
Journal of Current Science and Technology, May-August 2023 Vol. 13 No. 2, pp. 412-427

Copyright ©2018-2023, Rangsit University ISSN 2630-0656 (Online)

Cite this article: Tomar, S., Mishra, A. K., & Yadav, D. K. (2023, May). Knowledge-based checkpointing

strategy for spot instances in cloud computing. Journal of Current Science and Technology, 13(2), 412-427.

https://doi.org/10.59796/jcst.V13N2.2023.1754

412

Knowledge-based checkpointing strategy for spot instances in cloud computing

Sumit Tomar, Ashish Kumar Mishra*, and Dharmendra K Yadav

Computer Science and Engineering Department, Motilal Nehru National Institute of Technology Allahabad,

Prayagraj, U. P. India, 211004

*Corresponding Author; E-mail: ashish.rcs51@gmail.com

Received 29 August 2022; Revised 21 February 2023; Accepted 16 March 2023;

Published online 15 July 2023

Abstract

The Amazon EC2 offers spot-priced virtual machines (VMs) at a reduced price compared to on-demand and

reserved VMs. However, Amazon EC2 can terminate these VMs anytime due to the spot price and demand fluctuation.

Using spot VMs results in a longer execution time and disrupts service availability. Users can use fault-tolerant techniques

such as checkpointing, migration, and job duplication to mitigate the unreliability of spot VMs. In this paper, a knowledge-

based checkpointing strategy is proposed to minimize the overall checkpointing overhead during the execution of jobs.

The proposed scheme uses real-time price history to decide when to take a checkpoint. Results show that the proposed

approach can significantly reduce the turnaround time by 18% compared to Hourly Checkpointing Strategy and 9%

compared to Rising-Edge Checkpointing Strategy. One can also achieve 54% to 78% reliability with a cost saving of 78%

for the workload used with the described approach.

Keywords: checkpointing; cloud computing; fault tolerance; spot instances

1. Introduction

 The evolution of cloud computing has

made the long-held dream of utility computing a

reality by offering resilient computing resources,

platforms, and software as services using the pay-

per-use model (Buyya, Yeo, Venugopal, Broberg,

& Brandic, 2009). Cloud providers provide raw

computing resources, i.e., computing capacity,

storage, and network as services in the form of

Virtual Machines (VMs), which can also be called

Infrastructure-as-a-Service (IaaS). Cloud providers

such as Amazon EC2 (Amazon Web Services, Inc.,

n.d.a), IBM Cloud (IBM, n.d.), and Google Cloud

Platform (Google Cloud, n.d.) made VMs available

with different subscription models to meet the

computing requirements of a broad range of

applications. Despite having equivalent computing

power, the price varies significantly across

available subscription models for the same type of

VMs.

Based on subscription models, VMs can

be categorized into three types: on-demand,

reserved, and spot VMs (Amazon Web Services,

Inc., n.d.b). Amazon Web Service (AWS)

introduced spot instance (The terms “instance” and

“Virtual Machine (VM)” are used interchangeably

in this literature) in December 2009 to minimize the

operational cost of unused computing capacity. The

Google Cloud Platform (Google Cloud, n.d.) has

recently presented preemptible VM instances

similar to AWS's spot VMs. As mentioned earlier,

on-demand instances are provisioned instantly and

have the highest price among the three types.

Reserved instances are offered at reduced prices but

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

413

with a long-term commitment. In the case of spot

instances (SIs), cloud providers permitted users to

bid for the resources and made spot VMs available

to them until the bid price remained higher than the

spot price. Spot prices vary dynamically based on

demand and supply at a data center.

Figure 1 depicts the variation in spot price

within “us-west-1” region for “c1.xlarge" type of

instance. If the spot price exceeds the user bid, the

cloud provider can reclaim the SI without warning.

Users can significantly reduce monetary costs by

choosing spot VMs over on-demand and reserved

instances to compute intensive divisible workloads

such as video encoding, testing, data processing,

web crawling, and scientific research (Amazon

Web Services, Inc., n.d.b). Spot instances are

available at a reduced price, but reliability risk is

associated with them due to abrupt termination over

irregular intervals. The intermittent nature of SIs

results in disruption of task execution and increased

turnaround time.

 Various research studies have proposed

fault-tolerant techniques, including migration,

checkpointing, and job duplication, to tackle the

inherent unreliability of computing systems (Yi,

Andrzejak, & Kondo, 2012; Yi, Kondo, &

Andrzejak, 2010; Wang, Huang, Vo, Chung, &

Kintala, 1995; Voorsluys, & Buyya, 2012;

Jangjaimon, & Tzeng, 2015; Goiri, Julia, Guitart, &

Torres, 2010; Hussain, Znati, & Melhem, 2019;

Yang, Khuller, Choudhary, Mitra, & Mahadik,

2021). Checkpointing helps reduce task turnaround

time and cost by saving the state of a process in

execution periodically to reliable storage from

where it can be restored in the future (Wang et al.,

1995). For SIs, the process can be restarted from

its last checkpoint or the saved state when the

instances become available after an out-of-bid

situation. Checkpointing can be done either at the

system level or the application level. Both

approaches have their advantages and

disadvantages.

• Application level: In this technique,

checkpointing and recovery operation is inserted

in the application code so that the application

stores and recovers its state whenever required.

