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Abstract  

The increasing prevalence of chronic wounds, associated with aging, obesity, and diabetes, is compounded by 
bacterial resistance and adverse effects associated with commercial wound care products. Therefore, treatment modalities 
to accelerate the healing process are constantly being sought. This study aimed to investigate the phytochemical 
composition, antioxidant, and wound healing potential of the aqueous extract derived from the stems and leaves of 
Polygonum minus. The extract was subjected to phytochemical evaluation to assess the diversity of secondary metabolites. 
The total phenolic content (TPC) and total flavonoid content (TFC) were measured using the Folin-Ciocalteu colorimetric 
and aluminium chloride methods, respectively. The antioxidant activity was determined using the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) free radical scavenging and ferric-reducing antioxidant power (FRAP) assays. The wound healing 
effects were evaluated using proliferation and migration assays on human epidermal keratinocyte (HaCaT) cells. The 
phytochemical evaluation of the aqueous extract revealed the presence of flavonoids, terpenoids, alkaloids, saponins, 
tannins, steroids, and cardiac glycosides. Furthermore, the extract exhibited high TPC (137.74 ± 0.75 µg/mL GAE) and 
TFC (177.08 ± 3.16 µg/mL QE) values, as well as radical scavenging activity at 79.50% in the DPPH assay and a FRAP 
value of 1485.67 ± 0.05 µM/g Fe2+. At the lowest concentration of 7.81 μg/mL, the extract significantly stimulated cell 
proliferation and migration within 24 hours of treatment. The stimulation of cell migration was comparable with that of 
allantoin, which was used as a positive control. This study indicated that the P. minus aqueous extract contains a high 
concentration of phenolic compounds, which could contribute significantly to its antioxidant activity and promote the 
proliferation and migration of keratinocytes. The findings suggest that the extract may merit further investigation for 
potential applications in topical therapy related to wound healing.  
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1.  Introduction 
Cutaneous wound healing starts immediately 

after an injury to preserve tissue integrity and 
provide a protective barrier against potential 
external stimuli or infections. This process requires 
the well-orchestrated integration of complex 
biological and molecular activities of cell 
migration, cell proliferation and deposition of 
extracellular matrixes (Wang et al., 2023). The 
process of wound healing involves several 
overlapping stages which include hemostasis, 
inflammation, proliferation, and remodelling 
(Criollo-Mendoza et al., 2023). Keratinocytes are 
key players in the process of re-epithelialization 
during the proliferative phase. During the 
epithelialization stage, the epithelial cells 
proliferate and migrate from the wound borders to 
close the wound. The restoration of the 
compromised epidermis is typically achieved 
through two primary mechanisms involving the 
activation of epidermal keratinocytes at the wound 
margin and the proliferation of epidermal 
keratinocytes (Dam et al., 2023). 

The phases of wound healing normally 
progress in an orderly, and timely manner to restore 
the anatomical and functional integrity of the skin. 
However, chronic wounds lose the ability to 
inherently self-repair due to several contributing 
factors, such as aging, stress, infection, neuropathy, 
vascular insufficiency, wound infection, and 
excessive pressure at the site (He et al., 2021). This 
predicament is further exacerbated by the 
increasing prevalence of an aging population, rising 
rates of obesity, and the widespread incidence of 
diabetes (Patel et al., 2019). Although various 
pharmaceutical preparations are available, the 
current wound care products are generally 
expensive, which impose a substantial financial 
burden to the patient and the healthcare system 
(Tricco et al., 2015). The situation is also 
compounded by the rising cases of bacterial 
resistance and adverse effects associated with the 
commercial wound care products (Ceilley, 2017). 
Therefore, there is a need to find alternative 
therapies that could promote wound healing, reduce 
treatment cost, and minimize the possibility of 
severe wound complications (Lordani et al., 2018). 
Many plants and various preparations thereof have 
been traditionally used to treat several types of 
wounds due to their therapeutic activities, 
availability, affordability, and relatively low cost 
(Albahri et al., 2023). These phytomedicines have 

immense potential in the function of wound healing 
due to the presence of various active constituents, 
which have been proven to enhance healing, reduce 
scar formation with minimal unwanted side effects 
(Maver et al., 2015).  

