exponential rate. This limitation can be overcome by machine learning if sequences are treated as big data, and knowledge

from such large-scale data can be gained. If machine learning techniques are combined with the capabilities of GPUs,

processing time is reduced due to the parallel architecture of GPUs. Thus, a GPU-based approach is proposed to accelerate

multiple sequence alignment, yielding significant accuracy improvement. An efficient model is proposed and

implemented to predict classes of biological sequences. Many challenges are overcome by applying pre-processing to

sequence data, which is necessary for machine learning techniques to work. This model uses the embedding method for

the representation of DNA sequences and combines the capabilities of GPUs with a random forest algorithm. Results

show that the model yields a high accuracy of 99.5%, with a reduction in time required to align sequences. Compared

with other CPU-based methods, this GPU-based model takes less computation time. Fast and accurate alignment is vital

in evolutionary studies, which can help in designing new drugs or modifying existing drugs for new diseases.

Keywords: deep learning; graphical processing unit; machine learning; multiple sequence alignment; random forest.

__

1. Introduction

Sequence alignment is used to identify

functional, evolutionary, and structural similarities

in amino acid (proteins) and nucleic acid (DNA and

RNA) sequences, both important factors in

understanding organisms. Proteins represent the

building blocks of living organisms, while DNA

stores the genetic information. DNA sequences are

combination of four characters – A, C, G, T and

comprise variable lengths, ranging from a few

dozen characters to hundreds of megabytes. Figure

1 provides DNA sequence example. The sequence

alignment process compares two or more DNA

sequences to find similarities between unknown

sequences and known sequences in a database.

Many DNA sequences are available in

biological data centres like the National Centre for

Biotechnology Information (NCBI). To explore

mailto:karam_7378@yahoo.com

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

463

evolutionary similarities, which inform drug design

and studies of human genetics, cancer,

epidemiology, and biodiversity, understanding

sequence alignment and its analysis is prerequisite.

Such understanding also underlies the molecular

and structural subareas of biology, helping explain

both the history, functional and structural roles of

protein and amino acid sequences. It finds similar

parts of two or more sequences, which are

considered homologous if they share a similarity.

Depending on sequence length, alignment can be

either local or global. Local sequence alignment

finds a region of higher similarity, while global

sequence alignment aligns sequences along their

entire length to find as many matching characters as

possible. Alignment is also classified by the number

of sequences involved. Pairwise alignment aligns

two sequences to find the best region of similarity

and multiple sequence alignment (MSA) aligns

more than two sequences, providing more

biological information than pairwise alignment.

Figure 1 Multiple DNA biological sequences with nucleotide residues A, C, G and T.

1.1 Motivation and requirements

As the size of sequence data increases, so

alignment takes more time. Last year alone, the

GenBank division of the NCBI added 11 million

new sequences to the existing database, which

already contained 106 billion nucleotide bases and

108 million individual sequences. In April 2021,

GenBank had 832,400,799,511 bases and

227,123,201 sequences. With new sequences added

at such a high rate, finding functional, evolutionary

and structural relationships requires too much

search time. Computation grows quadratically as

the number of sequences to align increases. Thus,

execution speed must be improved so that

evolutionary relationships can be discovered and

gene families of new members predicted more

quickly. The existing CPU-based programming

approach for dealing with such problems is

computationally expensive. Furthermore, reducing

search time in the database requires hardware-based

acceleration. Dealing with large amounts of data is

the biggest challenge for traditional CPU-based

methods. Sequence alignment results should be fast

and accurate to help scientists analyse protein

functions, develop drugs, prescribe personalised

medicine, compare studies, provide gene therapy

treatment, and develop tools to find similarities

between new sequences and existing sequences in

the database.

The core of this research exists within the

bioinformatics field, in which computing

techniques are used to analyse and interpret

biological data. Primary contributions of this

research include:

• If sequences are aligned and classified

accurately, it is possible to develop more

efficient drugs.

• Individuals can receive personalised

medicine and genetic treatments.

• Diseases can be classified as pre-existing or

novel. Pre-existing diseases require

identifying which drugs are suitable for

treatment; novel diseases require the

development of new drugs.

• Much faster computation is required

compared to the sequential approach.

• A better strategy than single-threaded CPU is

needed.

• Machine learning analyses huge volumes of

data and makes data-driven

recommendations and decisions.

• Machine learning algorithms learn

automatically without the need for explicit

programming, performing complex

predictions on huge datasets.

• GPUs are faster than CPUs due to parallel

architecture and are perfect for deep

learning.

• Multiple cores in GPUs split tasks into

multiple sub-tasks and run them

simultaneously.

• GPUs perform better on large tasks versus

small tasks.

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

464

• GPUs are CUDA language-enabled, utilising

the power of machine learning with parallel

computing.

• If a GPU fully utilises its multiple cores and

CUDA-enabled libraries of machine

learning, the problem of accelerating

sequence alignment can be solved with more

accuracy.

1.2. Literature review

In multiple sequence alignment,

progressive, computation-intensive methods

(Naznin, Sarker, & Essam, 2012) are used for large-

sized sequences, but when a single sequence needs

to be compared against the whole database,

heuristic-based methods are used. MSA can be

obtained through several methods, such as

progressive, dynamic programming, genetic and

greedy algorithms. Currently, progressive MSA

methods are the most popular. With these, two

sequences are initially aligned by pairwise

alignment, after which the third sequence is aligned

to the first alignment; this process is repeated to

align all the sequences. This type of alignment has

limitations, however, as errors occurring at the

initial stage are propagated to the final stage,

decreasing alignment accuracy.

Heuristic methods (Sun, Palade, Wu, &

Fang, 2014), compared to dynamic programming

methods, are used to maximise similarity, but an

optimal alignment cannot be obtained. When global

pairwise alignment is combined with the tree-based

progressive method, it provides a basis for Clustal

Omega, ProbCons, and T-Coffee methods. These

methods, when combined with iterative strategy,

result in new methods like Muscle and MAFFT

(Zhu, Li, Salah, Shi, & Li, 2015). These limitations

are overcome by combining the heuristics method,

dynamic programming, and parallel programming.

Another approach to achieving better

alignment in less time involves combining the CPU

with a graphical processing unit (GPU) for

searching protein sequences, using multiple cores to

parallelise the alignment process according to the

architecture of the GPU. This paper optimised the

basic local alignment search tool, in which the time-

consuming searching phase is mapped to many

threads according to the architecture of the GPU.

Several operations related to bioinformatics, image

processing, modelling, scientific computing, game

development, robot motion planning,

computational geometry, collision detection, and

many numerical applications are performed by

GPUs nowadays.