It does not hold the entire state of the system but

the state of application only. Application-initiated

checkpointing is more portable and efficient than

system-level checkpointing. However, due to the

setting in the application code, checkpointing

operations can be performed only at fixed time

intervals.

• System level: Checkpointing is carried

out at the level of the system, which is used to

execute the application. It stores the state of the

application along with the system state. It

consumes more storage space as compared to the

application level checkpointing. It facilitates users

to take checkpoints at arbitrary intervals during the

application's lifetime. It can be effective when

kernel-level information is required during the

recovery process.

Figure 1 Price variation for us-west-1, c1.xlarge instance type

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

414

Users can utilize spot instances with in-

memory checkpoints to increase reliability and

reduce the time and cost of job execution (Hussain

et al., 2019). These instances are further used for

reducing the cost of machine learning task training

(Yang et al., 2021), along with the utilization of

efficient checkpointing algorithms. If the in-memory

checkpoint node fails, recovery is not possible.

Hence, users can recover from the checkpoint stored

on the disk. Therefore, there is a need to design an

efficient checkpointing algorithm that reduces the

overhead of taking checkpoints and reduces the loss

due to the revocation of spot instances.

The rest of the paper is structured as

follows. Section 1.1 highlights the literature review

on resource provisioning and utilization in spot

markets. Section 2 highlights the main objective of

the research. The methodology or System model

used to run applications with fault-tolerant

mechanisms is described in Section 3. The

description of the devised checkpointing strategy is

presented in Section 4. The correctness of the

proposed algorithm is shown in Section 5. The

Result and Discussion section compares the design

process's performance with other schemes (Section

6). Finally, Section 7 presents the conclusion of the

paper.

1.1 Related Work

Several attempts have been made to

optimize the cost of scheduling applications on

cloud resources (Chohan et al., 2010; Mattess,

Vecchiola, & Buyya, 2010; Popovici, & Wilkes,

2005; Song, Zafer, & Lee, 2012; Wu, Garg, &

Buyya, 2012). Users can minimize job turnaround

time and monetary charges using an optimal bidding

strategy or an efficient fault-tolerant mechanism.

Authors utilize the SIs to reduce the

runtime of MapReduce tasks (Chohan et al., 2010).

They have predicted the availability of SIs using the

Markov chain. They describe using a fault-tolerant

technique to overcome the adverse effect of SIs

termination on running the MapReduce jobs.

Hybrid cloud architectures can offload the

peak load of an in-house cluster on SIs in the public

cloud (Mattess, Vecchiola, & Buyya, 2010). They

also examined the trade-off between cost

conservation and several deadlines violations while

using SIs compared to on-demand VM instances.

The problem of job scheduling on the resources

offered with uncertainty regarding their price

variations and availability over time is addressed

(Popovici, & Wilkes, 2005).

Various attempts in literature have been

made to analyze the behavior of Amazon’s spot

pricing policy (Amazon Web Services, Inc., n.d.b)

to develop price prediction models and bidding

strategies (Agmon Ben-Yehuda, Ben-Yehuda,

Schuster, & Tsafrir, 2013; Andrzejak, Kondo, & Yi,

2010; Javadi, Thulasiramy, & Buyya, 2011). The

authors used the spot price history provided by

Amazon. Different variations of the Markov Chain

Model are used to examine the variations in spot

price (Chohan et al., 2010; Song, Zafer, & Lee,

2012; Jangjaimon, & Tzeng, 2015). In the article

(Agmon Ben-Yehuda, Ben-Yehuda, Schuster, &

Tsafrir, 2013), the authors disassemble the approach

of spot pricing utilized by Amazon to examine the

same. They have claimed that current demand does

not affect the spot price but is generated randomly

by an internal reserve price mechanism.

There has been constant work on using

different variants of fault-tolerant techniques to

reduce the monetary cost and turnaround time while

using Sis (Goiri, Julia, Guitart, & Torres, 2010;

Jangjaimon, & Tzeng, 2015; Yi, Kondo, &

Andrzejak, 2010; Yi, Andrzejak, & Kondo, 2012;

Voorsluys, & Buyya, 2012). The authors proposed

an intelligent checkpointing-based infrastructure to

reduce the checkpointing overhead (Goiri, Julia,

Guitart, & Torres, 2010). They used Union File

System to speed up the checkpointing process and

Hadoop Distributed File System to store checkpoints

for efficient recovery. They have demonstrated the

effectiveness of the checkpointing mechanism in

reducing job execution time.

An adaptive checkpointing scheme to

reduce the number of checkpoints against the

primary checkpoint method (hour-boundary and

rising edge-driven) is proposed by the authors in the

paper (Yi, Kondo, & Andrzejak, 2010). After a

constant time, interval, the proposed strategy

decides whether to take or skip a checkpoint based

on estimated recovery time. In the article (Yi,

Andrzejak, & Kondo, 2012), the authors proposed a

modified version of the existing checkpointing

schemes. The decision to take or skip a checkpoint

depends on the current spot price and failure

probability of associated VMs.

A formula is derived for calculating a job's

required number of checkpoints, and an algorithm is

proposed to minimize the execution cost concerning

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

415

checkpointing overhead (Di, Robert, Vivien, Kondo,

Wang, & Cappello, 2013). The algorithm is dynamic

enough to be adaptable, with a variable remaining

workload and a varying failure probability.

Evaluation of the approach is done in real

environments with hundreds of VMs.

