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__________________________________________________________________________________________________________ 

Abstract 
In bioinformatics, sequence alignment is a useful way of identifying similarities in the DNA sequences to 

identify common evolutionary and structural relationships. Currently, with the number of sequences increasing in 

sequence databases, traditional methods take too much time to align two or more sequences simultaneously, because these 

methods are sequentially-based. Even when sequential algorithms are modified so that alignment can be done parallelly, 

this modification is unable to reduce the time proportionally, as the number of sequences in databases is increasing at an 

exponential rate. This limitation can be overcome by machine learning if sequences are treated as big data, and knowledge 

from such large-scale data can be gained. If machine learning techniques are combined with the capabilities of GPUs, 

processing time is reduced due to the parallel architecture of GPUs. Thus, a GPU-based approach is proposed to accelerate 

multiple sequence alignment, yielding significant accuracy improvement. An efficient model is proposed and 

implemented to predict classes of biological sequences. Many challenges are overcome by applying pre-processing to 

sequence data, which is necessary for machine learning techniques to work. This model uses the embedding method for 

the representation of DNA sequences and combines the capabilities of GPUs with a random forest algorithm. Results 

show that the model yields a high accuracy of 99.5%, with a reduction in time required to align sequences. Compared 

with other CPU-based methods, this GPU-based model takes less computation time. Fast and accurate alignment is vital 

in evolutionary studies, which can help in designing new drugs or modifying existing drugs for new diseases.  

 

Keywords: deep learning; graphical processing unit; machine learning; multiple sequence alignment; random forest. 

________________________________________________________________________________________________ 

 

1.  Introduction 

Sequence alignment is used to identify 

functional, evolutionary, and structural similarities 

in amino acid (proteins) and nucleic acid (DNA and 

RNA) sequences, both important factors in 

understanding organisms. Proteins represent the 

building blocks of living organisms, while DNA 

stores the genetic information. DNA sequences are 

combination of four characters – A, C, G, T and 

comprise variable lengths, ranging from a few 

dozen characters to hundreds of megabytes. Figure 

1 provides DNA sequence example. The sequence 

alignment process compares two or more DNA 

sequences to find similarities between unknown 

sequences and known sequences in a database. 

Many DNA sequences are available in 

biological data centres like the National Centre for 

Biotechnology Information (NCBI). To explore 
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evolutionary similarities, which inform drug design 

and studies of human genetics, cancer, 

epidemiology, and biodiversity, understanding 

sequence alignment and its analysis is prerequisite. 

Such understanding also underlies the molecular 

and structural subareas of biology, helping explain 

both the history, functional and structural roles of 

protein and amino acid sequences. It finds similar 

parts of two or more sequences, which are 

considered homologous if they share a similarity. 

Depending on sequence length, alignment can be 

either local or global. Local sequence alignment 

finds a region of higher similarity, while global 

sequence alignment aligns sequences along their 

entire length to find as many matching characters as 

possible. Alignment is also classified by the number 

of sequences involved. Pairwise alignment aligns 

two sequences to find the best region of similarity 

and multiple sequence alignment (MSA) aligns 

more than two sequences, providing more 

biological information than pairwise alignment.

 

Figure 1 Multiple DNA biological sequences with nucleotide residues A, C, G and T.    

 

1.1 Motivation and requirements  

As the size of sequence data increases, so 

alignment takes more time. Last year alone, the 

GenBank division of the NCBI added 11 million 

new sequences to the existing database, which 

already contained 106 billion nucleotide bases and 

108 million individual sequences. In April 2021, 

GenBank had 832,400,799,511 bases and 

227,123,201 sequences. With new sequences added 

at such a high rate, finding functional, evolutionary 

and structural relationships requires too much 

search time. Computation grows quadratically as 

the number of sequences to align increases. Thus, 

execution speed must be improved so that 

evolutionary relationships can be discovered and 

gene families of new members predicted more 

quickly. The existing CPU-based programming 

approach for dealing with such problems is 

computationally expensive. Furthermore, reducing 

search time in the database requires hardware-based 

acceleration. Dealing with large amounts of data is 

the biggest challenge for traditional CPU-based 

methods. Sequence alignment results should be fast 

and accurate to help scientists analyse protein 

functions, develop drugs, prescribe personalised 

medicine, compare studies, provide gene therapy 

treatment, and develop tools to find similarities 

between new sequences and existing sequences in 

the database. 

The core of this research exists within the 

bioinformatics field, in which computing 

techniques are used to analyse and interpret 

biological data. Primary contributions of this 

research include: 

• If sequences are aligned and classified 

accurately, it is possible to develop more 

efficient drugs. 

• Individuals can receive personalised 

medicine and genetic treatments.  

• Diseases can be classified as pre-existing or 

novel. Pre-existing diseases require 

identifying which drugs are suitable for 

treatment; novel diseases require the 

development of new drugs. 

• Much faster computation is required 

compared to the sequential approach. 

• A better strategy than single-threaded CPU is 

needed. 

