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Abstract 
Increasing agricultural productivity continues to be a major challenge for society due to the rapid growth of the 

global human population and economic prosperity. However, improving agricultural productivity requires proper 

identification and minimization of diseases that degrade both the quality and quantity of the crops. The scientific 

community has stressed that the use of recent technologies such as deep learning, the internet of things, computer vision, 

etc. are vital to address various challenges in the agriculture sector. Furthermore, the use of computer vision to 

automatically identify diseases is growing in popularity. This paper provides a comparative analysis of six pre-trained 

deep learning models, namely VGG16, VGG19, ResNet50, ResNet101, InceptionV3, and Xception, for disease detection 

in cucumber plants. The pre-trained models are fine-tuned using transfer learning and evaluated using different metrics 

such as training accuracy, testing accuracy, and the number of epochs. The results obtained demonstrate that VGG16, 

despite being the smallest model in terms of the number of layers, outperforms the rest of the models in all of the 

evaluation metrics. The VGG16 models obtain testing accuracy of 98% and training accuracy of 99.91% while being 

trained for 8 epochs. In addition, it is observed that models with a larger number of layers, such as ResNet50 and 

ResNet101, exhibit fluctuations in accuracy while training due to the execution of fairly large models on a comparatively 

small dataset. However, InceptionV3 and Xception, despite having a greater number of layers, perform better than ResNet 

models due to the presence of Inception modules which are better equipped to detect different-sized targets. The findings 

of this study may be utilized to optimize the best-performing models for disease classification in other plants, and the 

fine-tuned VGG16 model can be integrated with mobile devices for real-time disease classification. 
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1.  Introduction 

Agriculture is considered one of the 

primary pillars that provides support to human 

existence. Apart from being the primary source of 

food supply, agriculture also contributes to the 

global economy and provides ample opportunity for 

employment. As this report suggests, 41.49% of the 

workforce in India was employed in agriculture in 

2020 (Trading Economics, n.d.). Furthermore, 

agriculture shares rose by 2.1% in India’s gross 

domestic product (GDP) for the year 2020–21 

(Shagun, 2021). However, the rise in global 

population has escalated the demand of food 

supply, thus exerting pressure to increase 

agricultural productivity. Modern techniques such 

as machine learning (Kumar, Kumar, & Palaparhy, 

2021; Nagasubramanian et al., 2021), deep learning 

(Bosilj, Aptoula, Duckett, & Cielniak, 2020; Jin et 

al., 2020; Naveen, & Sivakumar, 2021) and internet 

of things (IoT) (Sinha, Shrivastava, & Kumar, 
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2019) have proven to be a boon for the agriculture 

industry. Not only do they possess the potential to 

increase productivity, but also ensure the 

sustainability of the environment by enhancing the 

conventional methods used by farmers. 

However, plant diseases remain one of the 

major challenges faced by farmers. Plant diseases 

degrade both the quality and quantity of the plants 

(Syed-Ab-Rahman, Hesamian, & Prasad, 2022). 

Early detection of such diseases can significantly 

help control damage to plants (Suwanagul, 

Kokaew, & Suwanagul, 2013). Conventional 

techniques used for the detection of these diseases, 

such as manually by the human eye, are time-

consuming when carried out on a large scale. 

Convolution neural network (CNN)-based deep 

learning models can be used for the detection of 

these diseases at a high success rate in 

comparatively lesser time. These models can 

decrease manual efforts by covering large quantities 

of plant disease detection in a short amount of time 

(Moawed, 2016). The introduction of transfer 

learning has decreased the time required for the 

development of deep learning models. Transfer 

learning enables deep learning models to use the 

existing knowledge obtained by the models while 

being trained on a task. 

In this paper, several state-of-the-art CNN 

models, namely VGG16 (Simonyan & Zisserman, 

2015), VGG19 (Simonyan & Zisserman, 2015), 

ResNet50 (He, Zhang, Ren, & Sun, 2016), and 

ResNet101 (He et al., 2016), are fine-tuned with the 

use of transfer learning for disease classification in 

cucumber plants. The rest of the paper is organized 

as follows: the remaining part of Section 1 provided 

details about related works carried out for disease 

classification in different plants and provides a 

glimpse of the pre-trained models used in the 

proposed work. Section 2 highlights the objective 

of the research work. Section 3 describes the 

proposed approach, dataset, and experimental setup 

used in the work. Section 4 presents the results 

obtained and their comparison for different models 

used in this study. Finally, Section 5 concludes the 

paper. 