The concept of Elastic Spot Instances has

been suggested in which customers interrupt the

instances (Dawoud, Takouna, & Meinel, 2012). In

this strategy, when the spot price is more in

comparison to the user’s bid price, instead of

abruptly terminating the spot instances, the provider

scales down the capacity allocated to the instances

in proportion to the price increase. By eliminating

the fragmentation of allocation (only full billable

hours are now allocated instead of interrupting an

execution in a middle of an hour time frame), this

approach increases the provider’s revenue. The said

approach encourages the checkpointing strategy to

the optimum level.

The authors provide an adaptive

incremental checkpointing (AIC) strategy, which

reduces the size of checkpoint files so that the

overhead of checkpointing is lowered, decreasing

the turnaround time (Jangjaimon, & Tzeng, 2013).

The paper gives the concept of multilevel

checkpointing with delta compression. They

develop a Markov model to predict the performance

of multilevel concurrent checkpointing. AIC utilizes

an idle core from multicore systems for concurrent

checkpointing.

A checkpointing scheme based on price

history has been suggested to reduce the task

completion period (Jung, Chin, Chung, Yu, & Gil,

2011). The proposed method depends on SLA to

satisfy the user-level requirements. The authors

calculated the price band to decide the suitable time

for the checkpoint. However, their price indicator

calculation differs from KBCS (Knowledge-Based

Checkpointing Strategy). They have not considered

the mean time between failure in the proposed

technique.

Authors propose an online extended

consensus revenue estimation scheme in a recurrent,

multi-unit, and single-price auction for IaaS cloud

resources (Toosi, Vanmechelen, Khodadadi, &

Buyya, 2016). The said approach is envy-free. The

suggested approach is combined with the

mechanism for computing reserve prices

dynamically based on the power usage effectiveness

of data centers and electricity costs. It is shown how

the said approach improves the classical auction by

simulation-based evaluation. To maximize profit,

the authors value the history of VM's execution time.

The proposed mechanism can get optimal revenue

without requiring the history of bid distributions.

The authors also provide an experimental study with

a system prototype that confirms the validity of the

proposed approach in the real world.

An algorithm is designed for the execution

of Hadoop systems in a dynamic public cloud (Chen,

Lee, & Tang, 2014). This algorithm takes advantage

of spot instances to improve the efficiency of active

Hadoop systems. Authors propose auto scaling of

VMs with migration algorithm to avail spot

instances in the cloud. An experimental evaluation

of the proposed strategy has been provided to prove

that the algorithm can improve efficiency by a factor

of 9.3x.

Authors analyze SIs based on one-year

price history at four data centers of Amazon’s EC2

(Javadi, Thulasiram, & Buyya, 2013). They analyze

the different SIs in respect of spot prices and the time

between price changes to ascertain the time

dynamics for the spot price in terms of hour-in-day

and day-of-week. These two data series have been

validated using a statistical model. The model is

proposed with Gaussian distribution using three or

four components of eight types of SIs. Validation of

the model through simulation is done to prove that

the proposed model accurately predicts the total cost

of an active job on SIs.

In the article, "Checkpointing as a service:

enabling application-level checkpointing and

migration in diverse cloud environments" (Cao,

Simonin, Cooperman, & Morin, 2015), the authors

propose a novel approach to facilitate application-

level checkpointing and migration in various cloud

environments. The approach depends on a

mechanism for adding fault tolerance to the present

cloud platform. The external checkpointing package

is not dependent on the object platform, which is

being used to get cloud-agnostic properties by the

pro- posed approach. The devised cloud-agnostic

checkpointing service (CACS) is validated through

two cloud platforms: Snooze and OpenStack. The

CACS is designed to provide a single checkpoint

service for different cloud platforms, and it also

supports migration from classical environments to

the cloud.

In the paper titled "Dynamic Resource

Allocation Strategy for Spot Instances in Cloud

Computing" (Sharma, Irwin, & Shenoy, 2016),

authors suggest that when the spot instance price

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

416

becomes greater than the bidding price, users should

search for resources elsewhere to execute the jobs

despite waiting. The author's focus is not on

optimizing bidding strategies but on modifying

applications to search and move to low-cost

resources. Thus, the authors tried to break the notion

that the bidding strategies mainly affect the

availability and cost of SIs. Spot price history shows

that the availability and cost of SIs are mainly

constant across a broad range of bids.

In the article of Mishra, Umaro, & Yadav,

(2018), a detailed literature survey has been

provided. In the paper, it is suggested that fault

tolerance of task execution can be improved by

checkpointing the tasks’ progress at the optimal

time, and for increasing the reliability of task

execution on these instances, the bidding time of

spot instances should be carefully chosen. A

decision-based checkpointing strategy (DBCS) has

been proposed in the paper (Mishra, Yadav, Kumar,

& Jain, 2019b), using the machine learning

technique for spot price prediction. The DBCS

strategy is suitable only for divisible workloads into

independent modules.

A price prediction technique using kNN

regression has been proposed by Liu, Wang, Meng,

Zhao, & Zhang, (2020) for predicting the price of

spot instances and bidding accordingly. The authors

compared the performance of their proposed method

with some other machine learning techniques. With

the price prediction in advance, one can bid

accordingly to retain the instance for the maximum

time. Whenever the predicted price exceeds the

user's limit, the task progress can be checkpointed

using our proposed KBCS.

According to Ramesh, Pradhan, &

Lamkuche, (2021), the utilization of different cloud

resources, their pricing mechanisms, and models.