The GPU-based Smith-Waterman (SW)

algorithm is used to search sequences from

biological databases. The SW alignment algorithm

(Liu, Hong, Lin, & Hung, 2015) is modified by

inter-task parallelisation, which exploits the

architecture of GPUs via the CUDA programming

language supported by the NVIDIA Corporation.

This corporation manufactures different high-end

GPUs. The CPU-GPU-based parallelisation process

aligns two sequences at a reduced time and gives

better results than the CPU-based SW algorithm,

but due to the limited internal memory of GPUs,

memory bandwidth is a major bottleneck; this issue

is overcome when extended for multiple sequence

alignment by computing batches of alignment in

parallel. The CPU-based sequential alignment

algorithm is using dynamic programming approach

and is reformulated in such a way that the alignment

matrix is calculated in parallel by a GPU to speed

up the task of alignment. Hence, the alignment

score and traceback step of the SW algorithm are

parallelised.

The dynamic programming-based

Needleman-Wunsch algorithm is further

reformulated (Warris, Yalcin, Jackson, & Nap,

2015) by using a GPU as a hardware accelerator. If

alignment is performed by the MAFFT tool and the

architecture is sequential, runtime is long. The

MAFFT algorithm is accelerated for organising the

sequence data via CUDA-enabled GPUs. It uses

modified run-length encoding to allocate memory

and the shared memory of the GPU to speed up

alignment. This CUDA-based implementation

improves execution time compared to CPU-based

implementation. A parallel MSA algorithm

(Andalon-Garcia, & Chavoya, 2017) that does not

use the progressive method was also developed for

global alignment. This algorithm generates

alignment by finding the longest common

subsequence.

For searching MSA, several processes run

independently to reduce computation time but still

have less accuracy. Computing exact MSA is time-

consuming due to increasing sequence data, which

presents a major challenge nowadays. If this

sequence data were treated as big data, machine

learning could help in the classification and

alignment of DNA/protein sequences. Researchers

design a necessary drug after identifying the

function of the protein. Similarly, metric learning

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

465

from biological data can be done by machine

learning (Min, Lee, & Yoon, 2017), in which a

framework is designed to perform alignment in

feature vector space and further perform

classification.

The main challenge facing computational

biology is the transformation of heterogeneous data.

Once such data is transformed, biological

knowledge can help in constructing a model and

obtaining a prediction. Machine learning methods

are applied to extract knowledge from biological

data. To provide a comprehensive perspective, the

bioinformatics domain incorporates deep learning,

which produces good results by selecting

appropriate architecture. When deep learning is

applied to big sequence data, alongside the help of

parallel and distributed computing, it can be used in

processing images and text.

Deep learning automatically generates

high-level features with the help of machine

learning (Ravi et al., 2017) and is useful for

bioinformatics, medical imaging, and public health.

In bioinformatics, neural networks are capable of

memorising sequential data to analyse the stream of

data, although previous computations are needed to

obtain such output as the analysis of DNA

sequences. When combined with GPUs, which are

designed for parallel processing, deep neural

networks can scale large datasets and reduce

complexity.

When machine learning is applied to big

data (L’heureux, Grolinger, Elyamany, & Capretz,

2017) then performance of the algorithm depends

upon the machine learning architecture chosen to

store large-sized data. Thus, it is necessary to

rethink typical architecture, because with increasing

data size, algorithms can sometimes become

unstable and lead to the curse of dimensionality.

This huge challenge of dealing with complex

biological data can be overcome by artificial neural

networks and reinforcement learning (Mahmud,

Kaiser, Hussain, & Vassanelli, 2018). Such

machine learning techniques can find complex

patterns in biological data. A novel method (Jiang,

Ganesan, & Yao, 2018) for accelerating the hidden

Markov model was proposed, utilising GPU

hardware resources and improving performance

and scalability regardless of sequence datasets and

query models. Newly introduced GPUs have more

computing power in terms of hardware resources

and advanced features capable of handling the

increasing size of data for industry and the medical

field. CUDA-enabled NVIDIA GPUs provide a

development environment to the user which, if the

user uses it appropriately, helps in parallelising the

task related to biological data.

In bioinformatics, to manage complex

workflow, a GPU-accelerated application for

enhancing performance was designed (Welivita,

Perera, Meedeniya, Wickramarachchi, &

Mallawaarachchi, 2018) on an Amazon cloud

platform. This type of cloud-based computing

provides three levels of parallelism that decrease

execution time. It has been noted that while deep

learning can handle big data and is used in

bioinformatics (Li et al., 2019), it faces problems

when handling sequence data that lead to overfitting

and interpretability. Performance is further

enhanced by including ensemble learning and SVM

(Mirzaei, Sidi, Keasar, & Crivelli, 2019; Zhu,

Wang, Li, Zhu, & Du, 2020), which also deal with

imbalanced datasets.

Recently, the open-source, machine

learning-based benchmark iMLBench (Zhang et al.,

2020) was developed by integrating CPU and GPU

architecture with shared unified memory, in which

CPUs and GPUs run together and eliminate

unnecessary overhead by machine learning tasks. A

widely used Needleman-Wunch algorithm is

optimised (Rashed, Amer, El-Seddek, & Moustafa,

2021) by using a multilayer perceptron for aligning

DNA/RNA sequences. This study used a divide-

and-conquer strategy to parallelise computation

steps for aligning long sequences.

Deep learning models are increasingly

used to analyse sequences. For example, CNN with

LSTM and bidirectional LSTM are used

(Gunasekaran et al., 2021) to improve accuracy.

Since a huge amount of sequence data is available

today, deep learning architecture, when used with

ANN by setting hyperparameters, proves helpful in

sequence classification (Alhalem et. al., 2020).

Sequence classification can be done by combining

machine learning with statistical classification

techniques like CRT, QUEST, CHAID and C5.0

(Gupta, Bihari, & Tripathi, 2019), yielding better

results for imbalanced datasets.

When identifying functionally similar

proteins and evolutionary pathways, protein-protein

interactions help in alignment. A representation

learning method combining topological features

and biological characteristics is used for better

alignment results (Gao et al., 2019). The structural

features of sequences are transformed into low-

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

466

dimensional vectors that help determine similarities

for multiple sequences.

DNA sequences can be clustered using

unsupervised deep learning, in which sequence

alignment is unnecessary. Frequency chaos game

representation is used (Millán Arias, Alipour, Hill,

& Kari, 2022) to self-learn data patterns, generating

mimics by optimising multiple neural networks.

The accuracy varies from 77% to 100% by majority

voting scheme in finding the final assignment of a

cluster. This suggested method outperforms K-

means and Gaussian mixture clustering, which

completely ignores sequence homology, length of

sequences, and taxonomic identifiers.