• Machine learning analyses huge volumes of 

data and makes data-driven 

recommendations and decisions. 

• Machine learning algorithms learn 

automatically without the need for explicit 

programming, performing complex 

predictions on huge datasets. 

• GPUs are faster than CPUs due to parallel 

architecture and are perfect for deep 

learning. 

• Multiple cores in GPUs split tasks into 

multiple sub-tasks and run them 

simultaneously. 

• GPUs perform better on large tasks versus 

small tasks. 
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• GPUs are CUDA language-enabled, utilising 

the power of machine learning with parallel 

computing. 

• If a GPU fully utilises its multiple cores and 

CUDA-enabled libraries of machine 

learning, the problem of accelerating 

sequence alignment can be solved with more 

accuracy. 

 

1.2. Literature review 

In multiple sequence alignment, 

progressive, computation-intensive methods 

(Naznin, Sarker, & Essam, 2012) are used for large-

sized sequences, but when a single sequence needs 

to be compared against the whole database, 

heuristic-based methods are used. MSA can be 

obtained through several methods, such as 

progressive, dynamic programming, genetic and 

greedy algorithms. Currently, progressive MSA 

methods are the most popular. With these, two 

sequences are initially aligned by pairwise 

alignment, after which the third sequence is aligned 

to the first alignment; this process is repeated to 

align all the sequences. This type of alignment has 

limitations, however, as errors occurring at the 

initial stage are propagated to the final stage, 

decreasing alignment accuracy. 

Heuristic methods (Sun, Palade, Wu, & 

Fang, 2014), compared to dynamic programming 

methods, are used to maximise similarity, but an 

optimal alignment cannot be obtained. When global 

pairwise alignment is combined with the tree-based 

progressive method, it provides a basis for Clustal 

Omega, ProbCons, and T-Coffee methods. These 

methods, when combined with iterative strategy, 

result in new methods like Muscle and MAFFT 

(Zhu, Li, Salah, Shi, & Li, 2015). These limitations 

are overcome by combining the heuristics method, 

dynamic programming, and parallel programming.  

Another approach to achieving better 

alignment in less time involves combining the CPU 

with a graphical processing unit (GPU) for 

searching protein sequences, using multiple cores to 

parallelise the alignment process according to the 

architecture of the GPU. This paper optimised the 

basic local alignment search tool, in which the time-

consuming searching phase is mapped to many 

threads according to the architecture of the GPU. 

Several operations related to bioinformatics, image 

processing, modelling, scientific computing, game 

development, robot motion planning, 

computational geometry, collision detection, and 

many numerical applications are performed by 

GPUs nowadays.  

The GPU-based Smith-Waterman (SW) 

algorithm is used to search sequences from 

biological databases. The SW alignment algorithm 

(Liu, Hong, Lin, & Hung, 2015) is modified by 

inter-task parallelisation, which exploits the 

architecture of GPUs via the CUDA programming 

language supported by the NVIDIA Corporation. 

This corporation manufactures different high-end 

GPUs. The CPU-GPU-based parallelisation process 

aligns two sequences at a reduced time and gives 

better results than the CPU-based SW algorithm, 

but due to the limited internal memory of GPUs, 

memory bandwidth is a major bottleneck; this issue 

is overcome when extended for multiple sequence 

alignment by computing batches of alignment in 

parallel. The CPU-based sequential alignment 

algorithm is using dynamic programming approach 

and is reformulated in such a way that the alignment 

matrix is calculated in parallel by a GPU to speed 

up the task of alignment. Hence, the alignment 

score and traceback step of the SW algorithm are 

parallelised.     

The dynamic programming-based 

Needleman-Wunsch algorithm is further 

reformulated (Warris, Yalcin, Jackson, & Nap, 

2015) by using a GPU as a hardware accelerator. If 

alignment is performed by the MAFFT tool and the 

architecture is sequential, runtime is long. The 

MAFFT algorithm is accelerated for organising the 

sequence data via CUDA-enabled GPUs. It uses 

modified run-length encoding to allocate memory 

and the shared memory of the GPU to speed up 

alignment. This CUDA-based implementation 

improves execution time compared to CPU-based 

implementation. A parallel MSA algorithm 

(Andalon-Garcia, & Chavoya, 2017) that does not 

use the progressive method was also developed for 

global alignment. This algorithm generates 

alignment by finding the longest common 

subsequence.       

For searching MSA, several processes run 

independently to reduce computation time but still 

have less accuracy. Computing exact MSA is time-

consuming due to increasing sequence data, which 

presents a major challenge nowadays. If this 

sequence data were treated as big data, machine 

learning could help in the classification and 

alignment of DNA/protein sequences. Researchers 

design a necessary drug after identifying the 

function of the protein. Similarly, metric learning 
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from biological data can be done by machine 

learning (Min, Lee, & Yoon, 2017), in which a 

framework is designed to perform alignment in 

feature vector space and further perform 

classification.  