Polygonum minus Huds. (syn. Persicaria 
minor) (Polygonaceae) grows in Southeast Asian 
countries such as Malaysia, Thailand, Indonesia, 
and Vietnam (George et al., 2014). This aromatic 
plant, commonly known as kesum or laksa leaf in 
Malaysia is a popular flavouring ingredient in 
culinary dishes. It is also consumed raw as a salad 
due to its potential health benefits, which include 
improving digestion, promoting skin health, and 
reducing inflammation and pain (Vikram et al., 
2014). Several studies have shown that the leaves of 
P. minus contain natural antioxidants due to the 
phenolic compounds (Azlim Almey et al., 2010; 
George et al., 2014; Maizura et al., 2011; Qader et 
al., 2012; Sumazian et al., 2010). In particular, an 
aqueous extract from the leaves of P. minus was 
reported to contain flavonoids, such as quercetin, 
that could contribute to its antioxidant activity as 
evidenced by its potent radical-scavenging activity 
(George et al., 2014; Huda-Faujan et al., 2007). 
Previous studies have demonstrated that several 
secondary metabolites, mainly phenolic compounds 
such as quercetin and kaempferol from various 
plant extracts, have the potential to promote wound 
healing (Agour et al., 2022; Ebbo et al., 2022; El-
Sayed et al., 2016). These compounds have the 
potential to accelerate skin wound healing when 
applied topically, primarily by regulating 
inflammatory markers and mitigating oxidative 
stress (Yadav et al., 2018). Moreover, research has 
explored the wound healing potential of other plants 
within the Polygonum genus, including P. 
cuspidatum and P. barbatum (Wu et al., 2012; 
Nkuete et al., 2015). However, P. minus remains 
unexplored in terms of its wound healing potential. 
Hence, this study was carried out to evaluate the 
phytochemical composition, antioxidant activity, 
and wound healing potential of aqueous extract 
from the stem and leaves of P. minus on the 
proliferation and migration of human epidermal 
keratinocytes.  
 
2.  Objectives 

The objectives of the study are:  
1) To qualitatively determine the presence of 

secondary metabolites in P. minus aqueous extract 
by phytochemical evaluation. 
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2) To determine the antioxidant capacity, 
total phenolic, and flavonoid contents of P. minus 
aqueous extract. 

3) To evaluate the effect of P. minus aqueous 
extract on cell viability, proliferation, and migration 
of human keratinocyte (HaCaT) cells. 
 
3.  Materials and methods 
3.1 Collection and extraction of P. minus 

Plant material was procured from Biotropics 
Malaysia Berhad, Malaysia. The sample was 
authenticated by a taxonomist from the Institute of 
Bioscience, Universiti Putra Malaysia (UPM) and 
voucher specimen (SK 2077/12) was deposited in 
the Herbarium of the Institute of Bioscience, UPM 
Malaysia. An aqueous extract was obtained from 
the aerial parts, including the stems and leaves of 
the plant. Fresh plant material was first subjected to 
oven-drying until its moisture content dropped to 
below 10%. The dried stems and leaves were then 
finely chopped into fragments. The extraction 
process involved immersing these fragments in 
water at a ratio of 1:20 and percolating the mixture 
through two cycles, each lasting 4 hours at 80°C. 
The resulting liquid was filtered and evaporated. 
Subsequently, the concentrated liquid was freeze-
dried until its moisture content decreased to below 
8% w/w. To ensure preservation, the extract was 
vacuum-sealed in aluminium foil, safeguarding it in 
a cool, low-humidity environment with no direct 
exposure to sunlight. 
 
