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Abstract 

The Amazon EC2 offers spot-priced virtual machines (VMs) at a reduced price compared to on-demand and 

reserved VMs. However, Amazon EC2 can terminate these VMs anytime due to the spot price and demand fluctuation. 

Using spot VMs results in a longer execution time and disrupts service availability. Users can use fault-tolerant techniques 

such as checkpointing, migration, and job duplication to mitigate the unreliability of spot VMs. In this paper, a knowledge-

based checkpointing strategy is proposed to minimize the overall checkpointing overhead during the execution of jobs. 

The proposed scheme uses real-time price history to decide when to take a checkpoint. Results show that the proposed 

approach can significantly reduce the turnaround time by 18% compared to Hourly Checkpointing Strategy and 9% 

compared to Rising-Edge Checkpointing Strategy. One can also achieve 54% to 78% reliability with a cost saving of 78% 

for the workload used with the described approach. 
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1.  Introduction 

 The evolution of cloud computing has 

made the long-held dream of utility computing a 

reality by offering resilient computing resources, 

platforms, and software as services using the pay-

per-use model (Buyya, Yeo, Venugopal, Broberg, 

& Brandic, 2009). Cloud providers provide raw 

computing resources, i.e., computing capacity, 

storage, and network as services in the form of 

Virtual Machines (VMs), which can also be called 

Infrastructure-as-a-Service (IaaS). Cloud providers 

such as Amazon EC2 (Amazon Web Services, Inc., 

n.d.a), IBM Cloud (IBM, n.d.), and Google Cloud 

Platform (Google Cloud, n.d.) made VMs available 

with different subscription models to meet the 

computing requirements of a broad range of 

applications. Despite having equivalent computing 

power, the price varies significantly across 

available subscription models for the same type of 

VMs. 

Based on subscription models, VMs can 

be categorized into three types: on-demand, 

reserved, and spot VMs (Amazon Web Services, 

Inc., n.d.b). Amazon Web Service (AWS) 

introduced spot instance (The terms “instance” and 

“Virtual Machine (VM)” are used interchangeably 

in this literature) in December 2009 to minimize the 

operational cost of unused computing capacity. The 

Google Cloud Platform (Google Cloud, n.d.) has 

recently presented preemptible VM instances 

similar to AWS's spot VMs. As mentioned earlier, 

on-demand instances are provisioned instantly and 

have the highest price among the three types. 

Reserved instances are offered at reduced prices but 
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with a long-term commitment. In the case of spot 

instances (SIs), cloud providers permitted users to 

bid for the resources and made spot VMs available 

to them until the bid price remained higher than the 

spot price. Spot prices vary dynamically based on 

demand and supply at a data center. 

Figure 1 depicts the variation in spot price 

within “us-west-1” region for “c1.xlarge" type of 

instance. If the spot price exceeds the user bid, the 

cloud provider can reclaim the SI without warning. 

Users can significantly reduce monetary costs by 

choosing spot VMs over on-demand and reserved 

instances to compute intensive divisible workloads 

such as video encoding, testing, data processing, 

web crawling, and scientific research (Amazon 

Web Services, Inc., n.d.b). Spot instances are 

available at a reduced price, but reliability risk is 

associated with them due to abrupt termination over 

irregular intervals. The intermittent nature of SIs 

results in disruption of task execution and increased 

turnaround time.  

 Various research studies have proposed 

fault-tolerant techniques, including migration, 

checkpointing, and job duplication, to tackle the 

inherent unreliability of computing systems (Yi, 

Andrzejak, & Kondo, 2012; Yi, Kondo, & 

Andrzejak, 2010; Wang, Huang, Vo, Chung, & 

Kintala, 1995; Voorsluys, & Buyya, 2012; 

Jangjaimon, & Tzeng, 2015; Goiri, Julia, Guitart, & 

Torres, 2010; Hussain, Znati, & Melhem, 2019; 

Yang, Khuller, Choudhary, Mitra, & Mahadik, 

2021). Checkpointing helps reduce task turnaround 

time and cost by saving the state of a process in 

execution periodically to reliable storage from 

where it can be restored in the future (Wang et al., 

1995). For SIs, the process can be restarted from 

its last checkpoint or the saved state when the 

instances become available after an out-of-bid 

situation. Checkpointing can be done either at the 

system level or the application level. Both 

approaches have their advantages and 

disadvantages. 

• Application level: In this technique, 

checkpointing and recovery operation is inserted 

in the application code so that the application 

stores and recovers its state whenever required. 

It does not hold the entire state of the system but 

the state of application only. Application-initiated 

checkpointing is more portable and efficient than 

system-level checkpointing. However, due to the 

setting in the application code, checkpointing 

operations can be performed only at fixed time 

intervals. 

• System level: Checkpointing is carried 

out at the level of the system, which is used to 

execute the application. It stores the state of the 

application along with the system state. It 

consumes more storage space as compared to the 

application level checkpointing. It facilitates users 

to take checkpoints at arbitrary intervals during the 

application's lifetime. It can be effective when 

kernel-level information is required during the 

recovery process.