Previous literature suggests that sequence

alignment should be accurate when dealing with

large sequence data. When large-sized protein

families are searched to find similarities,

acceleration of this task is necessary. Machine

learning helps in alignment and analysis tasks, but

machine learning techniques cannot be applied

directly to biological sequences, otherwise the

dimensionality of data would be increased and

acceleration of the classification task would not be

possible. To reduce execution time, machine

learning with hardware accelerators like GPUs,

along with some specific encoding method at the

time of pre-processing, is required.

2. Objectives

 To overcome the above challenges, this

paper has the following objectives:

• Large DNA sequences are collected and pre-

processing steps applied to transform

character-type data to vector form and make

it suitable for machine learning methods.

This transformation is the biggest challenge

to align sequences, which otherwise

increases the dimensionality of the data

which in turn increases the time and memory

space taken by the alignment process.

• Natural language processing maintains the

positional information of each sequence, and

a suitable classifier is applied to predict the

similarity of DNA sequences with existing

sequences.

• Machine learning techniques are integrated

into the bioinformatics domain.

• Parallelisation is applied in such a way that

all cores of the GPU are fully utilised.

• Given all these points, this machine learning

model yields high accuracy with valid output

and accelerates the performance of the

sequence alignment process, taking less CPU

time.

3. Methodology

Machine learning handles automatic

learning from numeric data without the need for

explicit programming and is thus widely used in

generating valuable information from data. The

input to our model comprises protein sequences,

also called features. Machine learning techniques

identify suitable features that allow the model to

differentiate one type of data from another type to

solve the classification problem. A group of

features for one protein sequence is called a feature

vector and n-dimensional space is called feature

space.

Machine learning can process large data

by considering DNA sequences as big data, yet

machine learning methods face challenges due to

the mismatch in the type of data accepted by

machine learning versus the DNA data available in

biological databases, as it is difficult to integrate

different types of datasets. Machine learning

techniques cannot be applied directly to DNA

sequences, and machine learning models cannot be

trained on the variety of data and are thus unable to

predict the output. Machine learning techniques

extract features, but DNA sequences do not have

clear features that generate high-dimensional data.

High dimensionality is also overcome

(Gunasekaran et al., 2021) when CNN is combined

with LSTM and bi-directional LSTM.

There is a need to increase efficiency when

large DNA sequences are processed and ensure that

appropriate similarity measures are considered

when measuring similarity among sequences. As

DNA sequences comprise variable lengths, it is

prerequisite to convert the sequences into vectors

by preserving their sequence order and key patterns.

Figure 2 represents the methodology

followed to design this model. Different pre-

processing steps are performed by the CPU. Pre-

processing helps prepare and transform DNA

sequence data into numeric data so that the machine

learning model can be trained and can predict the

output accurately. To accelerate sequence

classification performance, the machine learning

model is trained and tested using a GPU. The GPU

has thousands of cores that provide a parallel

computing platform, cores that are dedicated to a

single task. Training the deep learning model

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

467

requires hardware resources, and the GPU can

handle many computations on a huge amount of

data simultaneously. The sequential task is

performed by the CPU while the parallel task is

performed by the GPU. Pre-processing is a

sequential task required for data preparation and

transformation. Our model uses natural language

processing (NLP) for DNA sequence coding,

sequence padding to make the size of each sequence

equal, and an ensemble-based random forest

classifier to avoid overfitting and underfitting.

3.1 Natural language processing

NLP techniques are well suited for text-

based features, which can be converted into a

numeric format. Sequence-to-vector encoding uses

a natural language processing approach in which

amino acids are represented as words and protein

sequences as sentences. Our model uses word

embedding and can transform individual fixed-

sized words into real-valued vectors. The NLP task

can be performed with deep learning through word

embedding, which helps in solving a classification

problem. The text should be prepared in such a way

that each word is one-hot encoded. Keras supports

embedding layers for text data and has a one_hot

function for integer encoding. Since sequences are

of variable length, the requirement for Keras is that

all vectorised input comprises the same length; thus,

Keras has another function named pad_sequence

for meeting this requirement. After encoding, these

fixed-length numeric values are used as input for

classification. For classification, an ensemble

learning-based random forest is used to predict the

exact class as an output.

Figure 2 Methodology for designing a GPU-based machine learning model

3.2 DNA sequence coding

DNA sequences are combination of four

characters – A, C, G and T with no spaces in

between and cannot be considered text data or

numeric data. However, to develop a suitable

model, machine learning techniques work on

numeric data in the form of a matrix; the sequence

data thus requires pre-processing to make it suitable

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

468

for the training model. There are three ways to

encode DNA sequences: sequential, one-hot, and k-

mer encoding. The designed model accepts DNA

sequences as input, but sequences should be

encoded as numeric values before the classification

process used by the machine learning algorithm.

These numeric values are represented by 2-

dimensional matrices. When DNA sequences are

transformed into matrix form and fed as input to the

designed model, the model then classifies the DNA

sequences.

This model uses k-mer encoding and one-

hot encoding. At first, k-mer encoding is applied to

divide large-sized sequences into k-length

overlapping segments. If the length represented by

k is 5, then the biological sequence

‘AGCTGCATGTC’ is decomposed into seven k-

mers: ‘AGCTG’, ‘GCTGC’, ‘CTGCA’, ‘TGCAT’,

‘GCATG’, ‘CATGT’, and ‘ATGTC’. In the second

step, one-hot encoding characters [A, G, T, C] are

coded as vectors [0,0,0,1], [0,0,1,0], [0,1,0,0] and

[1,0,0,0]. These are most commonly used in deep

learning because of its consistent performance in

different datasets.

3.3 Sequence padding

The deep learning model works on the

same shape input, but DNA sequences comprise

different lengths. To make each sequence of equal

length, a zero-padding technique (Lopez-del Rio,

Martin, Perera-Lluna, & Saidi, 2020) is used, in

which zeroes are appended at the end of the

sequence so that all sequences become equal in

length, helping enhance the performance of the

model. This model uses pre-padding (shown in

Figure 3), adding zeroes at the start of the sequence

after all sequences are encoded. This process is part

of the pre-processing phase before training the

model.