The main challenge facing computational 

biology is the transformation of heterogeneous data. 

Once such data is transformed, biological 

knowledge can help in constructing a model and 

obtaining a prediction. Machine learning methods 

are applied to extract knowledge from biological 

data. To provide a comprehensive perspective, the 

bioinformatics domain incorporates deep learning, 

which produces good results by selecting 

appropriate architecture. When deep learning is 

applied to big sequence data, alongside the help of 

parallel and distributed computing, it can be used in 

processing images and text.  

Deep learning automatically generates 

high-level features with the help of machine 

learning (Ravi et al., 2017) and is useful for 

bioinformatics, medical imaging, and public health. 

In bioinformatics, neural networks are capable of 

memorising sequential data to analyse the stream of 

data, although previous computations are needed to 

obtain such output as the analysis of DNA 

sequences. When combined with GPUs, which are 

designed for parallel processing, deep neural 

networks can scale large datasets and reduce 

complexity. 

When machine learning is applied to big 

data (L’heureux, Grolinger, Elyamany, & Capretz, 

2017) then performance of the algorithm depends 

upon the machine learning architecture chosen to 

store large-sized data. Thus, it is necessary to 

rethink typical architecture, because with increasing 

data size, algorithms can sometimes become 

unstable and lead to the curse of dimensionality. 

This huge challenge of dealing with complex 

biological data can be overcome by artificial neural 

networks and reinforcement learning (Mahmud, 

Kaiser, Hussain, & Vassanelli, 2018). Such 

machine learning techniques can find complex 

patterns in biological data. A novel method (Jiang, 

Ganesan, & Yao, 2018) for accelerating the hidden 

Markov model was proposed, utilising GPU 

hardware resources and improving performance 

and scalability regardless of sequence datasets and 

query models. Newly introduced GPUs have more 

computing power in terms of hardware resources 

and advanced features capable of handling the 

increasing size of data for industry and the medical 

field. CUDA-enabled NVIDIA GPUs provide a 

development environment to the user which, if the 

user uses it appropriately, helps in parallelising the 

task related to biological data. 

In bioinformatics, to manage complex 

workflow, a GPU-accelerated application for 

enhancing performance was designed (Welivita, 

Perera, Meedeniya, Wickramarachchi, & 

Mallawaarachchi, 2018) on an Amazon cloud 

platform. This type of cloud-based computing 

provides three levels of parallelism that decrease 

execution time. It has been noted that while deep 

learning can handle big data and is used in 

bioinformatics (Li et al., 2019), it faces problems 

when handling sequence data that lead to overfitting 

and interpretability. Performance is further 

enhanced by including ensemble learning and SVM 

(Mirzaei, Sidi, Keasar, & Crivelli, 2019; Zhu, 

Wang, Li, Zhu, & Du, 2020), which also deal with 

imbalanced datasets. 

Recently, the open-source, machine 

learning-based benchmark iMLBench (Zhang et al., 

2020) was developed by integrating CPU and GPU 

architecture with shared unified memory, in which 

CPUs and GPUs run together and eliminate 

unnecessary overhead by machine learning tasks. A 

widely used Needleman-Wunch algorithm is 

optimised (Rashed, Amer, El-Seddek, & Moustafa, 

2021) by using a multilayer perceptron for aligning 

DNA/RNA sequences. This study used a divide-

and-conquer strategy to parallelise computation 

steps for aligning long sequences.  

Deep learning models are increasingly 

used to analyse sequences. For example, CNN with 

LSTM and bidirectional LSTM are used 

(Gunasekaran et al., 2021) to improve accuracy. 

Since a huge amount of sequence data is available 

today, deep learning architecture, when used with 

ANN by setting hyperparameters, proves helpful in 

sequence classification (Alhalem et. al., 2020). 

Sequence classification can be done by combining 

machine learning with statistical classification 

techniques like CRT, QUEST, CHAID and C5.0 

(Gupta, Bihari, & Tripathi, 2019), yielding better 

results for imbalanced datasets. 

When identifying functionally similar 

proteins and evolutionary pathways, protein-protein 

interactions help in alignment. A representation 

learning method combining topological features 

and biological characteristics is used for better 

alignment results (Gao et al., 2019). The structural 

features of sequences are transformed into low-
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dimensional vectors that help determine similarities 

for multiple sequences. 

DNA sequences can be clustered using 

unsupervised deep learning, in which sequence 

alignment is unnecessary. Frequency chaos game 

representation is used (Millán Arias, Alipour, Hill, 

& Kari, 2022) to self-learn data patterns, generating 

mimics by optimising multiple neural networks. 

The accuracy varies from 77% to 100% by majority 

voting scheme in finding the final assignment of a 

cluster. This suggested method outperforms K-

means and Gaussian mixture clustering, which 

completely ignores sequence homology, length of 

sequences, and taxonomic identifiers.  