3.2 Phytochemical screening 

The aqueous extract of P. minus was 
assessed for the presence of secondary metabolites 
including flavonoids, terpenoids, alkaloids, 
saponins, tannins, steroids, and cardiac glycosides 
according to procedures described by Sharma et al. 
(2020). 
 
3.3 Estimation of total phenolic content (TPC) 

The TPC of the P. minus aqueous extract was 
determined using the Folin-Ciocalteu reagent as 
described by Sahlan et al. (2018). P. minus extract 
(25 μL) was mixed with 25% Follin reagent 
(100 μL) and shaken for four minutes at room 
temperature. Then, sodium carbonate solution 
(75 μL, 7.5% w/v) was added. The solutions were 
mixed and allowed to stand in the dark for two 
hours at room temperature. Absorbance was 
measured at 765 nm and the analysis was performed 
in triplicate. The standard curve was calibrated 

using gallic acid and the results were expressed as 
µg/mL Gallic Acid Equivalents (GAE).  
 
3.4 Estimation of total flavonoid content (TFC) 

The aluminium chloride colorimetric 
method, as described by Farasat et al. (2014), was 
used to determine the TFC of the P. minus aqueous 
extract. P. minus extract (20 µL) was mixed with a 
10% aluminium chloride solution (20 µL), 1M 
potassium acetate (20 µL), and distilled water (140 
µL). The mixture was shaken for 1 minute prior to 
incubation for 30 minutes in the dark at room 
temperature. Absorbance readings were taken at 
415 nm and data were analysed in triplicate. The 
standard curve was calibrated using quercetin and 
the results were expressed as µg/mL Quercetin 
Equivalent (QE). 
 
3.5 DPPH free radical scavenging assay 

The DPPH free radical scavenging activity 
of the P. minus aqueous extract was conducted 
according to the method described by Nafi et al. 
(2019). Briefly, a 1 mM DPPH solution was 
prepared by diluting DPPH (5 mg) in methanol (100 
ml). Trolox was used as a reference standard. Then, 
different concentrations of P. minus aqueous extract 
and the standard Trolox were prepared (7.81, 15.63, 
31.25, 62.50, 125.00, 250.00, 500.00, and 1000.00 
µg/mL) using the serial dilution method with 
dimethyl sulfoxide (DMSO) as the solvent. The 
standard and sample solutions (25 μL) were added 
to a 96-well plate. Then, the methanolic DPPH 
solution (200 µM) was added to each well and 
mixed uniformly. A negative blank solution was 
prepared by mixing 1 mM DPPH (200 μL) with 
DMSO (25 μL). The plate was then incubated in the 
dark at room temperature for 30 minutes. After 
incubation, the absorbance (abs) was read at 517 nm 
using a microplate reader, and the procedure was 
repeated three times. The DPPH radical scavenging 
activity was calculated using Equation (1): 
 

Inhibition (%)= 
(Abs of blank-Abs of sample)

Abs of blank
 X 100% (1) 

 
3.6 Ferric reducing antioxidant power assay 

The ferric reducing antioxidant power 
(FRAP) of the P. minus aqueous extract was 
determined using the method described by 
Hernandez Zarate et al. (2018) with slight 
modifications. In short, the FRAP reagent 
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comprising three solutions was prepared; solution 1 
(300 µM pH 3.8 acetate buffer) was prepared by 
diluting sodium acetate (C₂H₃NaO₂) (3.12 g) and 
glacial acetic acid (CH₃COOH) (1.6 mL) in distilled 
water (1 L). For solution 2, 2,4,6-tripyridyl-S-
triazine (TPTZ) (0.031 g) was dissolved in 37% 
hydrochloric acid (HCl) (10 mL). Concentrated 
HCl (36.46 mol) (1.46 mL) was added to distilled 
water (1 L). Solution 3 (20 mM of ferric chloride 
hexahydrate (FeCl₃.6H₂O)), was prepared by 
dissolving FeCl₃.6H₂O (0.054 g) in distilled water 
(10 mL). The FRAP reagent was formed by mixing 
all the three solutions in a 10:1:1 volume ratio 
(v/v/v) and heated at 37°C for 10 minutes before 
use. The P. minus aqueous extract (30 µL) was 
added. The resulting mixture was allowed to rest for 
30 minutes at 20°C in the dark. The absorbance was 
read at 593 nm using a microplate reader 
spectrophotometer. All measurements were 
conducted in triplicate. The results were calculated 
using a calibration curve of ferrous sulfate as 
standard. 
 