Figure 3 Process of pre-padding to make all sequences of equal length

3.4 Sequence classification using machine learning

 When constructing a computation model,

feature extraction is very important for predicting

the classification for DNA sequence analysis. DNA

sequence analysis problems can be solved by

classification. If there are n DNA sequences (D1,

D2, D3 …. Dn) that belong to m categories, then the

purpose of designing a classifier is to predict the

unseen sample’s label, a prediction based on

labelled samples upon which this classifier is

trained. There are many classifiers for predicting

the output, such as support vector machine

(Rangwala, & Karypis, 2005), random forest (Liu,

Long, & Chou, 2016), and k-nearest neighbors

(Chou, & Shen, 2006). Among these algorithms,

random forest solves tasks related to

bioinformatics. Random forest is a tree-structured

classifier that uses random feature selection (Jiang

et al., 2007) and overcomes the overfitting problem

(Chen, Wang, & Zhang, 2011). Further studies

show (Liu, Wang, Dong, Li, & Liu, 2016; Liu,

Yang, & Chou, 2017) that if an ensemble predictor

is used for classification along with random forest,

better performance can be achieved, because this

type of predictor uses a voting strategy by

combining an array of the individual predictors.

In mining tasks, machine learning helps

classify DNA sequences. The classification model

learns from training samples and then predicts the

class of unknown DNA sequences. DNA sequences

are a special type of data with non-numeric

attributes, thus creating a problem for data mining

tasks. Deep learning solves big data problems and

helps enhance computational performance. It is

furthermore capable of extracting features from

input. A convolutional deep learning model with an

LSTM layer was designed (Di Gangi, Lo Bosco, &

Rizzo, 2018), in which features are extracted from

sequences and LSTM finds the features of the

previous layer of sequential data with 50 hidden

layers. LSTM helps identify long-term relationships

between sequential data (Gunasekaran et al., 2021).

Machine learning techniques transform

given input into desired output. For the

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

469

classification task, input is mapped to output, which

should be discrete. The classifier can be trained

using unsupervised, supervised, or semi-supervised

learning. In unsupervised learning, there is input

data but no output variables. Examples are the

Apriori algorithm for association rule learning and

k-means for clustering.

 In supervised learning, input and

corresponding output variables map input to output.

Examples are support vector machines, linear

regression and random forest. Semi-supervised

machine learning combines supervised and

unsupervised learning, in which some data out of the

large volume of input data is labelled and the rest of

the data is unlabelled. Our model uses supervised

machine learning, in which random forest uses many

decision trees and employs the voting technique for

more accuracy. Ensemble methods maintain

accuracy because many tree-based algorithms are

combined rather than a single tree-based algorithm

being used. This helps reduce bias and variance

factors, which can lead to a difference between actual

and predicted values. These two factors can also lead

to the underfitting or overfitting of the model.

Ensemble methods are classified into three types:

sequential, parallel and stacking. In sequential

ensemble learning, base learners are generated

sequentially, and many machine learning algorithms

are combined to convert weak learners to strong

learners, decreasing bias and variance (e.g.,

stochastic gradient boosting and Adaboost). In

parallel ensemble learning, base learners are

generated parallelly, improving the accuracy of the

classification and reducing bias and variance. In

stacking, multiple models are combined by splitting

training datasets into two disjoint datasets that train

and test several base learners. Predictions are then

used to train another higher-level learner, after which

blending yields a weighted average for the final result

(e.g., voting classifier).

3.5 Random Forest classifier

 The random forest (RF) classifier produces

accurate results without overfitting problems and

also works for missing values. Datasets are split

randomly, random samples are selected, and decision

trees that predict results are generated for each

sample. The random forest classifier increases the

accuracy of this model. Random forest is used for

classification problems; a voting mechanism is

employed for each predicted result, and the most

voted class is predicted as the final result. When

random forest is employed for regression problems,

it finds the average of all predicted outputs to predict

the final result. The random forest classifier uses a

decision tree algorithm, in which features are

selected randomly whenever nodes are split during

random forest construction. In biological sequences,

there is randomness in character sequences and any

of the characters can appear multiple times at any

position or time. This uncertainty and the way the

random forest classifier works make it suitable for

the type of datasets we have used during

experimentation.

4. Experimental analysis

 This model was implemented in the Google

Colab environment with Python 3.7. The RAPIDS

compatible package was installed with Miniconda 3.

RAPIDS has open-source libraries designed

especially for GPUs. This software uses CUDA

primitives through a Python interface for low-level

compute optimisation. Colab assigns different types

of GPUs, but only P4, T4, P100, and V100 GPUs are

compatible with RAPIDS. It is necessary to

configure the appropriate environment with CUDA

toolkit 11.2, RAPIDS 0.21, and cuML version

21.06.02. If an incompatible GPU is assigned at

runtime (e.g., Tesla K80), the runtime must be set to

default to wait for the right type of GPU allocation.

Tesla T4, chosen as the GPU for experiments, has

2,560 cores and 16 GB of GPU memory with driver

version 460.32.03.

4.1 Training and test data partitioning

 DNA sequences were obtained from the

NCBI. These datasets were divided into training and

test data using a cross-validation parameter with a

value of 10. Thus, complete datasets were divided

into 10 groups and random forest automatically

select test versus training data individually. One

group was unannotated and nine groups were

annotated. The output of the model was predicted by

an unannotated group. We were able to use 70%,

60%, or any percentage of datasets for training the

model. We used a random forest classifier to choose

datasets randomly. We tested both approaches (i.e.,

dividing the datasets into training and testing

datasets, as well as not splitting datasets by using a

cross-validation of 10) and found that random

splitting of the data did not affect the accuracy score

of this model.

4.2 Evaluation metrics

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

470

The model was evaluated by a confusion

matrix according to the actual and predicted class

based on correctly identified/rejected and incorrectly

identified/rejected as a member of class. There are

four terms for this:

1. True Positive (TP): When both classes

are true.

2. True Negative (TN): When both classes

are false.

3. False Positive (FP): When the actual

class is false and the predicted class is true.

4. False Negative (FN): When the actual

class is true and the predicted class is false.

Based on these cases, this model was evaluated using

the following metrics:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall (TPR) =
TP

TP + FN

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall

Specificity (TNR) =
TN

TN + FP

FPR=
FP

FP + TN

5. Results analysis

There are three different settings in Google

Colab: CPU, GPU and TPU. All experiments were

performed under the GPU setting to determine the

runtime for sequence classification. The GPU was

CUDA-enabled, and including CUDA-enabled

libraries. This designed model helped reduce the

training time, leading to less execution time for

sequence classification. Table 1 shows the runtime

taken by CPU with and without GPU.

Table 1 Runtime taken by CPU with and without GPU

No. of Sequences
CPU Time

with GPU (ms)

CPU Time

without GPU

(ms)

200 32.2 43.2

400 33.6 50.5

600 35.0 53.9

800 35.3 64.9

1000 36.0 75.4

1200 36.3 79.6

1400 36.8 81.1

1600 37.1 107

1800 38.2 122

2000 38.9 139

2200 39.3 153

2400 39.8 162

2600 40.2 168

2800 42.5 172

3000 43.4 179

3200 43.8 185

3400 45.3 193

3600 47.1 205

3800 48.4 223

4000 50.8 230

The runtime analysis is shown in Figure

4(a) and Figure 4(b) using different types of graphs.