Previous literature suggests that sequence 

alignment should be accurate when dealing with 

large sequence data. When large-sized protein 

families are searched to find similarities, 

acceleration of this task is necessary. Machine 

learning helps in alignment and analysis tasks, but 

machine learning techniques cannot be applied 

directly to biological sequences, otherwise the 

dimensionality of data would be increased and 

acceleration of the classification task would not be 

possible. To reduce execution time, machine 

learning with hardware accelerators like GPUs, 

along with some specific encoding method at the 

time of pre-processing, is required. 

 

2.  Objectives 

 To overcome the above challenges, this 

paper has the following objectives:  

• Large DNA sequences are collected and pre-

processing steps applied to transform 

character-type data to vector form and make 

it suitable for machine learning methods. 

This transformation is the biggest challenge 

to align sequences, which otherwise 

increases the dimensionality of the data 

which in turn increases the time and memory 

space taken by the alignment process. 

• Natural language processing maintains the 

positional information of each sequence, and 

a suitable classifier is applied to predict the 

similarity of DNA sequences with existing 

sequences. 

• Machine learning techniques are integrated 

into the bioinformatics domain. 

• Parallelisation is applied in such a way that 

all cores of the GPU are fully utilised. 

• Given all these points, this machine learning 

model yields high accuracy with valid output 

and accelerates the performance of the 

sequence alignment process, taking less CPU 

time. 

 

3.  Methodology 

Machine learning handles automatic 

learning from numeric data without the need for 

explicit programming and is thus widely used in 

generating valuable information from data. The 

input to our model comprises protein sequences, 

also called features. Machine learning techniques 

identify suitable features that allow the model to 

differentiate one type of data from another type to 

solve the classification problem. A group of 

features for one protein sequence is called a feature 

vector and n-dimensional space is called feature 

space. 

Machine learning can process large data 

by considering DNA sequences as big data, yet 

machine learning methods face challenges due to 

the mismatch in the type of data accepted by 

machine learning versus the DNA data available in 

biological databases, as it is difficult to integrate 

different types of datasets. Machine learning 

techniques cannot be applied directly to DNA 

sequences, and machine learning models cannot be 

trained on the variety of data and are thus unable to 

predict the output. Machine learning techniques 

extract features, but DNA sequences do not have 

clear features that generate high-dimensional data. 

High dimensionality is also overcome 

(Gunasekaran et al., 2021) when CNN is combined 

with LSTM and bi-directional LSTM. 

There is a need to increase efficiency when 

large DNA sequences are processed and ensure that 

appropriate similarity measures are considered 

when measuring similarity among sequences. As 

DNA sequences comprise variable lengths, it is 

prerequisite to convert the sequences into vectors 

by preserving their sequence order and key patterns. 

Figure 2 represents the methodology 

followed to design this model. Different pre-

processing steps are performed by the CPU. Pre-

processing helps prepare and transform DNA 

sequence data into numeric data so that the machine 

learning model can be trained and can predict the 

output accurately. To accelerate sequence 

classification performance, the machine learning 

model is trained and tested using a GPU. The GPU 

has thousands of cores that provide a parallel 

computing platform, cores that are dedicated to a 

single task. Training the deep learning model 
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requires hardware resources, and the GPU can 

handle many computations on a huge amount of 

data simultaneously. The sequential task is 

performed by the CPU while the parallel task is 

performed by the GPU. Pre-processing is a 

sequential task required for data preparation and 

transformation. Our model uses natural language 

processing (NLP) for DNA sequence coding, 

sequence padding to make the size of each sequence 

equal, and an ensemble-based random forest 

classifier to avoid overfitting and underfitting. 

 

3.1 Natural language processing 

NLP techniques are well suited for text-

based features, which can be converted into a 

numeric format. Sequence-to-vector encoding uses 

a natural language processing approach in which 

amino acids are represented as words and protein 

sequences as sentences. Our model uses word 

embedding and can transform individual fixed-

sized words into real-valued vectors. The NLP task 

can be performed with deep learning through word 

embedding, which helps in solving a classification 

problem. The text should be prepared in such a way 

that each word is one-hot encoded. Keras supports 

embedding layers for text data and has a one_hot 

function for integer encoding. Since sequences are 

of variable length, the requirement for Keras is that 

all vectorised input comprises the same length; thus, 

Keras has another function named pad_sequence 

for meeting this requirement. After encoding, these 

fixed-length numeric values are used as input for 

classification. For classification, an ensemble 

learning-based random forest is used to predict the 

exact class as an output.

 

 
Figure 2 Methodology for designing a GPU-based machine learning model 

 

3.2 DNA sequence coding 

DNA sequences are combination of four 

characters – A, C, G and T with no spaces in 

between and cannot be considered text data or 

numeric data. However, to develop a suitable 

model, machine learning techniques work on 

numeric data in the form of a matrix; the sequence 

data thus requires pre-processing to make it suitable 
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for the training model. There are three ways to 

encode DNA sequences: sequential, one-hot, and k-

mer encoding. The designed model accepts DNA 

sequences as input, but sequences should be 

encoded as numeric values before the classification 

process used by the machine learning algorithm. 