Fifteen pricing models have been analyzed to benefit

consumers and providers. Authors have claimed that

many more models need to come at the

implementation level to provide profits to

consumers and providers. A suitable pricing

mechanism can be combined with the proposed

checkpointing scheme to increase users' profit.

A detailed survey on the use of preemptible

cloud resources has been provided in the article of

Deldari, & Salehan, (2021). Authors have presented

several issues and challenges in using such types of

resources. In the survey, it was claimed that the

previous checkpointing schemes did not consider the

utilization of spot instances. In contrast, our

proposed scheme is solely based on the utilization of

spot instances.

The paper has predicted the price of spot

instances using neural network techniques

(Agarwal, Mishra, & Yadav, 2017). The technique

uses the concept of recurrent neural networks for

prediction. The limitation of the technique is that it

is not adaptable to minor changes. One can combine

the proposed checkpointing algorithm with the price

prediction algorithm to have combined and better

results.

Mishra, Kesarwani, & Yadav, (2019a),

proposed an approach for predicting the short-term

price of spot instances has been devised. The price

is predicted using the time series and probabilistic

mechanism. The past prices of the instances have

been used in the prediction. The algorithm is flexible

enough to incorporate variations in the granularity of

seconds or minutes. The proposed checkpointing

algorithm can be combined with the price prediction

algorithm and checkpoint the task whenever the

predicted price lies above the predefined range.

According to Hussain, Znati, & Melhem,

(2019), an approach for in-memory checkpoints was

proposed. Time to the checkpoint can be reduced by

taking checkpoint in-memory, not in the disk.

However, in case of failure of in-memory

checkpointed nodes, which may occur for any

reason, recovery is impossible. In such a situation,

one has to recover from the checkpoint, which is

stored on a disk.

Alourani, & Kshemkalyani, (2020)

proposed a mechanism for utilizing spot instances

without any fault tolerance techniques in the article.

The authors claim that the mechanism reduced the

cost and time compared to the utilization of these

instances with fault tolerance mechanisms. It has

been suggested that with the employment of fault

tolerance mechanisms, the overhead increased,

increasing cost and time. The proposed

checkpointing technique will be helpful when the

loss due to the revocation of instances is more

compared to the overhead that occurred in the

involvement of the proposed checkpointing

algorithm.

According to Yang, Khuller, Choudhary,

Mitra, & Mahadik, (2021), the spot instances are

scheduled for training machine-learning jobs to

reduce the cost of training. The authors have devised

a linear programming-based polynomial time

algorithm for analyzing the trade-off of

computations that are interruptible/low-cost and

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

417

uninterruptible/high-cost. The authors claim that

with the technique, they can reduce the budget from

23% to 48% compared to the instances of the on-

demand type. They also support the utilization of

checkpointing techniques to get better results in the

use of spot instances.

We can observe from the state-of-the-art

survey that only a few authors have used real price

history to propose a checkpointing scheme.

Nevertheless, they have not considered MTBF

(mean time between failure) to devise their schemes.

All the other checkpointing techniques combine two

fundamental techniques, namely Hourly

Checkpointing and Rising-Edge Checkpointing

strategies. Hence, we have compared our work only

with these two basic schemes.

2. Objectives

The paper's main contribution is to propose

a checkpointing strategy to decide the suitable time

to checkpoint the tasks' progress. More checkpoints

will avoid loss due to revocation events, but at the

same time, it will increase the overhead of

checkpointing. The number of checkpoints may

increase the loss during the revocation event. Hence,

a balance in the number of checkpoints is required.

In the proposed approach, checkpointing

refers to system-level checkpointing since the

checkpointing operations are not performed at fixed

time intervals. Even in the case of intermittent

failure due to out-of-bid situations, it is profitable to

employ SIs to run compute-intensive jobs at a

minimal price compared to on-demand and reserved

VMs. This article uses a knowledge-based

checkpointing scheme to minimize the number of

checkpoints to reduce overall checkpointing

overhead during task execution. The spot price

history provided by Amazon EC2 (Amazon Web

Services, Inc., n.d.a) is used to decide when to take

a checkpoint during the lifetime of a task. Simulation

results in Section 6 show that the proposed strategy

outperforms the fundamental checkpointing

strategy, namely the hourly and rising-edge

checkpointing strategies (Yi, Kondo, & Andrzejak,

2010; Yi, Andrzejak, & Kondo, 2012).

3. Methodology (Execution Model)

In this section, the execution model of

using spot instances with checkpointing schemes is

described. Figure 2 shows how spot instances work

with checkpointing. Users submit the spot request

with its characteristics (i.e., number of instances, bid

price, request type, Etc.). After submission of the

request for spot instances, it becomes open to be

fulfilled by any VM in the chosen availability zone.

If the spot instance price is less than the user's bid

price, the request will be fulfilled immediately;

otherwise, it will remain open until the spot instance

price becomes less than the user's bid price. Once a

request becomes active, tasks can be assigned to the

instance from the Amazon EBS (Amazon Web

Services, n.d.c).

Figure 2 Execution model of spot Instances with checkpointing

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

418

Amazon S3 and EBS provide elastic

storage for durable and frequently accessed data.

Amazon S3 can be accessed across regions, while

Amazon EBS is accessible within a region. The

storage service selection depends on the diversity of

instances and the need for an application. Spot

instance is allocated to the user as long as the user's

bid price is above the price of the spot instance.