At present, we have used 4,000 sequences varying

in length from 200 to 4,000. The average accuracy

remains the same irrespective of sequence length.

The only difference is that CPU takes more time to

search the large-sized sequences. Pre-padding was

used to make all sequences of equal length because

the shape of all datasets should be the same for

machine learning.

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

471

Figure 4 (a) Runtime analysis according to no. of sequences

Figure 4 (b) Time analysis using boxplot for CPU and GPU according to Table 1

0

50

100

150

200

250

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

T
im

e

No. of sequences

Runtime Analysis

CPU Time with GPU (ms) CPU Time without GPU (ms)

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

472

Figure 5 Confusion matrix according to the proposed model

When the same number of sequences was

classified, the time taken by CPU with GPU was

less compared to without GPU, as represented by

Figure 4(a). Our model accelerated the performance

of sequence classification with an accuracy of

99.5%. When this model was evaluated using

precision, sensitivity, f1 score and specificity

metrics, then these were also 99.5%. With GPU,

there was a very small change in runtime, but

without GPU, runtime consistently increased as the

number of sequences increased. After

classification, this model was evaluated by the

confusion matrix; the output is shown in Figure 5.

Due to errors in the models, no model

predicted 100% correct results, resulting in

incorrect classification. False positives and

negatives should be minimised. Results obtained by

this designed model yielded 406 true positive and

390 true negative cases, as shown in Figure 5. The

total number of false-positive and false-negative

cases are 4, far fewer than the number of true cases,

which clearly shows that our model was predicting

correctly. If we divide the sum of correct

predictions (406 + 390 = 796) by the total number

of predictions (800), the model is then verified with

an accuracy of 99.5%, as shown in Figure 5.

Table 2 Performance metrics of our proposed GPU based model

Performance Metrics of Our Proposed Model Value

Accuracy 99.5%

Precision (Positive Predictive Value) 99.5%

Sensitivity/Recall (True Positive Rate) 99.5%

Quality Measure/F1 Score 99.5%

Specificity (True Negative Rate) 99.5%

False Positive Rate (FPR) 0.50%

False Negative Rate (FNR) 0.50%

Mathew Correlation (MC) 0.99%

Kappa Value (K) 0.99%

Table 2 shows the different performance

metrics that were evaluated according to our proposed

model. Precision gives a positive predictive value,

whereas recall gives a true positive rate. Our main aim

was to reduce false negatives and false positives, so we

used both recall and precision, yielding a value of

99.5%. The F1 score, which maintains the balance if

there are more actual negatives, was 99.5%. The false-

positive and false-negative rates were 0.5%. The

Mathew correlation was 0.99, which is nearly equal to

1 and clearly shows that classes were predicted well and

there was a perfect positive correlation. Kappa takes the

values from the main diagonal of the confusion matrix

and adjusts these for agreement. Our proposed model

had a Kappa value of 0.99, which shows very good

agreement. Another parameter for evaluating this model

is precision-recall curve as shown in Figure 6.

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

473

Figure 6 Precision-recall curve

Figure 7 ROC

Our model also produced a good Receiver

Operating Characteristic curve for predicting a

positive class if the actual outcome was positive, as

shown in Figure 7. An ROC curve shows a true

positive rate and false-positive rate after the

classification. A line is then plotted by taking the

FPR value on x-axis and the TPR value on y-axis.

The TPR can be determined by the recall metric.

The FPR can be obtained by dividing the number of

false positives by the total number of false positives

and true negatives. The false-positive rate is also

called ‘inverted specificity’. The shape of the curve

shows the desirable balance between false negatives

values and false positives values. The line

represents a model with perfect skill as it travels

from left bottom to left top and then from left top to

right top.

Our forest-based model fit the training data

and was generalisable for new input data. The

effectiveness of the model was measured by a

validation curve that depends on hyperparameters,

as shown in Figure 8. This validation curve was

plotted to determine the effect of a single parameter

on test versus training data. When plotted based on

a hyperparameter that determines how many times

each tree splits and stops, this curve showed that the

model was neither underfitted nor overfitted.

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

474

Figure 8 Validation curve

The best accuracy value was decided by varying the

value of maximum depth from 1 to 10. When this

curve was plotted, we used n_jobs = -1, meaning all

cores of the GPU were used to parallelise

computation when performing cross-validation. In

cross-validation, the number of folds was chosen as

cv = 10. The validation curve was generated by

input X and y without splitting the datasets. In the

case of cross-validation, however, splitting was

performed using a number of folds chosen by us,

guaranteeing that the random splitting of data did

not affect the accuracy score of this model.

Table 3 Comparison of our model with MetaBinG

Number of

Sequences
MetaBinG (ms)

Accuracy of

MetaBinG (%)

Accuracy of

CPU version

(%)

CPU Time with

GPU (ms)

Accuracy of

GPU version

(%)

100 4000 50.61 95 24.5 99.5

200 5000 60.82 95 27.2 95.0

300 6000 67.66 92 32.3 93.0

400 6000 71.56 96 33.6 98.8

500 8000 74.48 98 35.3 98.0

600 8000 77.24 93 36.0 95.7

700 9000 79.21 95 38.7 95.9

800 10000 80.25 98 39.0 99.4

900 12000 80.77 94 40.2 98.8

1000 13000 82.35 97 42.2 97.5

We compared our designed model with

MetaBinG (Jia, Xuan, Liu, & Wei, 2011), which is

the Markov model. Table 3 clearly shows that our

model had an accuracy of 99.5% and outperformed

in terms of accuracy and time taken by CPU and

GPU when the same number of sequences was

considered as an input. Figure 9 shows that if the

number of sequences increases, then time taken by

MetaBinG increases more abruptly than with the

GPU-based model.

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

475

Figure 9 Runtime comparison of MetaBinG and our GPU-based model

Table 4 Comparison of our model with other models

Author Model Accuracy (%)

Gupta, Khare, and Aggarwal (2016) AdaBoost 89

Al-Hyari and Al-Taee (2013) Decision Tree 92

Park and Ryu (2016) Bayesian 83

Jia et al. (2011) Markov 82

Nguyen et al. (2016) CNN 98

Lu, Hong and Wang (2020) ResPPI 97

Zhang and Zong (2015) CS-SVM 94

You et al. (2014) ELM 85

Haque et al. (2018) RF 80

Haque et al. (2018) ANN 85

Gunasekaran et al. (2021) CNN with LSTM 93

Our Proposed GPU based model Random Forest 99.5

Figure 10 shows that when the number of sequences

was 1,000, the maximum accuracy of MetaBinG

was 80.77%, but in our CPU and GPU-based

models, maximum accuracy was 98% and 99.5%,

respectively. There was little variation in terms of

accuracy for both models as number of sequences

increased. Table 4 compares the accuracy of

machine learning models designed by different

researchers; this comparison is visualised in Figure

11.