3.7 In vitro wound healing assay 
3.7.1 Cell culture  

Human epidermal keratinocyte (HaCaT) cell 
line was purchased from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). 
HaCaT cells from passage 10-15 were maintained 
in complete media Dulbecco's modified Eagle 
medium (DMEM) supplemented with 10% foetal 
bovine serum, 1% penicillin-streptomycin and 
incubated at 37°C, 5% carbon dioxide (CO2) 
humidified incubator. The cells were propagated 
until the density reached 80–95% confluency before 
subculture. 
 
3.7.2 Cell viability and proliferation assays 

The cell viability and proliferation were 
determined using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay 
according to the method described by 
Kamarazaman et al. (2022). The extract (1000 - 
7.81 µg/mL) was prepared by serial dilution using 
0.5% DMSO. Cells were seeded into 96-well plate 
at 1x104 cells per well and incubated for 24 hours at 
37°C. After incubation, the cells were treated with 
different concentrations of P. minus extract or with 
vehicle (0.5% DMSO) in complete media and 
further incubated at 37°C for 24 hours. Then, 0.5% 
MTT solution was added into each well, and the 
plates were incubated again for 4 hours at 37°C. The 

produced water-insoluble formazan product was 
solubilised using DMSO and absorbance was read 
using a microplate reader at 570 nm. Vehicle-
treated cells served as control. The percentage of 
cell viability was calculated using Equation (2). The 
procedure was also repeated at 48 and 72 hours. 
 

Cell viability (%)= �Absorbance of treated cells
Absorbance of control cells

�×100
 (2) 
 
3.7.3 Cell migration assay 

The effect of the P. minus extract on the 
migration of HaCaT cells was performed according 
to the procedure described by Kamarazaman et al. 
(2022). The cells were seeded at 1x106 cells per 
well into six well plates. After reaching confluency, 
a scratch was made across the well, using a 200 µL 
pipette tip. Subsequently, the cells were treated with 
or without the P. minus extract at different 
concentrations (15.63, 31.25, 62.5, and 125 
µg/mL). Allantoin at 10 µg/mL served as positive 
control. Phase-contrast images were recorded at the 
time of wounding (0 h), 18, and 24 hours thereafter. 
Cell migration was quantified as the remaining 
scratch wound area relative to the initial wound area 
using ImageJ software.  
 
3.8 Statistical analysis 

Each experiment was conducted in triplicate. 
Values are shown as mean ± standard deviation 
(SD). Data were analysed by analysis of variance 
(ANOVA) and Bonferroni test using SPSS software 
(version 20). Statistical significance was fixed at P 
< 0.05. 
 