When the spot instance’s price surges over

the user’s bid price, the spot instance is revoked by

the cloud provider, which is called an 'out-of-bid'

situation. Amazon's spot pricing policy does not

charge for partial hours unless the user initiates the

termination.

Checkpointing is widely used as a fault-

tolerant mechanism with spot instances. It consists

of store and recovery operations. The computation

progress is stored after an interval, which is decided

by the acclimated checkpointing scheme. When the

spot instance price goes down by the user’s bid

price, the task's state is restored from the last

checkpoint. However, the checkpointing operations

also bring an overhead because the progress of tasks

is paused during the checkpointing process. The

total cost of the operation can be computed by

considering the checkpointing and recovery

overhead in case of failure. It also must consider the

number of checkpoints and the number of times the

recovery operation is performed. So the total cost of

the operation can be defined as:

Total Cost = ∑ 𝑃𝑖 + 𝑐 ∗ 𝑇𝑐 + 𝑟 ∗ 𝑇𝑟
𝑇
𝑖=𝑡 (1)

Where T is the total time (in hours) for a

job to execute on a selected spot instance, Pi is the

spot price (in $) during the ith hour of task

execution. Tc and Tr are checkpointing and

recovery overhead, respectively. The unit of Tc and

Tr is hours. c is the number of checkpoints, and r is

the number of times recovery operation is

performed during the lifetime of a job. The

checkpointing overhead occurs when the decision is

to checkpoint the tasks' progress. If the decision is

not to checkpoint the tasks' progress, users must

recover the task from the last checkpointed

position—the recovery results in recovery

overhead. A job can be in various states during its

execution. Figure 3 describes the transition of a job

through multiple states, i.e., Created (1), Ready (2),

Waiting (3), Running (4), Failed (5), and

Completed (6).

Once the job is submitted to the broker,

which forwards it to the resource provider, it will

enter into the ready state. If the VM is available, the

broker submits the job to the VM, so now the job

will be running. Otherwise, it will be added to the

waiting queue. From the waiting state, a job can

enter into the running state as soon as the VM

becomes available. During the job’s execution, the

checkpoints will be taken according to the

checkpointing strategy. If the job fails due to an out-

of-bid situation, the job is moved to the failed state.

The broker added the job to the ready queue from

the failed state. If the job successfully completes its

execution, it will be moved to the completed state.

Figure 3 Life cycle of a job

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

419

4. Checkpointing Schemes with Spot Instances

In this section, first, the existing

checkpointing strategies used for comparison are

described briefly. Then, the proposed knowledge-

based checkpointing mechanism is presented in

detail. It is also described how the proposed

approach uses the price history of SIs and weighted

moving average to decide the time for

checkpointing.

a. Existing Checkpointing Schemes

Various existing checkpointing schemes can be

broadly classified into the following four categories:

i. Hourly Checkpointing Strategy (HCS)

In this strategy, the state of the running task is saved

after a fixed time interval of one hour from the

starting point of execution. Since spot instances are

charged hourly and the partial hour is not to be paid,

it's the most instinctive way to create checkpoints

at the hour boundary. The recovery time is

minimized; however, the number of checkpoints

increases for large-size jobs. The large-size jobs are

the jobs having longer execution times. So, it

requires many hours to complete the job. At each

hour, one checkpoint will result in more

checkpoints.

ii. Rising-Edge Checkpointing Strategy

(RECS)

In this scheme, the checkpoint is taken whenever the

spot price increases during the lifetime of the job. An

increase in the spot price shrinks the gap between the

user bid and the current spot price, consequently

increasing the chances of an out-of-bid situation

soon. In the case of frequent spikes (i.e., rising edge)

in the spot price, RECS results in more checkpoints,

while the recovery overhead increases if the spikes

occur infrequently.

iii. Checkpointing Combinations

The above checkpointing schemes can be combined

to generate other different types of checkpointing

strategies. One example is the adaptive

checkpointing strategy. This strategy decides

whether to take or skip a checkpoint at every hour

boundary (for HCS) or at every rising edge (for

RECS). This decision seriously impacts the recovery

time and hence execution time of a running task in

case of failures. Some other examples are adaptive

HCS, adaptive RECS, hour boundary, rising edge-

driven checkpointing, etc.

b. Devised Checkpointing Scheme

Our designed checkpointing scheme in this

article is named a Knowledge-Based Checkpointing

Scheme (KBCS). In KBCS, the decision to take a

checkpoint is made by analyzing the spot price

history of spot instances. The proposed strategy

improves the shortcomings of RECS and HCS by

considering the rising edges in the spot price, which

are above a critical point, estimated using

knowledge of price history. The

checkpoint_indicator denotes the critical point.