 

1.1 Related works 

Various research work has been carried 

out on plant disease classification using image data, 

where CNNs were the prime focus of the studies. 

However, in recent years, there has been a paradigm 

shift from developing CNN models from scratch to 

fine-tuning the existing state-of-the-art 

convolutional networks with the use of transfer 

learning (Becherer, Pecarina, Nykl, & Hopkinson, 

2019). In Ganatra and Patel (2020), the authors fine-

tuned pre-trained models like VGG16, 

InceptionV4, ResNet101, and ResNet50 for the 

classification of plant diseases found in the 

PlantVillage dataset. The results obtained 

illustrated that the ResNet101 model outperformed 

the rest of the pre-trained models with a test 

accuracy of 99.73%. Atila, Ucar, Akyol, and Ucar 

(2021) proposed the EfficientNet model for the 

classification of diseases found in PlantVillage 

dataset and obtained 99.97% accuracy with a 

precision of 99.39%. 

In Saleem, Potgieter, and Arif (2020), the 

authors analyzed existing state-of-the-art pre-

trained models by training the models with different 

optimizers from the PlantVillage dataset. The 

Xception model trained with adam optimizer 

obtained the highest validation accuracy of 99.81%. 

In Zeng, Ma, Cheng, Zhou, and Pang (2020), the 

authors used the InceptionV3 model to detect the 

susceptibility of citrus fruits to diseases with an 

accuracy of 74.38%. Other authors further 

employed the DC-GAN model (Ma, Shuai, Ran, 

Liu, & Ye, 2020) to augment the dataset and 

obtained 92.60% accuracy. 

In Singh, Chouhan, Jain, and Jain (2019), 

the authors proposed a multi-layered CNN 

architecture to detect fungal diseases in mango with 

an accuracy of 97.13%. Zhou, Zhou, Xing, and 

Song (2021) proposed a restructured residual dense 

network to identify tomato plant diseases with an 

accuracy of 95%. In Bao, Huang, Hu, and Liang 

(2021), the authors proposed a deep neural network 

model based on GoogLeNet (Szegedy et al., 2015) 

for the classification of diseases in maize plants and 

obtained an accuracy of 98.9%. 

In Bhatt, Sarangi, Shivhare, Singh, and 

Pappula (2019), the authors used an ensemble of 

Adaptive Boosting (Schapire, 2013) cascaded with 

a decision tree classifier to classify corn leaf images 

into four different categories. Features were 

extracted from the images using CNNs to identify 

diseases and classify the images accordingly with 

an accuracy of 98%. In Paymode and Malode 

(2022), the authors proposed a deep learning-based 

model for the classification of sick and healthy 

leaves for grapes and tomatoes. The proposed 

model attained an accuracy of 98.40% for grapes 

and 95.71% for tomatoes. In Hassan, Maji, Jasinski, 
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Leonowicz, and Jasinska (2021), deep CNN models 

were implemented to identify diseases in the plant 

leaves of apple, corn, cherry, etc. The authors fine-

tuned pre-trained models, namely InceptionV3, 

InceptionResNetV2, MobileNetV2, and 

EfficientNetB0, to obtain disease classification 

accuracies of 98.42%, 99.11%, 97.02%, and 

99.56%, respectively. In Subramanian, 

Shanmugavadivel, and Nandhini (2022), the 

authors used a dataset of 18,888 photos of healthy 

and diseased leaves to classify three common maize 

leaf diseases using different pre-trained models, 

namely VGG16, ResNet50, InceptionV3, and 

Xception. The results obtained demonstrated that 

VGG16, InceptionV3, and Xception obtained 

accuracy rates of over 99%.