These numeric values are represented by 2-

dimensional matrices. When DNA sequences are 

transformed into matrix form and fed as input to the 

designed model, the model then classifies the DNA 

sequences. 

This model uses k-mer encoding and one-

hot encoding. At first, k-mer encoding is applied to 

divide large-sized sequences into k-length 

overlapping segments. If the length represented by 

k is 5, then the biological sequence 

‘AGCTGCATGTC’ is decomposed into seven k-

mers: ‘AGCTG’, ‘GCTGC’, ‘CTGCA’, ‘TGCAT’, 

‘GCATG’, ‘CATGT’, and ‘ATGTC’. In the second 

step, one-hot encoding characters [A, G, T, C] are 

coded as vectors [0,0,0,1], [0,0,1,0], [0,1,0,0] and 

[1,0,0,0]. These are most commonly used in deep 

learning because of its consistent performance in 

different datasets. 

 

3.3 Sequence padding 

The deep learning model works on the 

same shape input, but DNA sequences comprise 

different lengths. To make each sequence of equal 

length, a zero-padding technique (Lopez-del Rio, 

Martin, Perera-Lluna, & Saidi, 2020) is used, in 

which zeroes are appended at the end of the 

sequence so that all sequences become equal in 

length, helping enhance the performance of the 

model. This model uses pre-padding (shown in 

Figure 3), adding zeroes at the start of the sequence 

after all sequences are encoded. This process is part 

of the pre-processing phase before training the 

model.

 

Figure 3 Process of pre-padding to make all sequences of equal length 

 

3.4 Sequence classification using machine learning  

 When constructing a computation model, 

feature extraction is very important for predicting 

the classification for DNA sequence analysis. DNA 

sequence analysis problems can be solved by 

classification. If there are n DNA sequences (D1, 

D2, D3 …. Dn) that belong to m categories, then the 

purpose of designing a classifier is to predict the 

unseen sample’s label, a prediction based on 

labelled samples upon which this classifier is 

trained. There are many classifiers for predicting 

the output, such as support vector machine 

(Rangwala, & Karypis, 2005), random forest (Liu, 

Long, & Chou, 2016), and k-nearest neighbors 

(Chou, & Shen, 2006). Among these algorithms, 

random forest solves tasks related to 

bioinformatics. Random forest is a tree-structured 

classifier that uses random feature selection (Jiang 

et al., 2007) and overcomes the overfitting problem 

(Chen, Wang, & Zhang, 2011). Further studies 

show (Liu, Wang, Dong, Li, & Liu, 2016; Liu, 

Yang, & Chou, 2017) that if an ensemble predictor 

is used for classification along with random forest, 

better performance can be achieved, because this 

type of predictor uses a voting strategy by 

combining an array of the individual predictors. 

In mining tasks, machine learning helps 

classify DNA sequences. The classification model 

learns from training samples and then predicts the 

class of unknown DNA sequences. DNA sequences 

are a special type of data with non-numeric 

attributes, thus creating a problem for data mining 

tasks. Deep learning solves big data problems and 

helps enhance computational performance. It is 

furthermore capable of extracting features from 

input. A convolutional deep learning model with an 

LSTM layer was designed (Di Gangi, Lo Bosco, & 

Rizzo, 2018), in which features are extracted from 

sequences and LSTM finds the features of the 

previous layer of sequential data with 50 hidden 

layers. LSTM helps identify long-term relationships 

between sequential data (Gunasekaran et al., 2021). 

Machine learning techniques transform 

given input into desired output. For the 
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classification task, input is mapped to output, which 

should be discrete. The classifier can be trained 

using unsupervised, supervised, or semi-supervised 

learning. In unsupervised learning, there is input 

data but no output variables. Examples are the 

Apriori algorithm for association rule learning and 

k-means for clustering.  

 In supervised learning, input and 

corresponding output variables map input to output. 

Examples are support vector machines, linear 

regression and random forest. Semi-supervised 

machine learning combines supervised and 

unsupervised learning, in which some data out of the 

large volume of input data is labelled and the rest of 

the data is unlabelled. Our model uses supervised 

machine learning, in which random forest uses many 

decision trees and employs the voting technique for 

more accuracy. Ensemble methods maintain 

accuracy because many tree-based algorithms are 

combined rather than a single tree-based algorithm 

being used. This helps reduce bias and variance 

factors, which can lead to a difference between actual 

and predicted values. These two factors can also lead 

to the underfitting or overfitting of the model. 

Ensemble methods are classified into three types: 

sequential, parallel and stacking. In sequential 

ensemble learning, base learners are generated 

sequentially, and many machine learning algorithms 

are combined to convert weak learners to strong 

learners, decreasing bias and variance (e.g., 

stochastic gradient boosting and Adaboost). In 

parallel ensemble learning, base learners are 

generated parallelly, improving the accuracy of the 

classification and reducing bias and variance. In 

stacking, multiple models are combined by splitting 

training datasets into two disjoint datasets that train 

and test several base learners. Predictions are then 

used to train another higher-level learner, after which 

blending yields a weighted average for the final result 

(e.g., voting classifier). 