Algorithm 1 shows the steps involved in

analyzing the price history and taking the checkpoint

accordingly. The weighted moving average (wma) is

used to predict the range of spot prices in the

upcoming duration. The weighted average is

preferred to emphasize the recent spot price

variation, which estimates a more accurate bound to

decide whether to take or skip a checkpoint.

wmamiddle_band with the user's bid is used to calculate

the critical point. Mean-time-between-failure

(MTBF) is also incorporated to consider checkpoints

near the average lifetime of spot VMs. The MTBF

is obtained by dividing the number of operational

hours by the number of failures.
Table 1 Notation Table

Symbol Description

Tbegin Beginning time of the learning window

Tend Ending time of learning window

N Number of Duration in which learning window is divided

D Length of each duration

Tbegin Beginning time of each duration

Tend Ending time of each duration

checkpoint_indicator Critical point

Wma Weighted moving average

MTBF Mean time between failure

minDi Minimum price in duration Di

Α Weight factor used to give more impact on the most recent price

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

420

Algorithm 1 Knowledge-Based Checkpointing Strategy

1. while (Jremaining_time > 0 & 𝑡𝜖[𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑])

2. if(checkpoint_indicator
N+1

 is not set)

3. for ∀ 𝐷𝑖 , 1 ≤ 𝑖 ≤ 𝑁

4. middle_band
i
=

user_bid - minDi

2

5. end for

6. wmamiddle_band
<Tbegin,Tend>

=
∑ αi middle_bandi

N
i=1

∑ iN
i=1

,

where α is the weight factor

7. checkpoint_indicator
N+1

=wmamiddle_band
<Tstart, Tend >

8. end if

9. if (spot_pricet-1 < spot_pricet &

 (user_bid – spot_pricet) <

 checkpoint_indicatorN+1)

 | (t-last_checkpoint)≥ MTBF)

10. take_checkpoint

11. else

12. skip_checkpoint

13. end if

14. end while

Various notations used in Algorithm 1

have been listed in Table 1. In step 1, loop

condition,

 Jremaining_time > 0

 & tϵ[t_(N+1)^begin, t_(N+1)^end],

denotes that the loop will be executed till processing

time remains, and t lies in between or at the

beginning and end time of each duration. The

checking of whether the checkpoint_indicator is

being set for the current duration or not is done in

Step 2. If it is not set, steps 3, 5, 6, and 7 are

executed. A loop will be executed for every

duration to calculate the middle band

(middle_band), which is computed using the

formula mentioned in step 4. The calculation of the

weighted moving average (wmamiddle_band) is

done in Step 6. In step 7, checkpoint_indicatori is

calculated using user_bid and wmamiddle_band.

The checking of whether the rising edge is above

the critical point or not is done in Step 9; if it is, then

the checkpoint is taken; otherwise, the checkpoint

is skipped. In this step, it has also been checked that

the last checkpoint time is greater than or equal to

MTBF; if it is, then the checkpoint is taken;

otherwise, the checkpoint is skipped.

5. Correctness of Algorithm

To prove the correctness of Algorithm 1,

the following precondition, loop invariant, and

postcondition are identified.

Pre-condition (P):

Jremaining_time = Jprocessing_time

and 𝒕 = 𝒕𝒃𝒆𝒈𝒊𝒏
𝑵+𝟏

Loop-invariant (I):

Jremaining_time >0 and checkpoint_indicator

(critical point) is set and necessary checkpoints are

taken ∀𝑡𝜖[𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑]

Loop-condition (C):

Jremaining_time > 0 & 𝒕𝝐[𝒕𝑵+𝟏
𝒃𝒆𝒈𝒊𝒏

, 𝒕𝑵+𝟏
𝒆𝒏𝒅]

Post-condition (Q):

Jremaining_time=0|| 𝑡 ∉ [𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑]

• The loop invariant I is accurate at the

beginning, which means that P ⇒ I, as

Jremaining_time = Jprocessing_time>0, and

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

421

since 𝑡 = 𝑡𝑏𝑒𝑔𝑖𝑛
𝑁+1 , so checkpoint_indicator

(critical point) is set, and necessary

checkpoints are taken ∀𝒕𝝐[𝒕𝑵+𝟏
𝒃𝒆𝒈𝒊𝒏

, 𝒕𝑵+𝟏
𝒆𝒏𝒅]

• I and C are true before executing

Algorithm1, and I remain true after the I and

C are true before executing Algorithm1. I

remain true after the execution of

Algorithm1 (I∧C
𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏
→ I), as there is no

decrement in processing time before the

execution of Algorithm1 and initially 𝒕 =

 𝒕𝒃𝒆𝒈𝒊𝒏
𝑵+𝟏 .

• When C becomes false, I inferred the

postcondition Q (𝐼 ∧ c̅ ⟹ 𝑄) as c̅ means

Jremaining_time ≯ 0 or 𝑡 ∉ [𝑡𝑁+1
𝑏𝑒𝑔𝑖𝑛

, 𝑡𝑁+1
𝑒𝑛𝑑].

• After each loop iteration, the t will get closer

to 𝑡𝑁+1
𝑒𝑛𝑑 , so the remaining number of required

iterations decreases.

• If C is true, then at least one iteration of the

loop remains to be executed, as the

postcondition will be valid when C becomes

false.

From the above five points, it can be

concluded that Algorithm 1 is formally correct.

6. Results and Discussion (Performance

Evaluation)

The execution time of the KBCS algorithm

is in the order of N. There are two loops in the KBCS

algorithm. The outer loop will be executed only for

the job's remaining time. The inner loop will be

executed as many times as the number of durations

in which the learning window is divided. Within the

learning window, the complexity will be linear in

terms of the number of durations (N). For the whole

task, the complexity will be N *length of the

learning window. Here we assume that the task will

only be processed within the learning window.

The CloudSim (Calheiros, Ranjan,

Beloglazov, De Rose, & Buyya, 2011) simulator

has been extended to model the spot instances.

The addition of SpotBroker,

SpotDatacenter, SpotCharacteristics, and

VmSpot entities are performed to the existing

CloudSim package.

SpotBroker: The spotBroker component is

responsible for job failures, job admission, and job

execution.