0

2000

4000

6000

8000

10000

12000

14000

100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 m
il

li
se

c
o

n
d

s

Number of Sequences

Runtime Analysis

MetaBinG(milliseconds) CPU Time with GPU (milliseconds)

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

476

Figure 10 Comparison of accuracy between MetaBinG and our CPU and GPU-based model

Figure 11 Comparison of accuracy between different machine learning models and our GPU-based model

Our GPU-based model ranks highest among

previously developed models. When this model was

compared with others metrics like precision,

accuracy, and F1 scores, it demonstrated the highest

accuracy, F1 score, and precision values, all of

which were the same, as shown in Table 5 and

Figure 12.

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

A
cc

u
ra

cy
 i

n
 p

er
ce

n
ta

g
e

Number of Sequences

Accuracy Analysis

Accuracy of MetaBinG(%) Accuracy of CPU version(%)

Accuracy of GPU version (%)

89 92

83 82

98 97 94

85
80

85

100

0

20

40

60

80

100

120

A
d

a
B

o
o
st

D
ec

is
io

n
 T

re
e

B
a

y
es

ia
n

M
a
r
k

o
v

C
N

N

R
es

P
P

I

C
S

-S
V

M

E
L

M R
F

A
N

N

R
a

n
d

o
m

 F
o
re

stA
cc

u
ra

cy
 i

n
 p

er
ce

n
ta

g
e

Model

Accuracy Analysis

Accuracy(%)

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

477

Table 5 Comparison of our GPU based model with others regarding accuracy and sensitivity

Methods Accuracy (%) Sensitivity (%)

Gaussian Processes 73.9 77.1

Linear Logistic Regression 69.6 74.7

Multilayer Perceptron 68.8 69.9

Neural Net 73.9 79.5

Support Vector Machine 69.2 75.0

Random Forest 80.0 68.8

ANN 85.3 80.0

Proposed Paper (RF) 99.5 99.5

Figure 12 Different metrics comparison with our proposed model

Table 6 Comparison of our model with others for precision, F1 score, and accuracy

Methods Precision F1 Score Accuracy

ResPPI 0.98 0.97 0.97

RNN 0.96 0.96 0.96

LSTM 0.98 0.96 0.96

GRU 0.97 0.96 0.96

DCNN 0.96 0.94 0.94

SVM 0.71 0.72 0.71
Random Forest (Proposed Paper) 0.99 0.99 0.99

0.00 0.50 1.00

ResPPI

RNN

LSTM

GRU

DCNN

SVM

Random Forest (This paper)

Metrics Values

M
et

h
o
d

Different Metrics Comparison

Accuracy F1 Precision

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

478

Figure 13 Comparison of sensitivity versus accuracy between different machine learning models and our GPU-based

model

The comparison of this model with others

models on the basis of accuracy and sensitivity is

shown in Table 6. In addition to having the highest

accuracy, our model also had the highest sensitivity

of 99.5%. This is represented in Figure 13.

6. Conclusion and future scope

 DNA sequences were classified by an

ensemble-based random forest model. DNA

sequences cannot be classified by machine learning

methods directly, as DNA comprises a continuous

sequence of characters without any space in

between; thus, we applied different pre-processing

steps to make DNA sequences compatible with

machine learning methods, which helped in

preparing numeric representation corresponding to

sequence data. This proposed model utilises the full

capabilities of GPUs and is suitable for handling

large sequences as datasets. If the same sequences

are classified by the CPU without the GPU, more

time is required. With the GPU, all compute-

intensive tasks are handled directly by the GPU,

helping accelerate the classification task by

reducing the overall execution time. For smaller-

sized sequences, there is little difference in terms of

execution time, but as sequence size increases, the

GPU-based model reduces execution time by four

times compared to CPU-based methods. The

accuracy, precision, recall, F1 score, and specificity

of the proposed model are all 99.5%. Fast, accurate

alignment can help scientists discover new drugs

quickly and accurately. In the future, this model

could also be used for sequence clustering and text-

based pattern matching. It can furthermore be

employed with AI-based methods.

7. References

Abd–Alhalem, S. M., El-Rabaie, E. S. M.,

Soliman, N., Abdulrahman, S. E. S.,

Ismail, N. A., El-samie, A., & Fathi, E.

(2021). DNA Sequences Classification

with Deep Learning: A Survey. Menoufia

Journal of Electronic Engineering

Research, 30(1), 41-51.DOI:

10.21608/mjeer.2021.146090

Al-Hyari, A. Y., Al-Taee, A. M., & Al-Taee, M.

A. (2013). Clinical decision support

system for diagnosis and management of

chronic renal failure. In 2013 IEEE

Jordan Conference on Applied Electrical

Engineering and Computing

Technologies (AEECT). IEEE.

https://doi.org/10.1109/AEECT.2013.

6716440

Andalon-Garcia, I. R., & Chavoya, A. (2017).

PaMSA: A Parallel Algorithm for the

0 20 40 60 80 100 120

Gaussian Processes

Linear Logistic Regression

Multilayer Perceptron

Neural Net

Support Vector Machine

Random Forest

ANN

Proposed Paper (RF)

Metrics Values

M
et

h
o

d
s

Sensitivity and Accuracy Analysis

Sensitivity (%) Accuracy (%)

https://doi.org/10.1109/AEECT.2013

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

479

Global Alignment of Multiple Protein

Sequences. International Journal of

Advanced Computer Science and

Applications, 8(4). 513-522.

https://doi.org/10.14569/ijacsa.2017.0804

68

Chen, X., Wang, M., & Zhang, H. (2011). The use

of classification trees for

bioinformatics. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge

Discovery, 1(1), 55-63.

https://doi.org/10.1002/widm.14.

Chou, K. C., & Shen, H. B. (2006). Predicting

eukaryotic protein subcellular location by

fusing optimized evidence-theoretic K-

nearest neighbor classifiers. Journal of

Proteome Research, 5(8), 1888-1897.

https://doi.org/10.1021/pr060167c

Di Gangi, M., Lo Bosco, G., & Rizzo, R. (2018).