 

3.5 Random Forest classifier 

 The random forest (RF) classifier produces 

accurate results without overfitting problems and 

also works for missing values. Datasets are split 

randomly, random samples are selected, and decision 

trees that predict results are generated for each 

sample. The random forest classifier increases the 

accuracy of this model. Random forest is used for 

classification problems; a voting mechanism is 

employed for each predicted result, and the most 

voted class is predicted as the final result. When 

random forest is employed for regression problems, 

it finds the average of all predicted outputs to predict 

the final result. The random forest classifier uses a 

decision tree algorithm, in which features are 

selected randomly whenever nodes are split during 

random forest construction. In biological sequences, 

there is randomness in character sequences and any 

of the characters can appear multiple times at any 

position or time. This uncertainty and the way the 

random forest classifier works make it suitable for 

the type of datasets we have used during 

experimentation.   

 

4.  Experimental analysis 

 This model was implemented in the Google 

Colab environment with Python 3.7. The RAPIDS 

compatible package was installed with Miniconda 3. 

RAPIDS has open-source libraries designed 

especially for GPUs. This software uses CUDA 

primitives through a Python interface for low-level 

compute optimisation. Colab assigns different types 

of GPUs, but only P4, T4, P100, and V100 GPUs are 

compatible with RAPIDS. It is necessary to 

configure the appropriate environment with CUDA 

toolkit 11.2, RAPIDS 0.21, and cuML version 

21.06.02. If an incompatible GPU is assigned at 

runtime (e.g., Tesla K80), the runtime must be set to 

default to wait for the right type of GPU allocation. 

Tesla T4, chosen as the GPU for experiments, has 

2,560 cores and 16 GB of GPU memory with driver 

version 460.32.03. 

 

4.1 Training and test data partitioning 

 DNA sequences were obtained from the 

NCBI. These datasets were divided into training and 

test data using a cross-validation parameter with a 

value of 10. Thus, complete datasets were divided 

into 10 groups and random forest automatically 

select test versus training data individually. One 

group was unannotated and nine groups were 

annotated. The output of the model was predicted by 

an unannotated group. We were able to use 70%, 

60%, or any percentage of datasets for training the 

model. We used a random forest classifier to choose 

datasets randomly. We tested both approaches (i.e., 

dividing the datasets into training and testing 

datasets, as well as not splitting datasets by using a 

cross-validation of 10) and found that random 

splitting of the data did not affect the accuracy score 

of this model. 

 

4.2 Evaluation metrics 
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The model was evaluated by a confusion 

matrix according to the actual and predicted class 

based on correctly identified/rejected and incorrectly 

identified/rejected as a member of class. There are 

four terms for this:  

1. True Positive (TP): When both classes 

are true. 

2. True Negative (TN): When both classes 

are false. 

3. False Positive (FP): When the actual 

class is false and the predicted class is true. 

4. False Negative (FN): When the actual 

class is true and the predicted class is false. 

Based on these cases, this model was evaluated using 

the following metrics: 

 

Accuracy =
TP + TN

TP + TN + FP + FN
  

 

Precision =
TP

TP + FP
  

 

Recall (TPR)  =
TP

TP + FN
  

 

F1 Score =
2 ∗  Precision ∗  Recall

Precision +  Recall
 

 

Specificity (TNR) =
TN

TN +  FP
 

 

FPR=
FP

FP +  TN
 

 

5.  Results analysis 

There are three different settings in Google 

Colab: CPU, GPU and TPU. All experiments were 

performed under the GPU setting to determine the 

runtime for sequence classification. The GPU was 

CUDA-enabled, and including CUDA-enabled 

libraries. This designed model helped reduce the 

training time, leading to less execution time for 

sequence classification. Table 1 shows the runtime 

taken by CPU with and without GPU.  

Table 1 Runtime taken by CPU with and without GPU 

No. of Sequences 
CPU Time 

with GPU (ms) 

CPU Time 

without GPU 

(ms) 

200 32.2 43.2 

400 33.6 50.5 

600 35.0 53.9 

800 35.3 64.9 

1000 36.0 75.4 

1200 36.3 79.6 

1400 36.8 81.1 

1600 37.1 107 

1800 38.2 122 

2000 38.9 139 

2200 39.3 153 

2400 39.8 162 

2600 40.2 168 

2800 42.5 172 

3000 43.4 179 

3200 43.8 185 

3400 45.3 193 

3600 47.1 205 

3800 48.4 223 

4000 50.8 230 

 

The runtime analysis is shown in Figure 

4(a) and Figure 4(b) using different types of graphs. 

At present, we have used 4,000 sequences varying 

in length from 200 to 4,000. The average accuracy 

remains the same irrespective of sequence length. 