 

 

Figure 1 Price variation for us-west-1, c1.xlarge instance type 
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Users can utilize spot instances with in-

memory checkpoints to increase reliability and 

reduce the time and cost of job execution (Hussain 

et al., 2019). These instances are further used for 

reducing the cost of machine learning task training 

(Yang et al., 2021), along with the utilization of 

efficient checkpointing algorithms. If the in-memory 

checkpoint node fails, recovery is not possible. 

Hence, users can recover from the checkpoint stored 

on the disk. Therefore, there is a need to design an 

efficient checkpointing algorithm that reduces the 

overhead of taking checkpoints and reduces the loss 

due to the revocation of spot instances.  

The rest of the paper is structured as 

follows. Section 1.1 highlights the literature review 

on resource provisioning and utilization in spot 

markets. Section 2 highlights the main objective of 

the research. The methodology or System model 

used to run applications with fault-tolerant 

mechanisms is described in Section 3. The 

description of the devised checkpointing strategy is 

presented in Section 4. The correctness of the 

proposed algorithm is shown in Section 5. The 

Result and Discussion section compares the design 

process's performance with other schemes (Section 

6). Finally, Section 7 presents the conclusion of the 

paper. 

 

1.1 Related Work 

Several attempts have been made to 

optimize the cost of scheduling applications on 

cloud resources (Chohan et al., 2010; Mattess, 

Vecchiola, & Buyya, 2010; Popovici, & Wilkes, 

2005; Song, Zafer, & Lee, 2012; Wu, Garg, & 

Buyya, 2012). Users can minimize job turnaround 

time and monetary charges using an optimal bidding 

strategy or an efficient fault-tolerant mechanism. 

Authors utilize the SIs to reduce the 

runtime of MapReduce tasks (Chohan et al., 2010). 

They have predicted the availability of SIs using the 

Markov chain. They describe using a fault-tolerant 

technique to overcome the adverse effect of SIs 

termination on running the MapReduce jobs. 

Hybrid cloud architectures can offload the 

peak load of an in-house cluster on SIs in the public 

cloud (Mattess, Vecchiola, & Buyya, 2010). They 

also examined the trade-off between cost 

conservation and several deadlines violations while 

using SIs compared to on-demand VM instances. 

The problem of job scheduling on the resources 

offered with uncertainty regarding their price 

variations and availability over time is addressed 

(Popovici, & Wilkes, 2005). 

Various attempts in literature have been 

made to analyze the behavior of Amazon’s spot 

pricing policy (Amazon Web Services, Inc., n.d.b) 

to develop price prediction models and bidding 

strategies (Agmon Ben-Yehuda, Ben-Yehuda, 

Schuster, & Tsafrir, 2013; Andrzejak, Kondo, & Yi, 

2010; Javadi, Thulasiramy, & Buyya, 2011). The 

authors used the spot price history provided by 

Amazon. Different variations of the Markov Chain 

Model are used to examine the variations in spot 

price (Chohan et al., 2010; Song, Zafer, & Lee, 

2012; Jangjaimon, & Tzeng, 2015). In the article 

(Agmon Ben-Yehuda, Ben-Yehuda, Schuster, & 

Tsafrir, 2013), the authors disassemble the approach 

of spot pricing utilized by Amazon to examine the 

same. They have claimed that current demand does 

not affect the spot price but is generated randomly 

by an internal reserve price mechanism. 

There has been constant work on using 

different variants of fault-tolerant techniques to 

reduce the monetary cost and turnaround time while 

using Sis (Goiri, Julia, Guitart, & Torres, 2010; 

Jangjaimon, & Tzeng, 2015; Yi, Kondo, & 

Andrzejak, 2010; Yi, Andrzejak, & Kondo, 2012; 

Voorsluys, & Buyya, 2012). The authors proposed 

an intelligent checkpointing-based infrastructure to 

reduce the checkpointing overhead (Goiri, Julia, 

Guitart, & Torres, 2010). They used Union File 

System to speed up the checkpointing process and 

Hadoop Distributed File System to store checkpoints 

for efficient recovery. They have demonstrated the 

effectiveness of the checkpointing mechanism in 

reducing job execution time. 

An adaptive checkpointing scheme to 

reduce the number of checkpoints against the 

primary checkpoint method (hour-boundary and 

rising edge-driven) is proposed by the authors in the 

paper (Yi, Kondo, & Andrzejak, 2010). After a 

constant time, interval, the proposed strategy 

decides whether to take or skip a checkpoint based 

on estimated recovery time. In the article (Yi, 

Andrzejak, & Kondo, 2012), the authors proposed a 

modified version of the existing checkpointing 

schemes. The decision to take or skip a checkpoint 

depends on the current spot price and failure 

probability of associated VMs. 