Deep learning architectures for prediction

of nucleosome positioning from

sequences data. BMC

bioinformatics, 19(14), 127-135.

https://doi.org/10.1186/ s12859-018-

2386-9

Gao, J., Tian, L., Lv, T., Wang, J., Song, B., & Hu,

X. (2019). Protein2vec: Aligning multiple

ppi networks with representation

learning. IEEE/ACM transactions on

computational biology and

bioinformatics, 18(1), 240-249. DOI:

10.1109/TCBB.2019.2937771

Gunasekaran, H., Ramalakshmi, K., Rex Macedo

Arokiaraj, A., Deepa Kanmani, S.,

Venkatesan, C., & Suresh Gnana Dhas, C.

(2021). Analysis of DNA sequence

classification using CNN and hybrid

models. Computational and

Mathematical Methods in

Medicine, 2021. https://doi.org/10.1155/

2021/1835056

Gupta, C. P., Bihari, A, & Tripathi, S. (2019).

Human Protein Sequence Classification

using Machine Learning and Statistical

Classification Techniques. International

Journal of Recent Technology and

Engineering, 8(2), 3591-3599.

10.35940/ijrte.B3224.078219

Gupta, D., Khare, S., & Aggarwal, A. (2016). A

method to predict diagnostic codes for

chronic diseases using machine learning

techniques. In 2016 International

Conference on Computing,

Communication and Automation

(ICCCA). IEEE.

https://doi.org/10.1109/CCAA.2016.7813

730

Haque, M. R., Islam, M. M., Iqbal, H., Reza, M.

S., & Hasan, M. K. (2018). Performance

evaluation of random forests and artificial

neural networks for the classification of

liver disorder. In 2018 international

conference on computer, communication,

chemical, material and electronic

engineering (IC4ME2). IEEE.

https://doi.org/10.1109/IC4ME2.2018.84

65658

Jia, P., Xuan, L., Liu, L., & Wei, C. (2011).

MetaBinG: Using GPUs to accelerate

metagenomic sequence

classification. PloS one, 6(11), e25353.

https://doi.org/10.1371/journal.pone.0025

353

Jiang, H., Ganesan, N., & Yao, Y. D. (2018).

CUDAMPF++: A proactive resource

exhaustion scheme for accelerating

homologous sequence search on CUDA-

enabled GPU. IEEE Transactions on

Parallel and Distributed Systems, 29(10),

2206-2222.

https://doi.org/10.1109/TPDS.2018.28303

93

Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., &

Lu, Z. (2007). MiPred: classification of

real and pseudo microRNA precursors

using random forest prediction model

with combined features. Nucleic acids

research, 35(suppl_2), W339-W344.

https://doi.org/10.1093/nar/gkm368

L’heureux, A., Grolinger, K., Elyamany, H. F., &

Capretz, M. A. (2017). Machine learning

with big data: Challenges and

approaches. IEEE Access, 5, 7776-7797.

https://doi.org/10.1109/ACCESS.2017.

2696365

Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., & Gao,

X. (2019). Deep learning in

bioinformatics: Introduction, application,

and perspective in the big data

era. Methods, 166, 4-21.

https://doi.org/10.1016/

j.ymeth.2019.04.008

Liu, B., Long, R., & Chou, K. C. (2016). iDHS-

EL: identifying DNase I hypersensitive

https://doi.org/10.14569/ijacsa.2017.080468
https://doi.org/10.14569/ijacsa.2017.080468
https://doi.org/10.1002/widm.14
https://doi.org/10.1021/pr060167c
https://doi.org/10.1186/%20s12859-018-2386-9
https://doi.org/10.1186/%20s12859-018-2386-9
https://doi.org/10.1155/%202021/1835056
https://doi.org/10.1155/%202021/1835056
https://doi.org/10.1109/CCAA.2016.7813730
https://doi.org/10.1109/CCAA.2016.7813730
https://doi.org/10.1109/IC4ME2.2018.8465658
https://doi.org/10.1109/IC4ME2.2018.8465658
https://doi.org/10.1371/journal.pone.0025353
https://doi.org/10.1371/journal.pone.0025353
https://doi.org/10.1109/TPDS.2018.2830393
https://doi.org/10.1109/TPDS.2018.2830393
https://doi.org/10.1093/nar/gkm368
https://doi.org/10.1109/ACCESS.2017.%202696365
https://doi.org/10.1109/ACCESS.2017.%202696365
https://doi.org/10.1016/%20j.ymeth.2019.04.008
https://doi.org/10.1016/%20j.ymeth.2019.04.008

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

480

sites by fusing three different modes of

pseudo nucleotide composition into an

ensemble learning

framework. Bioinformatics, 32(16), 2411-

2418.

https://doi.org/10.1093/bioinformatics/bt

w186

Liu, B., Wang, S., Dong, Q., Li, S., & Liu, X.

(2016). Identification of DNA-binding

proteins by combining auto-cross

covariance transformation and ensemble

learning. IEEE transactions on

nanobioscience, 15(4), 328-334.

https://doi.org/10.1109/TNB.2016.25559

51

Liu, B., Yang, F., & Chou, K. C. (2017). 2L-

piRNA: a two-layer ensemble classifier

for identifying piwi-interacting RNAs and

their function. Molecular Therapy-

Nucleic Acids, 7, 267-277.

https://doi.org/10.1016/j.omtn.2017.04.00

8

Liu, Y., Hong, Y., Lin, C. Y., & Hung, C. L.

(2015). Accelerating smith-waterman

alignment for protein database search

using frequency distance filtration

scheme based on cpu-gpu collaborative

system. International journal of

genomics, 2015.

https://doi.org/10.1155/2015/761063

Lopez-del Rio, A., Martin, M., Perera-Lluna, A.,

& Saidi, R. (2020). Effect of sequence

padding on the performance of deep

learning models in archaeal protein

functional prediction. Scientific

reports, 10(1), 1-14.

https://doi.org/10.1038/s41598-020-

71450-8

Lu, S., Hong, Q., Wang, B., & Wang, H. (2020).

Efficient resnet model to predict protein-

protein interactions with gpu

computing. IEEE Access, 8, 127834-

127844.

https://doi.org/10.1109/ACCESS.

2020.3005444

Mahmud, M., Kaiser, M. S., Hussain, A., &

Vassanelli, S. (2018). Applications of

deep learning and reinforcement learning

to biological data. IEEE transactions on

neural networks and learning

systems, 29(6), 2063-2079.

DOI: 10.1109/TNNLS.2018.2790388

Millán Arias, P., Alipour, F., Hill, K. A., & Kari,

L. (2022). DeLUCS: Deep learning for

unsupervised clustering of DNA

sequences. PloS one, 17(1), e0261531.

https://doi.org/10.1371/journal.

pone.0261531

Min, S., Lee, B., & Yoon, S. (2017). Deep learning

in bioinformatics. Briefings in

bioinformatics, 18(5), 851-869.

https://doi.org/10.1093/bib/bbw068

Mirzaei, S., Sidi, T., Keasar, C., & Crivelli, S.