 
Table 1 Comparative analysis of related works 

Ref. Year 
Dataset 

Description 
Performance Comparison 

Ganatra and 

Patel (2020) 
2020 

PlantVillage  

(Classes: 38 

Images: 87,000) 

                   Resnet101     Resnet50   VGG16  InceptionV4     

Train Acc.        99.87            99.85       83.43          99.65        

Val. Acc.          99.80            99.76       82.30          98.30       

Test Acc.          99.73            99.70       81.63          98.36 

Atila et al. 

(2021) 
2021 

PlantVillage  

(Augmented Image 

Class: 61,486) 

                     EN      AN     Resnet50   VGG16  InceptionV3     

Avg Acc.      99.97   99.92     99.88          99.94       99.93 

Avg Pre.        99.39   93.87     97.91          98.82       98.70 

Saleem et al. 

(2020) 
2020 

PlantVillage  

(Classes: 38; 

Images: 54,306) 

(Adam opt.)    AN+GN     Improved GN      Xception       

Val. Acc.             98.57             99.04                99.81           

F1-score              98.36             98.64                99.78           

Zeng et al. 

(2020) 

 

2020 
PlantVillage  

crowdAI 

                    InceptionV3       AN             Resnet34       

Acc.                    74.37             72.34                72.15           

Train loss           0.5223           0.5814              0.9649           

Singh et al. 

(2019) 
2019 

Self: Mango  

(Classes: 4; 

Images: 1070) 

                     PSO      SVM    RBFNN     MCNN       

Acc.              88.39      92.75     94.20          97.13 

MRR             11.61        7.25       5.80            2.87 

Zhou et al. 

(2020) 

 

2021 
AI Challenger 

Tomato Dataset  

                  Deep CNN   ResNet50    DenseNet121   RRDN        

Test Acc.      93.21           88.49             91.96              95.00   

Bao et al. 

(2021) 
2021 

PlantVillage: 

Maize  

(Classes: 4; 

Images: 3852) 

               AN+SVM      LeNet       GN        MCNN     CNN 

Acc.                 95.00           97.89      98.90       92.31      98.87 

Bhatt et al. 

(2019) 
2019 

PlantVillage: Corn  

(Classes: 4; 

Images: 2000) 

(Adaboost)   Common Rust   Leaf Spot   Leaf Blight  Total     

Precision                  98.00                96.00          97.00       97.00 

Recall                         98.00                95.00          98.00       98.00 

F1-score                   98.00                94.00          96.00       97.00 

Paymode and 

Malode (2022) 
2022 

PlantVillage: 

Grapes, Tomatoes  

                VGG16  DL-VGG AN+VGG16 DT-VGG DCNN   

Acc.(grapes)
    98.40      97.53        97.50          91.83       88.46 

Acc.(tomatoes)
 95.71     95.00        91.83          86.10       81.11 

Hassan et al. 

(2021) 

 

2021 

PlantVillage  

(Classes: 38; 

Images: 54,305) 

                    Inc.V3    Inc.RN-V2     MN-V2     EfficientNetB0        

Test Acc.      98.42        99.11             97.02              99.56   
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Ref. Year 
Dataset 

Description 
Performance Comparison 

Subramanian et 

al (2022) 
2022 

PlantVillage, 

Kaggle (Classes: 4; 

Images: 18,888) 

                    VGG16      ResNet50    Inception      Xception         

Val. Acc.      99.79          93.14             99.40           99.75   

Test. Acc.     99.59          93.63             99.66           99.93   

Fan et al. 

(2022) 
2022 

Public Apple Leaf 

Dataset  

(Images: 1821) 

                    DenseNet      VGG16    VGG19      Inc. V3         

Val. Acc.      78.52             73.79        81.49         91.28   

Abbreviations: AN: AlexNet, GN: GoogleNet, EN: EfficientNet, Opt.: Optimizer, Val.: Validation, MRR: Missing Report Rate, DL: 

Deep Learning, DT: Deep Transfer, RRDN: Restructured Residual Dense Network, Inc.: Inception, RN: ResNet, MN: MobileNet 

 

 

In Fan et al. (2022), the authors proposed a feature-

fusion based approach and enhanced InceptionV3 

network to recognize diseased leaves in apple trees 

with an accuracy of 91.28%. In Dhaka et al. (2021), 

the authors presented an in-depth survey on the 

implementation of deep CNN models for disease 

identification in different plants. The survey 

focused on CNN architectures, datasets used, size 

of the datasets, and experimental results obtained by 

CNN models used on the datasets. In Kundu et al. 