A formula is derived for calculating a job's 

required number of checkpoints, and an algorithm is 

proposed to minimize the execution cost concerning 
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checkpointing overhead (Di, Robert, Vivien, Kondo, 

Wang, & Cappello, 2013). The algorithm is dynamic 

enough to be adaptable, with a variable remaining 

workload and a varying failure probability. 

Evaluation of the approach is done in real 

environments with hundreds of VMs. 

The concept of Elastic Spot Instances has 

been suggested in which customers interrupt the 

instances (Dawoud, Takouna, & Meinel, 2012). In 

this strategy, when the spot price is more in 

comparison to the user’s bid price, instead of 

abruptly terminating the spot instances, the provider 

scales down the capacity allocated to the instances 

in proportion to the price increase. By eliminating 

the fragmentation of allocation (only full billable 

hours are now allocated instead of interrupting an 

execution in a middle of an hour time frame), this 

approach increases the provider’s revenue. The said 

approach encourages the checkpointing strategy to 

the optimum level. 

The authors provide an adaptive 

incremental checkpointing (AIC) strategy, which 

reduces the size of checkpoint files so that the 

overhead of checkpointing is lowered, decreasing 

the turnaround time (Jangjaimon, & Tzeng, 2013). 

The paper gives the concept of multilevel 

checkpointing with delta compression. They 

develop a Markov model to predict the performance 

of multilevel concurrent checkpointing. AIC utilizes 

an idle core from multicore systems for concurrent 

checkpointing. 

A checkpointing scheme based on price 

history has been suggested to reduce the task 

completion period (Jung, Chin, Chung, Yu, & Gil, 

2011). The proposed method depends on SLA to 

satisfy the user-level requirements. The authors 

calculated the price band to decide the suitable time 

for the checkpoint. However, their price indicator 

calculation differs from KBCS (Knowledge-Based 

Checkpointing Strategy). They have not considered 

the mean time between failure in the proposed 

technique. 

Authors propose an online extended 

consensus revenue estimation scheme in a recurrent, 

multi-unit, and single-price auction for IaaS cloud 

resources (Toosi, Vanmechelen, Khodadadi, & 

Buyya, 2016). The said approach is envy-free. The 

suggested approach is combined with the 

mechanism for computing reserve prices 

dynamically based on the power usage effectiveness 

of data centers and electricity costs. It is shown how 

the said approach improves the classical auction by 

simulation-based evaluation. To maximize profit, 

the authors value the history of VM's execution time. 

The proposed mechanism can get optimal revenue 

without requiring the history of bid distributions. 

The authors also provide an experimental study with 

a system prototype that confirms the validity of the 

proposed approach in the real world. 

An algorithm is designed for the execution 

of Hadoop systems in a dynamic public cloud (Chen, 

Lee, & Tang, 2014). This algorithm takes advantage 

of spot instances to improve the efficiency of active 

Hadoop systems. Authors propose auto scaling of 

VMs with migration algorithm to avail spot 

instances in the cloud. An experimental evaluation 

of the proposed strategy has been provided to prove 

that the algorithm can improve efficiency by a factor 

of 9.3x. 

Authors analyze SIs based on one-year 

price history at four data centers of Amazon’s EC2 

(Javadi, Thulasiram, & Buyya, 2013). They analyze 

the different SIs in respect of spot prices and the time 

between price changes to ascertain the time 

dynamics for the spot price in terms of hour-in-day 

and day-of-week. These two data series have been 

validated using a statistical model. The model is 

proposed with Gaussian distribution using three or 

four components of eight types of SIs. Validation of 

the model through simulation is done to prove that 

the proposed model accurately predicts the total cost 

of an active job on SIs. 

In the article, "Checkpointing as a service: 

enabling application-level checkpointing and 

migration in diverse cloud environments" (Cao, 

Simonin, Cooperman, & Morin, 2015), the authors 

propose a novel approach to facilitate application-

level checkpointing and migration in various cloud 

environments.  The approach depends on a 

mechanism for adding fault tolerance to the present 

cloud platform. The external checkpointing package 

is not dependent on the object platform, which is 

being used to get cloud-agnostic properties by the 

pro- posed approach. The devised cloud-agnostic 

checkpointing service (CACS) is validated through 

two cloud platforms: Snooze and OpenStack. The 

CACS is designed to provide a single checkpoint 

service for different cloud platforms, and it also 

supports migration from classical environments to 

the cloud. 

In the paper titled "Dynamic Resource 

Allocation Strategy for Spot Instances in Cloud 

Computing" (Sharma, Irwin, & Shenoy, 2016), 

authors suggest that when the spot instance price 
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becomes greater than the bidding price, users should 

search for resources elsewhere to execute the jobs 

despite waiting. The author's focus is not on 

optimizing bidding strategies but on modifying 

applications to search and move to low-cost 

resources. Thus, the authors tried to break the notion 

that the bidding strategies mainly affect the 

availability and cost of SIs. Spot price history shows 

that the availability and cost of SIs are mainly 

constant across a broad range of bids. 