SpotDatacenter: The spotDatacenter component is

extended to perform price monitoring, bill

generation, and checkpointing operations.

SpotRequestCharacteristics: This entity models

the spot request characteristics (i.e., number of

instances, bid value, instance type, type of request,

etc.).

VmSpot: The VM entity of the Cloudsim package is

extended to support spot VM characteristics (i.e.,

state, bid price, etc.).

 Figure 4 depicts the sequence of events

that occurred during the simulation process. After

the creation of DatacenterSpot, SpotBroker, Spot

Requests, and Cloudlets (entity models the job or

task in clouds), a Spot request is submitted to

SpotBroker. It requests the spot instances from the

DatacenterSpot. When the spot price goes down,

the user's bid price and the SIs are assigned to the

user. Once the spot instance is assigned, SpotBroker

submits the job to the SpotDatacenter.

Various internal events (i.e., price

monitoring, bill generation, checkpointing) are

processed within the SpotDatacenter during the

execution of the job until the out-of-bid event

occurs. The time interval between the two price

monitoring events is called inter-price time. The

checkpointing event is invoked by the

checkpointing strategy, which is used within the

DatacenterSpot. Since Amazon EC2 charges spot

instances on an hourly basis, the cost of using SIs is

sent to SpotBroker at a regular interval of one hour.

When SI fails due to an out-of-bid situation, the

partially completed job is returned to the

SpotBroker. This process is repeated until all the

jobs are completed. Once all the jobs are completed,

they will be returned to the user along with the total

cost

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

422

Figure 4 Simulation model

To evaluate the performance of KBCS,

the spot price history (Amazon EC2 provides spot

price history for the last three months across all data

centers. We have used the price history from Dec

2018 to Mar 2019 within the us-west datacenter) is

obtained from Amazon EC2 (Amazon Web

Services, Inc., n.d.a). The spot price history from

Dec 2018 to Mar 2019 is used for the estimation of

checkpoint_indicator for the upcoming duration.

Table 2 shows the minimum price, maximum price,

and mean price inspected, during the observation

period (i.e., from Dec 2018 to Mar 2019). A near

minimum value (0.0152$) is used as bid value (ub)

during the simulation. The on-demand price for the

similar instance type in “us-west” data center is

observed as 0.12$, which is very high as compared

to the mean spot price. The size of duration varies

according to the job size. Job size is the total time

to execute without failure on a selected VM. It

varies from 25 hours to 125 hours with a granularity

of 25. The total cost of job execution depends on the

number of checkpoints, as described in Equation 1.

A job running on a spot instance is called successful

or completed if the spot price of that instance

remains under the user’s bid price throughout the

lifetime of the job. The following metrics are used

to compare the effectiveness of using spot VMs over

on-demand instances.

• Reliability: The reliability (R) for a job

type can be defined as:

 R=
Number of successful jobs

Total number of jobs

• Cost saving: The cost saving for a job Jδ,

started running on a VM type i at time t :

 Cost Saving = ∑ Oi-Si(t+h)*F(t)δ
h=0 (3)

Where Oi is the on-demand price of VM

type i, where Si is the spot price of VM type i, h is

the time interval in hours, and F(t) is the status

function that shows the availability of VMs. F (t)

can be one if the VM is available; otherwise, zero.

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

423

Table 2 Spot Price information

Min Price($) 0.0140

Max Price($) 1.2600

Mean Price($) 0.0242

Bid Value($) 0.0152

Job Size vs. Number of Checkpoints

required is plotted in Figure 5. In the graph, the X

axis represents job size in hours, and the Y axis

represents the number of checkpoints taken during

the execution of jobs. It can be observed from the

figure that the proposed KBCS requires less number

of checkpoints in comparison to the number of

checkpoints required in HCS and RECS.

Figure 5 Job size vs. Number of checkpoints

Figure 6 Job size vs. Turnaround time

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

424

Figure 7 Impact of number of jobs on total cost & reliability

Figure 6 shows the Job Size vs.

Turnaround time graph. The graph's X-axis

represents the job size in hours, and the Y-axis

represents t h e turnaround time in seconds. It

signifies that KBCS outperforms HCS and RECS

regarding turnaround time for a job size varying

from 25 hours to 65 hours. Results show that KBCS

results in 18% and 9% less turnaround time

compared to the HCS and RECS, respectively. The

difference between the turnaround time across the

three strategies increases as the number of jobs

varies from 25 to 65. Figure 7 shows the effect of

the number of jobs on the total cost and reliability of

the VM on which the job is executed. In the figure,

X and Y axis both represent the number of jobs.

Results show that even with a minimum bidding

policy, one can achieve 54% to 78% reliability with

a bottom-line cost saving of 78% using spot

instances, as the number of jobs varies from 15 to

55. As the number of jobs increases, the number of

completed jobs increases rapidly compared to the

failed jobs.

Figure 8 Number of jobs vs. Cost saved

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

425

Figure 8 depicts the cost saving for

different job sizes on spot instances compared to

the on-demand VMs. In the figure, X-axis

represents the number of jobs, and Y axis

represents the percentage of cost saved. The size of

the job is fixed at 7 hours, and the number of jobs

varies from 15 to 95 during the simulation.