The only difference is that CPU takes more time to 

search the large-sized sequences. Pre-padding was 

used to make all sequences of equal length because 

the shape of all datasets should be the same for 

machine learning.
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Figure 4 (a) Runtime analysis according to no. of sequences 

Figure 4 (b) Time analysis using boxplot for CPU and GPU according to Table 1 
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Figure 5 Confusion matrix according to the proposed model 

 

When the same number of sequences was 

classified, the time taken by CPU with GPU was 

less compared to without GPU, as represented by 

Figure 4(a). Our model accelerated the performance 

of sequence classification with an accuracy of 

99.5%. When this model was evaluated using 

precision, sensitivity, f1 score and specificity 

metrics, then these were also 99.5%. With GPU, 

there was a very small change in runtime, but 

without GPU, runtime consistently increased as the 

number of sequences increased. After 

classification, this model was evaluated by the 

confusion matrix; the output is shown in Figure 5. 

Due to errors in the models, no model 

predicted 100% correct results, resulting in 

incorrect classification. False positives and 

negatives should be minimised. Results obtained by 

this designed model yielded 406 true positive and 

390 true negative cases, as shown in Figure 5. The 

total number of false-positive and false-negative 

cases are 4, far fewer than the number of true cases, 

which clearly shows that our model was predicting 

correctly. If we divide the sum of correct 

predictions (406 + 390 = 796) by the total number 

of predictions (800), the model is then verified with 

an accuracy of 99.5%, as shown in Figure 5.

 

Table 2 Performance metrics of our proposed GPU based model 

Performance Metrics of Our Proposed Model Value 

Accuracy 99.5% 

Precision (Positive Predictive Value) 99.5% 

Sensitivity/Recall (True Positive Rate) 99.5% 

Quality Measure/F1 Score 99.5% 

Specificity (True Negative Rate) 99.5% 

False Positive Rate (FPR) 0.50% 

False Negative Rate (FNR) 0.50% 

Mathew Correlation (MC) 0.99% 

Kappa Value (K) 0.99% 

 

Table 2 shows the different performance 

metrics that were evaluated according to our proposed 

model. Precision gives a positive predictive value, 

whereas recall gives a true positive rate. Our main aim 

was to reduce false negatives and false positives, so we 

used both recall and precision, yielding a value of 

99.5%. The F1 score, which maintains the balance if 

there are more actual negatives, was 99.5%. The false-

positive and false-negative rates were 0.5%. The 

Mathew correlation was 0.99, which is nearly equal to 

1 and clearly shows that classes were predicted well and 

there was a perfect positive correlation. Kappa takes the 

values from the main diagonal of the confusion matrix 

and adjusts these for agreement. Our proposed model 

had a Kappa value of 0.99, which shows very good 

agreement. Another parameter for evaluating this model 

is precision-recall curve as shown in Figure 6.
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Figure 6 Precision-recall curve 

 

 

Figure 7 ROC 

 

Our model also produced a good Receiver 

Operating Characteristic curve for predicting a 

positive class if the actual outcome was positive, as 

shown in Figure 7. An ROC curve shows a true 

positive rate and false-positive rate after the 

classification. A line is then plotted by taking the 

FPR value on x-axis and the TPR value on y-axis. 

The TPR can be determined by the recall metric. 

The FPR can be obtained by dividing the number of 

false positives by the total number of false positives 

and true negatives. The false-positive rate is also 

called ‘inverted specificity’. The shape of the curve 

shows the desirable balance between false negatives 

values and false positives values. The line 

represents a model with perfect skill as it travels 

from left bottom to left top and then from left top to 

right top. 

Our forest-based model fit the training data 

and was generalisable for new input data. The 

effectiveness of the model was measured by a 

validation curve that depends on hyperparameters, 

as shown in Figure 8. This validation curve was 

plotted to determine the effect of a single parameter 

on test versus training data. When plotted based on 

a hyperparameter that determines how many times 

each tree splits and stops, this curve showed that the 

model was neither underfitted nor overfitted. 
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Figure 8 Validation curve 

 

The best accuracy value was decided by varying the 

value of maximum depth from 1 to 10. When this 

curve was plotted, we used n_jobs = -1, meaning all 

cores of the GPU were used to parallelise 

computation when performing cross-validation. In 

cross-validation, the number of folds was chosen as 

cv = 10. The validation curve was generated by 

input X and y without splitting the datasets. In the 

case of cross-validation, however, splitting was 

performed using a number of folds chosen by us, 

guaranteeing that the random splitting of data did 

not affect the accuracy score of this model.