4.  Results and discussion 
4.1 Phytochemical screening 

The results of the phytochemical screening 
are shown in Table 1. Phytochemical screening is a 
convenient technique to classify the diversity of 
secondary metabolites present in different 
medicinal plant species (Singh et al., 2022). This is 
a reliable technique to provide preliminary 
information on the metabolites present in plant 
extracts (Ibrahim et al., 2016). The results of 
phytochemical analysis of the P. minus aqueous 
extract revealed the presence of all seven metabolic 
groups consisting of flavonoids, terpenoids, 
alkaloids, saponins, tannins, steroids, and cardiac 
glycosides (Table 1). These findings align with a 
study reported by Imelda et al. (2014) who 
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identified the presence flavonoids, alkaloids, 
saponins, tannins, and triterpenoids in an ethanolic 
extract of P. minus, while steroids were notably 
absent. Similarly, these results are in accordance 
with a study reported by Kartikasari et al. (2022), 
which reported the presence of alkaloids, 
flavonoids, saponins, and tannins in the ethanolic 
extract of P. minus, while observing the absence of 
steroids and triterpenoids. Additionally, Qader et al. 
(2012) reported that the ethanolic extract of P. 
minus contained phenolic compounds such as 
coumaric acid, gallic acid, and rutin. These 
secondary metabolites perform specific biological 
functions that enhance the therapeutic activities 
including antioxidant, anti-inflammatory, antiulcer, 
and antimicrobial activities (Christapher et al., 
2015). 
 
4.2 Estimation of total phenolic content (TPC) 

and total flavonoid content (TFC) 
Table 2 shows the TPC and TFC values of 

the P. minus aqueous extract in comparison to 
Trolox. The TPC value for the P. minus extract was 
higher at 137.74 ± 0.75 µg/mL GAE compared to 
Trolox, which recorded TPC value at 63.38 ± 0.32 
µg/mL GAE. Similarly, P. minus showed a greater 
TFC value of 177.08 ± 3.16 µg/mL QE, while 
Trolox had a lower TFC value of 33.00 ± 0.02 
µg/mL QE.  

A study by Abdullah et al. (2017) found that 
the TPC values of P. minus aqueous extract was at 
174.00 µg/mL GAE, which was higher than the 
TPC value of the P. minus in this study. Conversely, 
Khalid, & Babji (2018) and Christapher et al. 
(2016) reported lower TPC values for P. minus 

aqueous extracts, at 48.23 µg/mL GAE and 74.25 
µg/mL GAE, respectively. Additionally, Abdullah 
et al. (2017) also recorded a lower TFC value for P. 
minus (43.65 µg/mL QE) than what was observed 
in this study. This observation is consistent with 
another study by Christapher et al. (2016), where 
the TFC value for P. minus was measured at 11.95 
µg/mL QE. Several flavonoid compounds 
(quercetin, rutin, and catechin) and phenolic acid 
compounds (coumaric acid and gallic acid) have 
been detected in P. minus extracts (Hamid et al., 
2020; Yahaya et al., 2020). The presence of these 
metabolites contributes to the biological activities 
of P. minus, including antibacterial, anti-
inflammatory, antiviral, and anticancer properties 
(Ridzuan et al., 2019). The concentration of 
polyphenolic compounds in P. minus can vary 
depending on factors such as light intensity, carbon 
dioxide (CO2) levels, soil water content, and 
nutrient levels (Mohd Yusof et al., 2021).  
 
4.3 DPPH free radical scavenging assay 

Table 3 shows the scavenging activity of 
DPPH free radicals by the P. minus aqueous extract 
in comparison to Trolox. Based on Table 3, the 
DPPH free radical scavenging activity of the P. 
minus aqueous extract was at 79.50%, and the 
DPPH inhibition of Trolox was 99.83%. The DPPH 
IC50 values indicate the concentration of samples 
required to inhibit 50% of DPPH free radicals. 
Lower IC50 values denoting higher DPPH 
scavenging activity at lower concentration. The IC50 
value of P. minus was 213.20 ± 50.96 µg/mL. 
Trolox had the lowest IC50 values at 70.52 ± 5.93 
µg/mL. 

 
Table 1 Qualitative analysis of the phytochemical assessment of the P. minus aqueous extract. 