In the article of Mishra, Umaro, & Yadav, 

(2018), a detailed literature survey has been 

provided. In the paper, it is suggested that fault 

tolerance of task execution can be improved by 

checkpointing the tasks’ progress at the optimal 

time, and for increasing the reliability of task 

execution on these instances, the bidding time of 

spot instances should be carefully chosen. A 

decision-based checkpointing strategy (DBCS) has 

been proposed in the paper (Mishra, Yadav, Kumar, 

& Jain, 2019b), using the machine learning 

technique for spot price prediction. The DBCS 

strategy is suitable only for divisible workloads into 

independent modules. 

A price prediction technique using kNN 

regression has been proposed by Liu, Wang, Meng, 

Zhao, & Zhang, (2020) for predicting the price of 

spot instances and bidding accordingly. The authors 

compared the performance of their proposed method 

with some other machine learning techniques. With 

the price prediction in advance, one can bid 

accordingly to retain the instance for the maximum 

time. Whenever the predicted price exceeds the 

user's limit, the task progress can be checkpointed 

using our proposed KBCS. 

According to Ramesh, Pradhan, & 

Lamkuche, (2021), the utilization of different cloud 

resources, their pricing mechanisms, and models. 

Fifteen pricing models have been analyzed to benefit 

consumers and providers. Authors have claimed that 

many more models need to come at the 

implementation level to provide profits to 

consumers and providers. A suitable pricing 

mechanism can be combined with the proposed 

checkpointing scheme to increase users' profit. 

A detailed survey on the use of preemptible 

cloud resources has been provided in the article of 

Deldari, & Salehan, (2021). Authors have presented 

several issues and challenges in using such types of 

resources. In the survey, it was claimed that the 

previous checkpointing schemes did not consider the 

utilization of spot instances. In contrast, our 

proposed scheme is solely based on the utilization of 

spot instances. 

The paper has predicted the price of spot 

instances using neural network techniques 

(Agarwal, Mishra, & Yadav, 2017). The technique 

uses the concept of recurrent neural networks for 

prediction. The limitation of the technique is that it 

is not adaptable to minor changes. One can combine 

the proposed checkpointing algorithm with the price 

prediction algorithm to have combined and better 

results.  

Mishra, Kesarwani, & Yadav, (2019a), 

proposed an approach for predicting the short-term 

price of spot instances has been devised. The price 

is predicted using the time series and probabilistic 

mechanism. The past prices of the instances have 

been used in the prediction. The algorithm is flexible 

enough to incorporate variations in the granularity of 

seconds or minutes. The proposed checkpointing 

algorithm can be combined with the price prediction 

algorithm and checkpoint the task whenever the 

predicted price lies above the predefined range.  

According to Hussain, Znati, & Melhem, 

(2019), an approach for in-memory checkpoints was 

proposed. Time to the checkpoint can be reduced by 

taking checkpoint in-memory, not in the disk. 

However, in case of failure of in-memory 

checkpointed nodes, which may occur for any 

reason, recovery is impossible. In such a situation, 

one has to recover from the checkpoint, which is 

stored on a disk.  

Alourani, & Kshemkalyani, (2020) 

proposed a mechanism for utilizing spot instances 

without any fault tolerance techniques in the article. 

The authors claim that the mechanism reduced the 

cost and time compared to the utilization of these 

instances with fault tolerance mechanisms. It has 

been suggested that with the employment of fault 

tolerance mechanisms, the overhead increased, 

increasing cost and time. The proposed 

checkpointing technique will be helpful when the 

loss due to the revocation of instances is more 

compared to the overhead that occurred in the 

involvement of the proposed checkpointing 

algorithm. 

According to Yang, Khuller, Choudhary, 

Mitra, & Mahadik, (2021), the spot instances are 

scheduled for training machine-learning jobs to 

reduce the cost of training. The authors have devised 

a linear programming-based polynomial time 

algorithm for analyzing the trade-off of 

computations that are interruptible/low-cost and 
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uninterruptible/high-cost. The authors claim that 

with the technique, they can reduce the budget from 

23% to 48% compared to the instances of the on-

demand type. They also support the utilization of 

checkpointing techniques to get better results in the 

use of spot instances. 

We can observe from the state-of-the-art 

survey that only a few authors have used real price 

history to propose a checkpointing scheme. 

Nevertheless, they have not considered MTBF 

(mean time between failure) to devise their schemes. 

All the other checkpointing techniques combine two 

fundamental techniques, namely Hourly 

Checkpointing and Rising-Edge Checkpointing 

strategies. Hence, we have compared our work only 

with these two basic schemes. 

2.  Objectives 

The paper's main contribution is to propose 

a checkpointing strategy to decide the suitable time 

to checkpoint the tasks' progress. More checkpoints 

will avoid loss due to revocation events, but at the 

same time, it will increase the overhead of 

checkpointing. The number of checkpoints may 

increase the loss during the revocation event. Hence, 

a balance in the number of checkpoints is required.  