   

Table 3 Comparison of our model with MetaBinG 

Number of 

Sequences 
MetaBinG (ms) 

Accuracy of 

MetaBinG (%) 

Accuracy of 

CPU version 

(%) 

CPU Time with 

GPU (ms) 

Accuracy of 

GPU version 

(%) 

100 4000 50.61 95 24.5 99.5 

200 5000 60.82 95 27.2 95.0 

300 6000 67.66 92 32.3 93.0 

400 6000 71.56 96 33.6 98.8 

500 8000 74.48 98 35.3 98.0 

600 8000 77.24 93 36.0 95.7 

700 9000 79.21 95 38.7 95.9 

800 10000 80.25 98 39.0 99.4 

900 12000 80.77 94 40.2 98.8 

1000 13000 82.35 97 42.2 97.5 

 

We compared our designed model with 

MetaBinG (Jia, Xuan, Liu, & Wei, 2011), which is 

the Markov model. Table 3 clearly shows that our 

model had an accuracy of 99.5% and outperformed 

in terms of accuracy and time taken by CPU and 

GPU when the same number of sequences was 

considered as an input. Figure 9 shows that if the 

number of sequences increases, then time taken by 

MetaBinG increases more abruptly than with the 

GPU-based model.
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Figure 9 Runtime comparison of MetaBinG and our GPU-based model 

 

Table 4 Comparison of our model with other models 

Author Model Accuracy (%) 

Gupta, Khare, and Aggarwal (2016) AdaBoost 89 

Al-Hyari and Al-Taee (2013) Decision Tree 92 

Park and Ryu (2016) Bayesian 83 

Jia et al. (2011) Markov 82 

Nguyen et al. (2016) CNN 98 

Lu, Hong and Wang (2020) ResPPI 97 

Zhang and Zong (2015) CS-SVM 94 

You et al. (2014) ELM 85 

Haque et al. (2018) RF 80 

Haque et al. (2018) ANN 85 

Gunasekaran et al. (2021)  CNN with LSTM 93 

Our Proposed GPU based model Random Forest 99.5 

 

 

Figure 10 shows that when the number of sequences 

was 1,000, the maximum accuracy of MetaBinG 

was 80.77%, but in our CPU and GPU-based 

models, maximum accuracy was 98% and 99.5%, 

respectively. There was little variation in terms of 

accuracy for both models as number of sequences 

increased. Table 4 compares the accuracy of 

machine learning models designed by different 

researchers; this comparison is visualised in Figure 

11.
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Figure 10 Comparison of accuracy between MetaBinG and our CPU and GPU-based model 

 

Figure 11 Comparison of accuracy between different machine learning models and our GPU-based model 

 

Our GPU-based model ranks highest among 

previously developed models. When this model was 

compared with others metrics like precision, 

accuracy, and F1 scores, it demonstrated the highest 

accuracy, F1 score, and precision values, all of 

which were the same, as shown in Table 5 and 

Figure 12.
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Table 5 Comparison of our GPU based model with others regarding accuracy and sensitivity 

Methods Accuracy (%) Sensitivity (%) 

Gaussian Processes 73.9 77.1 

Linear Logistic Regression 69.6 74.7 

Multilayer Perceptron 68.8 69.9 

Neural Net 73.9 79.5 

Support Vector Machine 69.2 75.0 

Random Forest 80.0 68.8 

ANN 85.3 80.0 

Proposed Paper (RF) 99.5 99.5 

 

Figure 12 Different metrics comparison with our proposed model 

 

Table 6 Comparison of our model with others for precision, F1 score, and accuracy 

Methods Precision F1 Score Accuracy 

ResPPI 0.98 0.97 0.97 

RNN 0.96 0.96 0.96 

LSTM 0.98 0.96 0.96 

GRU 0.97 0.96 0.96 

DCNN 0.96 0.94 0.94 

SVM 0.71 0.72 0.71 
Random Forest (Proposed Paper) 0.99 0.99 0.99 
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Figure 13 Comparison of sensitivity versus accuracy between different machine learning models and our GPU-based 

model 

 

The comparison of this model with others 

models on the basis of accuracy and sensitivity is 

shown in Table 6. In addition to having the highest 

accuracy, our model also had the highest sensitivity 

of 99.5%. This is represented in Figure 13. 
 

6.  Conclusion and future scope 

 DNA sequences were classified by an 

ensemble-based random forest model. DNA 

sequences cannot be classified by machine learning 

methods directly, as DNA comprises a continuous 

sequence of characters without any space in 

between; thus, we applied different pre-processing 

steps to make DNA sequences compatible with 

machine learning methods, which helped in 

preparing numeric representation corresponding to 

sequence data. This proposed model utilises the full 

capabilities of GPUs and is suitable for handling 

large sequences as datasets. If the same sequences 

are classified by the CPU without the GPU, more 

time is required. With the GPU, all compute-

intensive tasks are handled directly by the GPU, 

helping accelerate the classification task by 

reducing the overall execution time. For smaller-

sized sequences, there is little difference in terms of 

execution time, but as sequence size increases, the 

GPU-based model reduces execution time by four 

times compared to CPU-based methods. The 

accuracy, precision, recall, F1 score, and specificity 

of the proposed model are all 99.5%. Fast, accurate 

alignment can help scientists discover new drugs 

quickly and accurately. In the future, this model 

could also be used for sequence clustering and text-

based pattern matching. It can furthermore be 

employed with AI-based methods. 
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