Phytochemical metabolites Presence 

Flavonoids ++ 
Triterpenoid +++ 

Alkaloids +++ 

Saponins +++ 
Tannins ++ 
Steroids +++ 

Cardiac Glycosides +++ 
Key: “+”: present; “++”: moderately present; “+++”: highly present; “- ”: absent. 
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Table 2 TPC and TFC values of P. minus and the standard, Trolox.  
Sample TPC value (µg/mL GAE) TFC value (µg/mL QE) 
P. minus 137.74 ± 0.75 177.08 ± 3.16 
Trolox 63.38 ± 0.32 33.00 ± 0.02 

Note: Results were reported in mean ± standard deviation. “TPC”: Total phenolic content; “TFC”: Total flavonoid 
content; “GAE”: Gallic acid equivalent; “QE”: Quercetin equivalent. Assays were done in triplicate. 
 
Table 3 DPPH free radical scavenging activity and DPPH IC50 value of P. minus in comparison to Trolox.  

Sample DPPH inhibition (%) DPPH IC50 (µg/mL) 
P. minus 79.50 213.20 ± 50.96 
Trolox 99.83 70.52 ± 5.93 

Note: Results were reported in mean ± standard deviation. Assays were done in triplicate. 
 
Table 4 FRAP values of P. minus and the standard, Trolox.  

Sample FRAP values (µM Fe2+) 
P. minus 1485.67 ± 0.05 

Trolox 6584.98 ± 0.07 
Note: Results were reported in mean ± standard deviation. Assays were done in triplicate. 

 
In human physiology, free radicals and 

reactive oxygen species (ROS) are formed as by-
products of cellular metabolic processes (Adli et al., 
2022). Accumulation of free radicals and ROS can 
lead to oxidative stress, which can induce the 
development of cardiovascular diseases, cancers, 
and neurodegenerative diseases (Yilmaz-Ozden et 
al., 2021). Antioxidants are a group of compounds 
that can counter the destructive effects of free 
radicals and ROS by inhibiting their actions and 
protecting cells from oxidative stress (Rahim et al., 
2019). The DDPH assay in this study was 
conducted by assessing the free radical scavenging 
capability of an aqueous P. minus extract and the 
standard, Trolox, to reduce the 1,1-diphenyl-2-
picrylhydrazil (DPPH) free radical, as indicated by 
the colour changes from deep purple to pale yellow 
(Baluchamy, & Subramaniam, 2023). 
 
4.4 Ferric reducing antioxidant power (FRAP) 

assay. 
Table 4 shows the FRAP values of P. minus 

aqueous extract in comparison to Trolox. The 
FRAP values of P. minus was 1485.67 ± 0.05 µM 
Fe2+, meanwhile the FRAP value of Trolox was 
6584.98 ± 0.07 µM Fe2+. 

The FRAP assay measures the ability of 
samples to reduce ferric ions (Fe3+) to ferrous ion 
(Fe2+), where the reduction reaction can be 
observed by the colour changes from colourless to 
blue (Hamid et al., 2020). Based on a study by 

Abdullah et al. (2017), the FRAP value of P. minus 
aqueous extract was 898.33 µM Fe2+, which was 
lower than the FRAP value of P. minus observed in 
this study. The finding was in line with a study 
conducted by Ghazali et al. (2014), where the FRAP 
value of P. minus aqueous extract measured at 
842.61 µM Fe2+. 

The metabolites in P. minus leaves are 
responsible for the antioxidant activity of P. minus 
extract (Yahaya et al., 2020). There was a direct 
correlation between TPC and TFC with antioxidant 
activities (Adli et al., 2022). The higher the 
concentration of phenolic acids and flavonoids in 
the P. minus extract, the higher its free radical 
scavenging capability (Christapher et al., 2016). 
While the exact mechanisms governing the 
interaction between these phytochemical 
compounds and free radicals remain poorly 
understood, Abdullah et al. (2017) suggested that 
these compounds function as electron donors, 
reducing the free radicals and thereby neutralizing 
them into harmless molecules.  