In the proposed approach, checkpointing 

refers to system-level checkpointing since the 

checkpointing operations are not performed at fixed 

time intervals. Even in the case of intermittent 

failure due to out-of-bid situations, it is profitable to 

employ SIs to run compute-intensive jobs at a 

minimal price compared to on-demand and reserved 

VMs. This article uses a knowledge-based 

checkpointing scheme to minimize the number of 

checkpoints to reduce overall checkpointing 

overhead during task execution. The spot price 

history provided by Amazon EC2 (Amazon Web 

Services, Inc., n.d.a) is used to decide when to take 

a checkpoint during the lifetime of a task. Simulation 

results in Section 6 show that the proposed strategy 

outperforms the fundamental checkpointing 

strategy, namely the hourly and rising-edge 

checkpointing strategies (Yi, Kondo, & Andrzejak, 

2010; Yi, Andrzejak, & Kondo, 2012). 

 

3.  Methodology (Execution Model) 

In this section, the execution model of 

using spot instances with checkpointing schemes is 

described. Figure 2 shows how spot instances work 

with checkpointing. Users submit the spot request 

with its characteristics (i.e., number of instances, bid 

price, request type, Etc.). After submission of the 

request for spot instances, it becomes open to be 

fulfilled by any VM in the chosen availability zone. 

If the spot instance price is less than the user's bid 

price, the request will be fulfilled immediately; 

otherwise, it will remain open until the spot instance 

price becomes less than the user's bid price. Once a 

request becomes active, tasks can be assigned to the 

instance from the Amazon EBS (Amazon Web 

Services, n.d.c). 

  

 

Figure 2 Execution model of spot Instances with checkpointing 
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Amazon S3 and EBS provide elastic 

storage for durable and frequently accessed data. 

Amazon S3 can be accessed across regions, while 

Amazon EBS is accessible within a region. The 

storage service selection depends on the diversity of 

instances and the need for an application. Spot 

instance is allocated to the user as long as the user's 

bid price is above the price of the spot instance. 

When the spot instance’s price surges over 

the user’s bid price, the spot instance is revoked by 

the cloud provider, which is called an 'out-of-bid' 

situation. Amazon's spot pricing policy does not 

charge for partial hours unless the user initiates the 

termination. 

Checkpointing is widely used as a fault-

tolerant mechanism with spot instances. It consists 

of store and recovery operations. The computation 

progress is stored after an interval, which is decided 

by the acclimated checkpointing scheme. When the 

spot instance price goes down by the user’s bid 

price, the task's state is restored from the last 

checkpoint. However, the checkpointing operations 

also bring an overhead because the progress of tasks 

is paused during the checkpointing process. The 

total cost of the operation can be computed by 

considering the checkpointing and recovery 

overhead in case of failure. It also must consider the 

number of checkpoints and the number of times the 

recovery operation is performed. So the total cost of 

the operation can be defined as: 

 

Total Cost = ∑ 𝑃𝑖 + 𝑐 ∗ 𝑇𝑐 + 𝑟 ∗ 𝑇𝑟
𝑇
𝑖=𝑡   (1) 

Where T is the total time (in hours) for a 

job to execute on a selected spot instance, Pi is the 

spot price (in $) during the ith hour of task 

execution. Tc and Tr are checkpointing and 

recovery overhead, respectively. The unit of Tc and 

Tr is hours. c is the number of checkpoints, and r is 

the number of times recovery operation is 

performed during the lifetime of a job. The 

checkpointing overhead occurs when the decision is 

to checkpoint the tasks' progress. If the decision is 

not to checkpoint the tasks' progress, users must 

recover the task from the last checkpointed 

position—the recovery results in recovery 

overhead. A job can be in various states during its 

execution. Figure 3 describes the transition of a job 

through multiple states, i.e., Created (1), Ready (2), 

Waiting (3), Running (4), Failed (5), and 

Completed (6). 

Once the job is submitted to the broker, 

which forwards it to the resource provider, it will 

enter into the ready state. If the VM is available, the 

broker submits the job to the VM, so now the job 

will be running. Otherwise, it will be added to the 

waiting queue. From the waiting state, a job can 

enter into the running state as soon as the VM 

becomes available. During the job’s execution, the 

checkpoints will be taken according to the 

checkpointing strategy. If the job fails due to an out-

of-bid situation, the job is moved to the failed state. 

The broker added the job to the ready queue from 

the failed state. If the job successfully completes its 

execution, it will be moved to the completed state. 