(2021), the authors proposed an integrated 

framework of IoT and deep learning to 

automatically detect blast and rust diseases in pearl 

millet. The authors tested several benchmark 

models, namely Custom-Net, InceptionResNetV2, 

InceptionV3, ResNet50, VGG16, and VGG19, to 

identify the most suitable model. The experimental 

results revealed Custom-Net was the most accurate 

model with an accuracy of 98.78%. In Hussain et al. 

(2021), the authors proposed the ReviseNet model 

for object detection. The proposed model obtained 

mean absolute error (MAE) scores of 0.033, 0.029, 

and 0.036 on DUTS, HKU-IS, and ECSDD 

datasets, respectively. Table 1 highlights the 

comparative analysis of the proposed works carried 

out for disease detection in different plants. 

 

1.2 Background 

Transfer learning is a technique that 

exploits the knowledge obtained by state-of-the-art 

models from performing previous tasks and uses 

that knowledge as a starting point for training 

models for new tasks. Models like VGG16 

(Simonyan & Zisserman, 2015) and ResNet50 (He 

et al., 2016) have been pre-trained on the ImageNet 

dataset repository (Deng et al., 2009), and the 

knowledge obtained by these models was 

transferred to new models which were then fine-

tuned to obtain the desired result for the assigned 

task. For this paper, benchmark pre-trained models 

such as VGG16, VGG19 (Simonyan & Zisserman, 

2015), ResNet50, ResNet101 (He et al., 2016), 

InceptionV3 (Szegedy et al., 2015), and Xception 

(Chollet, 2017) are used for disease classification in 

cucumber plants. A brief discussion about each of 

these pre-trained models is provided below. 

 

1.2.1 VGG16 (Simonyan & Zisserman, 2015) 

 Visual Geometry Group (VGG) models 

were developed to increase the depth of classical 

CNNs for improving the model’s performance. 

VGG16 is a CNN architecture that won the first 

prize in the ImageNet Challenge 2014. This model 

has a large network with approximately 138 million 

parameters and 16 layers (13 convolution layers and 

3 fully connected layers). The convolution layers 

consist of repetitive cells with each cell containing 

a 3 × 3 convolution filter with stride 1 and maxpool 

layer with 2 × 2 filter of stride 2. In the end, two 

fully connected layers followed by softmax are used 

for classification. 

 

1.2.2 VGG19 (Simonyan & Zisserman, 2015) 

 VGG19 is a variant of the VGG model that 

is based on VGG16 architecture. The basic 

difference is in the depth of the architecture. It 

follows the same structure pattern of convolution 

and maxpool blocks as present in VGG16 but 

supports 19 layers (16 convolution layers, 3 fully 

connected layer, 5 maxpool layers, and 1 softmax 

layer). 

 

1.2.3 ResNet (He et al., 2016) 

 ResNet is based on residual networks, i.e., 

“identity shortcut connection” that skips one or 

more layers. ResNet won the first prize in the 
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ImageNet Challenge 2015. It introduces the idea of 

residual blocks to address the issue of vanishing 

gradients. The architecture is based on the skipped 

connection that skips layers to form a residual 

block. These residual blocks are further stacked 

together to form the network. Conventional ResNet 

architecture consists of 152 layers that are almost 8 

times deeper than the VGG network. However, 

different versions of the ResNet model have been 

proposed in literature such as ResNet50 and 

ResNet101. 

 

1.2.4 Inception (Szegedy et al., 2015) 

 The Inception model was developed to tackle 

the issue of variation in the size of striking parts of 

images. A larger kernel would tend toward a more 

global distribution and a smaller kernel toward a 

local distribution. To overcome this, filters of 

different sizes were introduced on the same level, 

thus making the model’s architecture wider as 

compared to deeper. An Inception network consists 

of repeated components known as Inception 

modules. These modules allow using multiple 

layers of filters instead of a single-size filter. 