Furthermore, it is noteworthy that the 
polarity of the solvent used for extracting 
phytochemicals from P. minus can significantly 
influence its biological activities. Christapher et al. 
(2016) demonstrated that the methanol extract 
exhibited the highest TPC, whereas the aqueous 
extract displayed the highest TFC. Likewise, the 
antioxidant analyses demonstrated that the 
methanol extract possessed a higher antioxidant 
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capacity compared to the aqueous extract (Abdullah 
et al., 2017). Organic solvents such as methanol are 
less polar compared to water, which means they can 
effectively extract a wider range of polar and non-
polar antioxidant compounds from plant materials 
(Chaves et al., 2020). This might include a broader 
spectrum of phenolic compounds, flavonoids, and 
other antioxidants that contribute to the overall 
antioxidant capacity (Abdullah et al., 2017).  
 
4.5 In vitro wound healing assay 

Figure 1 illustrates the viability of HaCaT 
cells following a 24-hours treatment with varying 
concentrations of the P. minus aqueous extract. The 
results indicate that the P. minus aqueous extract 
did not induce any cytotoxic effects on HaCaT cells 
at all tested concentrations, with the percentage of 
cell viability consistently exceeding 80%. In line 
with the findings of Roy et al. (2023) and Che Zain 
et al. (2020), extracts are considered non-toxic 
when cell viability remains above 80%. Previous 
research supports these findings, demonstrating the 
non-toxic nature of P. minus aqueous extract on 
both normal endothelial (EA.hy926) and cancer 
(HCT116, HT29, and HeLa) cells (Christapher et 
al., 2016). Similarly, a study by Wahab et al. (2015) 

reported that P. minus methanol extract did not 
exhibit cytotoxicity toward Vero cells with an LC50 
value of 875 mg/L. As none of the tested 
concentrations displayed cytotoxic effects, the same 
concentrations of the extract were chosen for the 
subsequent proliferation assay. 

In the proliferation assay, an increase in cell 
viability was observed at all tested concentrations 
after 48 hours of treatment, as depicted in Figure 2. 
Notably, the proliferative effect of the extract was 
particularly significant (p<0.05) at concentrations 
of 15.63 and 7.82 μg/mL, leading to cell 
proliferation rates of 132.68 ± 0.08% and 145.65 ± 
0.09%, respectively, compared to the control. 
However, following the 72-hours of treatment, the 
proliferative effect of the extract was observed 
within the concentrations of 62.5 - 7.81 μg/mL, with 
statistically significant results (p<0.05) noted at 
concentrations of 31.25 - 7.81 μg/mL (ranging from 
140.27 - 153.08%) in comparison to the control. In 
contrast, at concentrations of 125, 250, 500, and 
1000 μg/mL, the extract inhibited cell proliferation 
and exhibited cytotoxic effect on HaCaT cells after 
72 hours. Consequently, concentrations within the 
range of 62.5 - 7.81 μg/mL were selected to assess 
the cell migratory activity of the extract. 

 

 

Figure 1 Effect of the P. minus aqueous extract on the viability of HaCaT cells after 24 hours exposure to various 
concentrations of the P. minus aqueous extract. Control group represents cells treated with 0.5% DMSO. Experiments 

were performed in triplicate and data are presented as mean ± SD. 
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Figure 2 Effect of P. minus aqueous extract on the proliferation of HaCaT cells at 48 and 72 hours. Control group 
represents cells treated with 0.5% DMSO. The data are presented as mean ± SD of three independent experiments. 

Values of *P < 0.05 were considered statistically different as compared to control. 