 

 

 
Figure 3 Life cycle of a job 
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4.  Checkpointing Schemes with Spot Instances 

In this section, first, the existing 

checkpointing strategies used for comparison are 

described briefly. Then, the proposed knowledge-

based checkpointing mechanism is presented in 

detail. It is also described how the proposed 

approach uses the price history of SIs and weighted 

moving average to decide the time for 

checkpointing. 

a. Existing Checkpointing Schemes 

Various existing checkpointing schemes can be 

broadly classified into the following four categories: 

i. Hourly Checkpointing Strategy (HCS) 

In this strategy, the state of the running task is saved 

after a fixed time interval of one hour from the 

starting point of execution. Since spot instances are 

charged hourly and the partial hour is not to be paid, 

it's the most instinctive way to create checkpoints 

at the hour boundary. The recovery time is 

minimized; however, the number of checkpoints 

increases for large-size jobs. The large-size jobs are 

the jobs having longer execution times. So, it 

requires many hours to complete the job. At each 

hour, one checkpoint will result in more 

checkpoints. 

ii. Rising-Edge Checkpointing Strategy 

(RECS) 

In this scheme, the checkpoint is taken whenever the 

spot price increases during the lifetime of the job. An 

increase in the spot price shrinks the gap between the 

user bid and the current spot price, consequently 

increasing the chances of an out-of-bid situation 

soon. In the case of frequent spikes (i.e.,          rising edge) 

in the spot price, RECS results in more checkpoints, 

while the recovery overhead increases if the spikes 

occur infrequently. 

 

iii. Checkpointing Combinations 

The above checkpointing schemes can be combined 

to generate other different types of checkpointing 

strategies. One example is the adaptive 

checkpointing strategy. This strategy decides 

whether to take or skip a checkpoint at every hour 

boundary (for HCS) or at every rising edge (for 

RECS). This decision seriously impacts the recovery 

time and hence execution time of a running task in 

case of failures. Some other examples are adaptive 

HCS, adaptive RECS, hour boundary, rising edge-

driven checkpointing, etc. 

b. Devised Checkpointing Scheme 

Our designed checkpointing scheme in this 

article is named a Knowledge-Based Checkpointing 

Scheme (KBCS). In KBCS, the decision to take a 

checkpoint is made by analyzing the spot price 

history of spot instances. The proposed strategy 

improves the shortcomings of RECS and HCS by 

considering the rising edges in the spot price, which 

are above a critical point, estimated using 

knowledge of price history. The 

checkpoint_indicator denotes the critical point. 

Algorithm 1 shows the steps involved in 

analyzing the price history and taking the checkpoint 

accordingly. The weighted moving average (wma) is 

used to predict the range of spot prices  in the 

upcoming duration. The weighted average is 

preferred to emphasize the recent spot price 

variation, which estimates a more accurate bound to 

decide whether to take or skip a checkpoint. 

wmamiddle_band with the user's bid is used to calculate 

the critical point. Mean-time-between-failure 

(MTBF) is also incorporated to consider checkpoints 

near the average lifetime of spot VMs. The MTBF 

is obtained by dividing the number of operational 

hours by the number of failures.
Table 1 Notation Table 

Symbol Description 

Tbegin Beginning time of the learning window 

Tend   Ending time of learning window 

N Number of Duration in which learning window is divided 

D Length of each duration 

Tbegin   Beginning time of each duration 

Tend Ending time of each duration 

checkpoint_indicator   Critical point 

Wma Weighted moving average 

MTBF Mean time between failure 

minDi Minimum price in duration Di 

Α Weight factor used to give more impact on the most recent price 
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Algorithm 1 Knowledge-Based Checkpointing Strategy 

1. while (Jremaining_time > 0 & 𝑡𝜖[𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑 ] )  

 

2. if(checkpoint_indicator
N+1

 is not set)   

 

3. for  ∀ 𝐷𝑖  , 1 ≤ 𝑖 ≤ 𝑁      

4. middle_band
i
= 

user_bid - minDi

2
  

5. end for 

6. wmamiddle_band 
<Tbegin,Tend>

= 
∑ αi middle_bandi 

N
i=1

∑ iN
i=1

,   

where α is the weight factor  

7. checkpoint_indicator
N+1

=wmamiddle_band
<Tstart,   Tend >

 

8. end if 

9. if (spot_pricet-1 < spot_pricet &  

          (user_bid – spot_pricet) <  

                             checkpoint_indicatorN+1)  

                              | (t-last_checkpoint)≥ MTBF) 

10.                 take_checkpoint 

11.            else 

12.                 skip_checkpoint  

13.        end if   

14.    end while 

 

Various notations used in Algorithm 1 

have been listed in Table 1. In step 1, loop 

condition,  

 

 Jremaining_time > 0  

 & tϵ[t_(N+1)^begin, t_(N+1)^end],  

 

denotes that the loop will be executed till processing 

time remains, and t lies in between or at the 

beginning and end time of each duration. The 

checking of whether the checkpoint_indicator is 

being set for the current duration or not is done in 

Step 2. If it is not set, steps 3, 5, 6, and 7 are 

executed. A loop will be executed for every 

duration to calculate the middle band 

(middle_band), which is computed using the 

formula mentioned in step 4. The calculation of the 

weighted moving average (wmamiddle_band) is 

done in Step 6. In step 7, checkpoint_indicatori is 

calculated using user_bid and wmamiddle_band. 