(2019). Purely structural protein scoring

functions using support vector machine

and ensemble learning. IEEE/ACM

transactions on computational biology

and bioinformatics, 16(5), 1515-1523.

https://doi.org/10.1109/TCBB.2016.2602

269

National Center for Biotechnology Information.

(n.d.). Retrieved from

https://www.ncbi.nlm.nih.gov

Naznin, F., Sarker, R., & Essam, D. (2012).

Progressive alignment method using

genetic algorithm for multiple sequence

alignment. IEEE Transactions on

Evolutionary Computation, 16(5), 615-

631.

Nguyen, N. G., Tran, V. A., Phan, D., Lumbanraja,

F. R., Faisal, M. R., Abapihi, B., & Satou,

K. (2016). DNA sequence classification

by convolutional neural network. Journal

Biomedical Science and

Engineering, 9(5), 280-286.

https://doi.org/10.4236/jbise.2016.95021

Park, K. H., Ryu, K. S., & Ryu, K. H. (2016).

Determining minimum feature number of

classification on clear cell renal cell

carcinoma clinical dataset. In 2016

International Conference on Machine

Learning and Cybernetics (ICMLC).

IEEE.

https://doi.org/10.1109/ICMLC.2016.787

3005

Rangwala, H., & Karypis, G. (2005). Profile-based

direct kernels for remote homology

detection and fold

recognition. Bioinformatics, 21(23),

4239-4247.

https://doi.org/10.1093/bioinformatics/bti

687

Rashed, A. E. E. D., Amer, H. M., El-Seddek, M.,

& Moustafa, H. E. D. (2021). Sequence

https://doi.org/10.1093/bioinformatics/btw186
https://doi.org/10.1093/bioinformatics/btw186
https://doi.org/10.1109/TNB.2016.2555951
https://doi.org/10.1109/TNB.2016.2555951
https://doi.org/10.1016/j.omtn.2017.04.008
https://doi.org/10.1016/j.omtn.2017.04.008
https://doi.org/10.1038/s41598-020-71450-8
https://doi.org/10.1038/s41598-020-71450-8
https://doi.org/10.1109/ACCESS.%202020.3005444
https://doi.org/10.1109/ACCESS.%202020.3005444
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1371/journal.%20pone.0261531
https://doi.org/10.1371/journal.%20pone.0261531
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1109/TCBB.2016.2602269
https://doi.org/10.1109/TCBB.2016.2602269
https://www.ncbi.nlm.nih.gov/
https://doi.org/10.4236/jbise.2016.95021
https://doi.org/10.1109/ICMLC.2016.7873005
https://doi.org/10.1109/ICMLC.2016.7873005
https://doi.org/10.1093/bioinformatics/bti687
https://doi.org/10.1093/bioinformatics/bti687

KAUR ET AL

JCST Vol. 12 No. 3 Sep-Dec, 2022, pp. 462-481

481

Alignment Using Machine Learning-

Based Needleman–Wunsch

Algorithm. IEEE Access, 9, 109522-

109535.

https://doi.org/10.1109/ACCESS.2021.31

00408

Ravì, D., Wong, C., Deligianni, F., Berthelot, M.,

Andreu-Perez, J., Lo, B., & Yang, G. Z.

(2016). Deep learning for health

informatics. IEEE journal of biomedical

and health informatics, 21(1), 4-21.

https://doi.org/10.1109/JBHI.2016.26366

65

Sun, J., Palade, V., Wu, X., & Fang, W. (2013).

Multiple sequence alignment with hidden

Markov models learned by random drift

particle swarm optimization. IEEE/ACM

Transactions on Computational Biology

and Bioinformatics, 11(1), 243-257.

https://doi.org/10.1109/TCBB.2013.148

Warris, S., Yalcin, F., Jackson, K. J., & Nap, J. P.

(2015). Flexible, fast and accurate

sequence alignment profiling on GPGPU

with PaSWAS. PloS one, 10(4),

e0122524.

https://doi.org/10.1371/journal.

pone.0122524

Welivita, A., Perera, I., Meedeniya, D.,

Wickramarachchi, A., &

Mallawaarachchi, V. (2018). Managing

complex workflows in bioinformatics: an

interactive toolkit with gpu

acceleration. IEEE Transactions on

NanoBioscience, 17(3), 199-208.

https://doi.org/10.1109/TNB.2018.28371

22

You, Z. H., Zhu, L., Zheng, C. H., Yu, H. J., Deng,

S. P., & Ji, Z. (2014, December).

Prediction of protein-protein interactions

from amino acid sequences using a novel

multi-scale continuous and discontinuous

feature set. In BMC bioinformatics.

BioMed Central.

https://doi.org/10.1186/1471-2105-15-

S15-S9

Zhang, C., Zhang, F., Guo, X., He, B., Zhang, X.,

& Du, X. (2020). imlbench: A machine

learning benchmark suite for CPU-GPU

integrated architectures. IEEE

Transactions on Parallel and Distributed

Systems, 32(7), 1740-1752.

https://doi.org/10.1109/TPDS.2020.30468

70

Zhang, J., & Zong, C. (2015). Deep Neural

Networks in Machine Translation: An

Overview. IEEE Intelligent System, 30(5),

16-25.

https://doi.org/10.1109/MIS.2015.69

Zhu, X., Li, K., Salah, A., Shi, L., & Li, K. (2015).

Parallel implementation of MAFFT on

CUDA-enabled graphics

hardware. IEEE/ACM transactions on

computational biology and

bioinformatics, 12(1), 205-218.

https://doi.org/10.1109/TCBB.2014.2351

801

Zhu, Z., Wang, Z., Li, D., Zhu, Y., & Du, W.

(2020). Geometric structural ensemble

learning for imbalanced problems. IEEE

transactions on cybernetics, 50(4), 1617-

1629. https://doi.org/10.1109/

TCYB.2018.2877663

https://doi.org/10.1109/ACCESS.2021.3100408
https://doi.org/10.1109/ACCESS.2021.3100408
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.1109/TCBB.2013.148
https://doi.org/10.1371/journal.%20pone.0122524
https://doi.org/10.1371/journal.%20pone.0122524
https://doi.org/10.1109/TNB.2018.2837122
https://doi.org/10.1109/TNB.2018.2837122
https://doi.org/10.1186/1471-2105-15-S15-S9
https://doi.org/10.1186/1471-2105-15-S15-S9
https://doi.org/10.1109/TPDS.2020.3046870
https://doi.org/10.1109/TPDS.2020.3046870
https://doi.org/10.1109/MIS.2015.69
https://doi.org/10.1109/