Keratinocyte cell migration plays a vital role 
in the process of re-epithelialization following 
various types of skin injuries, including superficial 
wounds and deep burns (Abate et al., 2021; Long et 
al., 2018). In this study, the migration rate of HaCaT 
cells was assessed using a scratch assay, which 
tracks the progression of wound closure over time. 
Specifically, the changes in wound gap were 
measured at three-time intervals (0, 18 and 24 
hours) after creating the scratch. The percentage of 
cell migration was calculated based on the 
reduction in gap area compared to the initial gap 
area (Kamarazaman et al., 2022). As illustrated in 
Figure 3, after 24 hours of treatment, cells treated at 
lower concentrations (15.63 and 7.81 µg/mL) 
exhibited a significant (p<0.05) increase in the 
percentage of wound closure, measuring 35.34 ± 
3.02% and 45.63 ± 4.00%, respectively, compared 
to the control group (26.64 ± 2.00%). Interestingly, 
there was no significant difference (p>0.05) in the 
percentage of wound closure between the group 
treated with allantoin (47.43 ± 2.09%), serving as 
the positive control, and the group treated with the 
P. minus aqueous extract at 7.81 µg/mL (45.63 ± 
4.00%). The visual representations of the cells are 
shown in Figure 4. 

The present study demonstrates that P. minus 
aqueous extract promotes wound closure by 
stimulating keratinocyte cell migration in the 
scratch assay, a pivotal event in the proliferative 
phase of the wound healing process. Upon tissue 

injury, ROS are released, and an excess of ROS can 
lead to oxidative stress, negatively impacting cell 
proliferation and inhibiting healthy cell turnover 
(Alexander et al., 2019). Therefore, antioxidant 
enzymes play a crucial role in defending cells 
against ROS. Additionally, it has been reported that 
certain plant extracts with antioxidant activity can 
enhance the process of cutaneous wound healing 
(Addis et al., 2020; Suntar et al., 2012). The present 
study confirms previous findings regarding the 
antioxidant activity of P. minus aqueous extracts as 
evidenced by both DPPH and FRAP assays 
(Abdullah et al., 2017; George et al., 2014; Hassim 
et al., 2015). P. minus extract is rich in polyphenol 
compounds, which are associated with various 
biological properties, including antioxidant 
activity. This activity is instrumental in wound 
healing, as it helps prevent and protect against 
oxidative damage caused by free radicals (Matos, 
2009). Furthermore, studies have shown that 
flavonoids can promote proliferation and survival 
of human keratinocyte through stimulating the 
mitogen-activated protein kinase (MAPK) and 
phosphatidylinositol 3-kinase/protein kinase B 
(PI3K/Akt) signaling cascades, which are important 
molecular pathways involved in re‐epithelialization 
(Zulkefli et al., 2023; He et al., 2020).  

Additionally, the present study revealed that 
the aqueous extract of P. minus enhances the 
migration of HaCaT cells in a reverse dose-
dependent manner. The percentage of cell 
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migration was significantly increased at lower 
concentrations, comparable to the effect of 
allantoin, a known promoter of cell proliferation 
and migration (Forero-Doria et al., 2020). The 
results were similar to previous reports indicating 

that extracts at higher concentrations do not 
necessarily yield more desirable effect 
(Kamarazaman et al., 2022; Abdel Latif et al., 2019; 
Che Zain et al, 2020). 

 

 
 
Figure 3 Effect of the P. minus aqueous extract on the migration rate of HaCaT cells following 24 hours after treatment 

as determined by the scratch assay. Cell migration was quantified as the remaining scratch wound area relative to the 
initial wound area using ImageJ software. Data are expressed as mean ± SD of three independent experiments. 

Statistically significant differences are indicated as *P < 0.05 as compared to control. 

 
Figure 4 Representative images for migration of HaCaT cells treated with different concentrations of the P. minus 

aqueous extract at 18 and 24 hours after incubation (x4 magnification). 
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5.  Conclusions 
In summary, this study underscores the 

potential of P. minus aqueous extract for wound 
healing by stimulating the cell proliferation and 
migration of keratinocytes. The observed wound 
healing properties of the extract could be attributed 
to its antioxidant properties and its high phenolic 
contents. These preliminary data point towards the 
potential of P. minus aqueous extract as a subject 
for further exploration in the context of wound 
healing materials. Subsequent studies are necessary 
to validate its efficacy as a wound healing agent. 
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