The checking of whether the rising edge is above 

the critical point or not is done in Step 9; if it is, then 

the checkpoint is taken; otherwise, the checkpoint 

is skipped. In this step, it has also been checked that 

the last checkpoint time is greater than or equal to 

MTBF; if it is, then the checkpoint is taken; 

otherwise, the checkpoint is skipped. 

 

5.  Correctness of Algorithm 

To prove the correctness of Algorithm 1, 

the following precondition, loop invariant, and 

postcondition are identified. 

 

Pre-condition (P):  

Jremaining_time = Jprocessing_time  

and 𝒕 =  𝒕𝒃𝒆𝒈𝒊𝒏
𝑵+𝟏  

 

Loop-invariant (I):  

Jremaining_time >0 and checkpoint_indicator 

(critical point) is set and necessary checkpoints are 

taken ∀𝑡𝜖[𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑 ]  

 

Loop-condition (C): 

Jremaining_time > 0 & 𝒕𝝐[𝒕𝑵+𝟏
𝒃𝒆𝒈𝒊𝒏

, 𝒕𝑵+𝟏
𝒆𝒏𝒅 ]  

 

Post-condition (Q): 

Jremaining_time=0|| 𝑡 ∉ [𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑 ] 

• The loop invariant I is accurate at the 

beginning, which means that P ⇒ I, as 

Jremaining_time = Jprocessing_time>0, and 
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since 𝑡 =  𝑡𝑏𝑒𝑔𝑖𝑛
𝑁+1  , so checkpoint_indicator 

(critical point) is set, and necessary 

checkpoints are taken ∀𝒕𝝐[𝒕𝑵+𝟏
𝒃𝒆𝒈𝒊𝒏

, 𝒕𝑵+𝟏
𝒆𝒏𝒅 ]  

• I and C are true before executing 

Algorithm1, and I remain true after the I and 

C are true before executing Algorithm1. I 

remain true after the execution of 

Algorithm1 (I∧C 
𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏
→         I), as there is no 

decrement in processing time before the 

execution of Algorithm1 and initially 𝒕 =

 𝒕𝒃𝒆𝒈𝒊𝒏
𝑵+𝟏 .  

• When C becomes false, I inferred the 

postcondition Q (𝐼 ∧  c̅   ⟹ 𝑄) as c̅ means 

Jremaining_time ≯  0 or 𝑡 ∉ [𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑 ].  

• After each loop iteration, the t will get closer 

to 𝑡𝑁+1
𝑒𝑛𝑑 , so the remaining number of required 

iterations decreases. 

• If C is true, then at least one iteration of the 

loop remains to be executed, as the 

postcondition will be valid when C becomes 

false. 

From the above five points, it can be 

concluded that Algorithm 1 is formally correct.  

 

6.  Results and Discussion (Performance 

Evaluation) 

The execution time of the KBCS algorithm 

is in the order of N. There are two loops in the KBCS 

algorithm. The outer loop will be executed only for 

the job's remaining time. The inner loop will be 

executed as many times as the number of durations 

in which the learning window is divided. Within the 

learning window, the complexity will be linear in 

terms of the number of durations (N). For the whole 

task, the complexity will be N *length of the 

learning window. Here we assume that the task will 

only be processed within the learning window. 

The CloudSim (Calheiros, Ranjan, 

Beloglazov, De Rose, & Buyya, 2011) simulator 

has been extended to model the spot instances. 

The addition of SpotBroker, 

SpotDatacenter, SpotCharacteristics,  and 

VmSpot entities are performed to the existing 

CloudSim package.  

SpotBroker: The spotBroker component is 

responsible for job failures, job admission, and job 

execution. 

 

SpotDatacenter: The spotDatacenter component is 

extended to perform price monitoring, bill 

generation, and checkpointing operations. 

 

SpotRequestCharacteristics: This entity models 

the spot request characteristics (i.e., number of 

instances, bid value, instance type, type of request, 

etc.). 

 

VmSpot: The VM entity of the Cloudsim package is 

extended to support spot VM characteristics (i.e., 

state, bid price, etc.). 

 

 Figure 4 depicts the sequence of events 

that occurred during the simulation process. After 

the creation of DatacenterSpot, SpotBroker, Spot 

Requests, and Cloudlets (entity models the job or 

task in clouds), a Spot request is submitted to 

SpotBroker. It requests the spot instances from the 

DatacenterSpot. When the spot price goes down, 

the user's bid price and the SIs are assigned to the 

user. Once the spot instance is assigned, SpotBroker 

submits the job to the SpotDatacenter. 

Various internal events (i.e., price 

monitoring, bill generation, checkpointing) are 

processed within the SpotDatacenter during the 

execution of the job until the out-of-bid event 

occurs. The time interval between the two price 

monitoring events is called inter-price time. The 

checkpointing event is invoked by the 

checkpointing strategy, which is used within the 

DatacenterSpot. Since Amazon EC2 charges spot 

instances on an hourly basis, the cost of using SIs is 

sent to SpotBroker at a regular interval of one hour. 