Different Inception architecture versions have been 

proposed such as InceptionV1, InceptionV2, 

InceptionV3, and InceptionResNet. 

 
Table 2 Pre-Trained models used 

Pre-Trained 

Models 
Depth Parameter 

VGG16 16 138,357,533 

VGG19 19 143,667,240 

ResNet50 50 25,636,712 

ResNet101 101 44,707,176 

InceptionV3 159 23,851,784 

Xception 126 22,910,480 

 

1.2.5 Xception (Chollet, 2017) 

 The Xception model is based on the 

Inception model that consists of 126 layers. 

Xception is an extension of the Inception 

architecture which replaces the standard Inception 

modules with depthwise separable convolutions. 

The Inception modules present in the Inception 

model were interpreted in Xception as an 

intermediate step between the conventional 

convolutions and the depthwise separable 

convolutions (a depthwise convolution followed 

by a pointwise convolution). Depthwise 

convolution is the channel-wise n × n spatial 

convolution and pointwise convolution is the 1 × 1 

convolution to change the dimension. Thus, the 

resultant architecture with depthwise separable 

convolutions outperformed VGG-16, ResNet, and 

Inception V3 in most classical classification 

challenges. 

 Table 2 depicts the pre-trained models 

highlighting the number of layers and parameters 

used. The VGG16 model has the least number of 

layers, while InceptionV3 has the highest number 

of layers. The Xception model contains the least 

number of trainable parameters despite being 

approximately seven times deeper than the VGG19 

model, which contains the highest number of 

parameters. 

 

2.  Objectives 

Plant diseases are one of the primary 

reasons for food insecurity all around the globe. 

However, the leaves of a plant contain visual 

characteristics that can be used to determine the 

plant’s health (Jadhav, & Garg, 2022). The 

cucumber crop dominates a sizable portion of 

India’s total summer growing crop, and it also has 

economic and nutritional benefits. Cucumbers are 

rich in electrolytes that help in preventing 

dehydration, and they support cardiovascular, bone, 

and skin health. In terms of the economic aspect, 

India has emerged as the largest exporter of 

cucumber/gherkins in the world, exporting USD 

223 million worth of cucumber in 2020–21 (Press 

Information Bureau Government of India Ministry 

of Commerce & Industry, 2022). However, 

cucumber plants may get infected by a number of 

harmful diseases that can lower quality and yield. 

Manually monitoring plant disease is quite 

challenging as it takes a great deal of effort and 

time. Thus, the work proposed in this article focuses 

on disease detection in cucumber plants using 

transfer learning techniques. The primary 

objectives of the work is twofold: 

a) Propose a deep learning model for disease 

detection in cucumber plants to reduce the 

manual effort required by conventional 

techniques. 

b) Analyze and compare the performance of 

different pre-trained architectures to obtain 

the best model which can be used in the 

future for disease detection in other similar 

plants. 
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The next section discusses the methodology and 

highlights the proposed approach for the research 

work. 

 

3.  Methodology 

This section describes the proposed 

approach, dataset, and experimental setup that are 

used in the analysis of various deep learning models 

for disease classification in the cucumber plant. 

 

3.1 Proposed approach 

Figure 1 depicts the workflow of the 

proposed system. The dataset is initially fed into the 

image data generator where the images are pre-

processed using techniques like rescaling, zooming, 

shearing, and flipping. The images obtained are 

then fed into the proposed model for classification 

into diseased and healthy classes. As shown in 

Figure 1, the proposed model inherits knowledge 

from the benchmark pre-trained models with the 

use of transfer learning. In this work, several pre-

trained models, namely VGG16, VGG19, 

ResNet50, ResNet101, InceptionV3, and Xception, 

are tested to identify the best model for the task of 

classifying diseases in the cucumber plant. The 

layers inherited from the pre-trained models are 

frozen to make them untrainable (Sharma, Kumar, 

& Deka, 2022), however, additional layers are 

added to fine-tune the deep learning model.

 

 
Figure 1 Flowchart of Proposed Approach 

 

Figure 2 depicts the architecture of the 

proposed model, where the base architecture of the 

pre-trained model is conjoined by a flattened layer 

followed by two dense layers. In the end, the 

sigmoid layer is added to classify images into 

diseased and healthy cucumber plants. To identify 

the best-performing model, the proposed model has 

been tested by systematically increasing the number 

of dense layers from 1 to 10, and the addition of two 

dense layers obtained the best accuracy. 

Furthermore, the ReLU activation function is used 

along with the dense layers to overcome the 

vanishing gradient problem encountered by the 

neural networks, where the gradients of the loss 

function approach zero while backpropagating, thus 

making the network hard to train. ReLU overcomes 

this issue by multiplying several ReLU derivatives 

in backpropagation equations to result in either zero 

or one. Moreover, each of the pre-trained models is 

trained with an early stopping criterion of patience 

10, such that the training procedure terminates if 

validation accuracy fails to increase for 10 

consecutive epochs. Finally, the proposed model, 

after being fine-tuned and trained, is tested on real-

time datasets to produce the output labels 

corresponding to the input images.
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Figure 2 Architecture of proposed model 

3.1.1 Dataset used 

The dataset used for the experiment 

includes images of cucumber disease taken from the 

cucumber plant diseases dataset (Negm, 2020). The 

dataset includes a total of 691 images divided into 

two classes. We used 591 images to train the model 

and 100 images to test the model. Figures 3 and 4 

represent images of healthy and infected cucumber 

plants, respectively. 

 

 
Figure 3 Healthy cucumber plant 

 

 
Figure 4 Infected cucumber plant 

 

3.1.2 Experimental setup 

In this research work, the experiment was 

carried out on a system with an Intel 8th gen i7-H 

processor, 16GB of RAM, and 4GB Nvidia Geforce 

GTX 1050ti graphic card that contained 768 cuda 

cores. Python was used as the programming 

language and Jupyter notebook was used to run the 

program. Standard software libraries were used, 

such as Keras, Tensorflow, Matplotlib, and Numpy 
(Duggal, 2022). 

 

4.  Results and discussion 

In the proposed work, different state-of-

the-art models are fine-tuned using transfer learning 

for disease detection in cucumber plants. Owing to 

the fact that different models vary depending on 

their depth or the number of parameters, this work 

considers different evaluation metrics such as 

training accuracy, testing accuracy, and number of 

epochs required to achieve convergence. 

Furthermore, all the models are trained using adam 

optimizer and binary cross-entropy where an early 

callback of patience 10 has been used during the 

training process so that the training process is 

terminated if no improvement is recorded in the 

performance over a period of 10 epochs. 

Figures 5 and 6 depict the Loss vs Epoch 

and Accuracy vs Epochs graphs of variants of the 

VGG model, namely VGG16 and VGG19, 

respectively. Although VGG19 contains more 

convolution layers than VGG16 the result obtained 

represents an identical convergence pattern for both 

of the models. On the other hand, both variants of 

the ResNet models, ResNet50 and ResNet101, 

projected major fluctuations in the validation 

accuracy during the training process, as shown in 

Figures 7 and 8, respectively. The fluctuations 

present in the graphs are due to the application of a 

fairly large and complex model in comparison to the 

dataset, which results in the model searching for an 

optimal solution rather than settling for a solution. 

The ResNet models are approximately two times 

and four times larger than the VGG models that 

converge to the solution swiftly
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Figure 5 Loss vs Epochs and Accuracy vs Epochs of VGG16 

 

 

Figure 6 Loss vs Epochs and Accuracy vs Epochs of VGG19 

The Loss vs Epoch and Accuracy vs Epoch 

graphs of InceptionV3 and Xception shown in 

Figures 9 and 10, respectively, demonstrate 

fluctuations similar to the ResNet models due to 

their large structure size. However, variable-sized 

filters used in the Inception modules of these 

models extract more efficient features, thus 

enabling them to converge to a solution in lesser 

time.