When SI fails due to an out-of-bid situation, the 

partially completed job is returned to the 

SpotBroker. This process is repeated until all the 

jobs are completed. Once all the jobs are completed, 

they will be returned to the user along with the total 

cost
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Figure 4 Simulation model 

 

To evaluate the performance of KBCS, 

the spot price history (Amazon EC2 provides spot 

price history for the last three months across all data 

centers. We have used the price history from Dec 

2018 to Mar 2019 within the us-west datacenter) is 

obtained from Amazon EC2 (Amazon Web 

Services, Inc., n.d.a). The spot price history from 

Dec 2018 to Mar 2019 is used for the estimation of 

checkpoint_indicator for the upcoming duration. 

Table 2 shows the minimum price, maximum price, 

and mean price inspected, during the observation 

period (i.e., from Dec 2018 to Mar 2019). A near 

minimum value (0.0152$) is used as bid value (ub) 

during the simulation. The on-demand price for the 

similar instance type in “us-west” data center is 

observed as 0.12$, which is very high as compared 

to the mean spot price. The size of duration varies 

according to the job size. Job size is the total time 

to execute without failure on a selected VM. It 

varies from 25 hours to 125 hours with a granularity 

of 25. The total cost of job execution depends on the 

number of checkpoints, as described in Equation 1. 

A job running on a spot instance is called successful 

or completed if the spot price of that instance 

remains under the user’s bid price throughout the 

lifetime of the job. The following metrics are used 

to compare the effectiveness of using spot VMs over 

on-demand instances. 

 

• Reliability: The reliability (R) for a job 

type can be defined as: 

 

                        R=
Number of successful jobs

Total number of jobs
    

• Cost saving: The cost saving for a job Jδ, 

started running on a VM type i at time t : 

 

       Cost Saving = ∑ Oi-Si(t+h)*F(t)δ
h=0         (3) 

 

Where Oi is the on-demand price of VM 

type i, where Si is the spot price of VM type i, h is 

the time interval in hours, and F(t) is the status 

function that shows the availability of VMs. F (t) 

can be one if the VM is available; otherwise, zero. 
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Table 2 Spot Price information 

Min Price($) 0.0140 

Max Price($) 1.2600 

Mean Price($) 0.0242 

Bid Value($) 0.0152 

 

 

Job Size vs. Number of Checkpoints 

required is plotted in Figure 5. In the graph, the X 

axis represents job size in hours, and the Y axis 

represents the number of checkpoints taken during 

the execution of jobs. It can be observed from the 

figure that the proposed KBCS requires less number 

of checkpoints in comparison to the number of 

checkpoints required in HCS and RECS.
 

 

Figure 5 Job size vs. Number of checkpoints 

 

 
Figure 6 Job size vs. Turnaround time 
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Figure 7 Impact of number of jobs on total cost & reliability 

 

Figure 6 shows the Job Size vs. 

Turnaround time graph. The graph's X-axis 

represents the job size in hours,  and the Y-axis 

represents t h e  turnaround time in seconds. It 

signifies that KBCS outperforms HCS and RECS 

regarding turnaround time for a job size varying 

from 25 hours to 65 hours. Results show that KBCS 

results in 18% and 9% less turnaround time 

compared to the HCS and RECS, respectively. The 

difference between the turnaround time across the 

three strategies increases as the number of jobs 

varies from 25 to 65. Figure 7 shows the effect of 

the number of jobs on the total cost and reliability of 

the VM on which the job is executed. In the figure, 

X and Y axis both represent the number of jobs. 

Results show that even with a minimum bidding 

policy, one can achieve 54% to 78% reliability with 

a bottom-line cost saving of 78% using spot 

instances, as the number of jobs varies from 15 to 

55. As the number of jobs increases, the number of 

completed jobs increases rapidly compared to the 

failed jobs.

 

Figure 8 Number of jobs vs. Cost saved 
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Figure 8 depicts the cost saving for 

different job sizes on spot instances compared to 

the on-demand VMs. In the figure, X-axis 

represents the number of jobs, and Y axis 

represents the percentage of cost saved. The size of 

the job is fixed at 7 hours, and the number of jobs 

varies from 15 to 95 during the simulation. 

 

7.  Conclusion 

This paper proposes a knowledge-based 

checkpointing strategy (KBCS) to minimize the 

overall checkpointing overhead. An algorithm for 

KBCS is presented. The correctness of the 

algorithm is verified. Results show that the 

proposed strategy outperforms the existing 

strategies (i.e., HCS and RECS) regarding overall 

checkpointing overhead within the job lifetime. It 

reduces the turnaround time by 18% compared to 

Hourly Checkpointing Strategy and 9% compared 

to Rising-Edge Checkpointing Strategy. One can 

also achieve 54% to 78% reliability with a cost 

saving of 78% for the workload used with the 

devised knowledge-based checkpointing 

algorithm. As part of our future work, we are 

examining the behavior of the proposed strategy 

across different types of instances and regions. We 

have also considered migration with our 

checkpointing approach to reduce job completion 

time further. 
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