 

 

Figure 7 Loss vs Epochs and Accuracy vs Epochs of ResNet50 
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Figure 8 Loss vs Epochs and Accuracy vs Epochs of ResNet101 

 

 

Figure 9 Loss vs Epochs and Accuracy vs Epochs of InceptionV3 

Table 3 presents an in-depth comparison 

of the pre-trained models used in the proposed work 

on the basis of size, depth, time (ms) per inference 

step on GPU, epochs, and testing accuracy. The 

results obtained demonstrate that VGG16, despite 

being the smallest model in terms of depth, achieves 

the best training accuracy of 99.91% and testing 

accuracy of 98% in just 8 epochs, whereas 

ResNet101 records the worst training accuracy of 

56.45%. Moreover, VGG19 obtained similar testing 

accuracy as compared to VGG16 but lagged behind 

by 3% in terms of training accuracy. This may be 

due to the three additional layers present in VGG19 

requiring more epochs to attain convergence.  

The Xception model follows VGG19 in 

terms of testing accuracy but requires almost twice 

the number of epochs as compared to VGG16 and 

VGG19 due to its larger size (number of layers). 

Although both InceptionV3 and Xception consist of 

comparatively greater numbers of layers than 

ResNet50 and ResNet101, they record higher 

training and testing accuracies due to the presence 

of Inception modules. As the diseased target areas 

vary in size from image to image, the Inception 

module is better equipped to detect these target 

areas because of the presence of different-sized 

filters. The ResNet50 model was trained for the 

highest number of epochs and obtained 83% testing 

accuracy, whereas ResNet101 records the least 

training and testing, and training and testing 

accuracy were 56.45% and 68%, respectively. 

The results obtained demonstrate that 

VGG16 outperformed the rest of the models. 

Furthermore, from Table 3, it can be observed that 

VGG16 consists of the least number of layers as 

well as the minimum time (ms) required per 

inference step on GPU among the compared 

models. However, VGG16 requires extensive space 

as compared to the other models, which is a major 

drawback.
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Figure 10 Loss vs Epochs and Accuracy vs Epochs of Xception 

On the other hand, InceptionV3 and 

Xception require the least amount of space among 

the compared models, however, they require 2.7ms 

and 3.9ms more time per inference step on GPU as 

compared to VGG16. Moreover, both InceptionV3 

and Xception lag behind VGG16 by 4% and 1%, 

respectively, in terms of accuracy. VGG19 

performs equally well compared to VGG16 in terms 

of accuracy and the number of epochs but requires 

more space and has a higher time per inference step 

on GPU.

  
Table 3 Pre-trained models performance comparison 

Pre-

Trained 

Models 

Size (MB) Depth 

Time (ms) per 

Inference Step 

(GPU) 

Epochs 
Training 

Accuracy 

Testing 

Accuracy 

VGG16 528 16 4.2 8 99.91% 98% 

VGG19 549 19 4.4 8 96.02% 98% 

ResNet50 98 107 4.6 45 74.35% 83% 

ResNet101 171 209 5.2 12 56.45% 68% 

InceptionV3 92 189 6.9 24 96.27% 94% 

Xception 88 81 8.1 15 96.17% 97% 

 

The results obtained in this paper add 

another dimensionality to the comparison of pre-

trained models by introducing epochs along with 

accuracies. The results obtained also indicate that 

the VGG16 model is the most efficient model, in 

terms of both accuracy and training epochs, for 

disease detection in cucumber plants. Furthermore, 

the fine-tuned model can be implemented for the 

real-time detection of diseases in cucumber plants 

to automate the manual procedure used by farmers 

for the detection of diseases. 

 

5.  Conclusions and future works 

In this paper, several benchmark pre-

trained models, namely VGG16, VGG19, 

ResNet50, ResNet 101, InceptionV3, and Xception, 

are fine-tuned and analyzed for disease detection in 

cucumber plants. The results obtained identify the 

VGG16 model as the most efficient model among 

all tested with an accuracy of 98%. In addition, the 

VGG16 model requires the least amount of CPU 

and GPU in time which makes it a viable option for 

integration with real-time devices. In future 

research, the proposed approach could be 

implemented for disease detection in other plants. It 

also possesses the potential of being applicable in 

other sectors, such as healthcare, for classifying X-

ray images or bio-metric systems for facial 

recognition. 
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