7. Conclusion

This paper proposes a knowledge-based

checkpointing strategy (KBCS) to minimize the

overall checkpointing overhead. An algorithm for

KBCS is presented. The correctness of the

algorithm is verified. Results show that the

proposed strategy outperforms the existing

strategies (i.e., HCS and RECS) regarding overall

checkpointing overhead within the job lifetime. It

reduces the turnaround time by 18% compared to

Hourly Checkpointing Strategy and 9% compared

to Rising-Edge Checkpointing Strategy. One can

also achieve 54% to 78% reliability with a cost

saving of 78% for the workload used with the

devised knowledge-based checkpointing

algorithm. As part of our future work, we are

examining the behavior of the proposed strategy

across different types of instances and regions. We

have also considered migration with our

checkpointing approach to reduce job completion

time further.

8. References

Agarwal, S., Mishra, A. K., & Yadav, D. K.

(2017). Forecasting price of amazon spot

instances using neural networks.

International Journal of Applied

Engineering Research, 12(20), 10276-

10283.

Agmon Ben-Yehuda, O., Ben-Yehuda, M.,

Schuster, A., & Tsafrir, D. (2013).

Deconstructing Amazon EC2 spot

instance pricing. ACM Transactions on

Economics and Computation (TEAC),

1(3), 1-20.
https://doi.org/10.1145/2509413.2509416

Alourani, A., & Kshemkalyani, A. D. (2020, July).

Provisioning spot instances without

employing fault-tolerance mechanisms. In

2020 19th International Symposium on

Parallel and Distributed Computing

(ISPDC) (pp. 126-133). IEEE.

https://doi.org/10.1109/ISPDC51135.202

0.00026

Amazon Web Services, Inc. (n.d.a). Secure and

resizable cloud compute – Amazon EC2.

Retrieved June 28, 2022,

from https://aws.amazon.com/ec2/

Amazon Web Services, Inc. (n.d.b). Amazon EC2

Spot – Save up-to 90% on On-Demand

Prices. Retrieved June 28, 2022,

from https://aws.amazon.com/ec2/spot/

Amazon Web Services. (n.d.c). High-Performance

Block Storage Retrieved June 27, 2022,

from https://aws.amazon.com/ebs/

Andrzejak, A., Kondo, D., & Yi, S. (2010,

August). Decision model for cloud

computing under SLA constraints. In

2010 IEEE International Symposium on

Modeling, Analysis and Simulation of

Computer and Telecommunication

Systems (pp. 257-266). IEEE.

https://doi.org/10.1109/MASCOTS.2010.

34

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J.,

& Brandic, I. (2009). Cloud computing

and emerging IT platforms: Vision, hype,

and reality for delivering computing as

the 5th utility. Future Generation

computer systems, 25(6), 599-616.

https://doi.org/10.1016/j.future.2008.12.0

01

Calheiros, R. N., Ranjan, R., Beloglazov, A., De

Rose, C. A., & Buyya, R. (2011).

CloudSim: a toolkit for modeling and

simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software:

Practice and experience, 41(1), 23-50.
https://doi.org/10.1002/spe.995

Cao, J., Simonin, M., Cooperman, G., & Morin, C.

(2015). Checkpointing as a Service in

Heterogeneous Cloud Environments.

https://doi.org/10.1109/ccgrid.2015.160

Chen, C., Lee, B. S., & Tang, X. (2014, December).

Improving hadoop monetary efficiency in

the cloud using spot instances. In 2014

IEEE 6th International Conference on

Cloud Computing Technology and Science

(pp. 312-319). IEEE.
https://doi.org/10.1109/CloudCom.2014.35

Chohan, N., Castillo, C., Spreitzer, M., Steinder, M.,

Tantawi, A. N., & Krintz, C. (2010). See

https://doi.org/10.1109/ISPDC51135.2020.00026
https://doi.org/10.1109/ISPDC51135.2020.00026
https://doi.org/10.1002/spe.995

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

426

spot run: using spot instances for

mapreduce workflows. HotCloud, 10, 1-7.

https://dl.acm.org/doi/10.5555/1863103.186

3110

Dawoud, W., Takouna, I., & Meinel, C. (2012, June).

Increasing spot instances reliability using

dynamic scalability. In 2012 IEEE Fifth

International Conference on Cloud

Computing (pp. 959-961). IEEE.
http://dx.doi.org/10.1109/CLOUD.2012.58

Deldari, A., & Salehan, A. (2021). A survey on

preemptible IaaS cloud instances:

challenges, issues, opportunities, and

advantages. Iran Journal of Computer

Science, 4(3), 1-24.

https://doi.org/10.1007/s42044-020-

00071-1

Di, S., Robert, Y., Vivien, F., Kondo, D., Wang,

C. L., & Cappello, F. (2013, November).

Optimization of cloud task processing

with checkpoint-restart mechanism. In

Proceedings of the International

Conference on High Performance

Computing, Networking, Storage and

Analysis (pp. 1-12).
http://doi.acm.org/10.1145/2503210.2503

217

Goiri, Í., Julia, F., Guitart, J., & Torres, J. (2010,

April). Checkpoint-based fault-tolerant

infrastructure for virtualized service

providers. In 2010 IEEE network

operations and management symposium-

NOMS 2010 (pp. 455-462). IEEE.

 https://doi.org/10.1109/NOMS.2010.5488

493

Google Cloud. (n.d). Compute Engine: Virtual

Machines (VMs). Retrieved June 27,

2022, from

https://cloud.google.com/compute/

Hussain, Z., Znati, T., & Melhem, R. (2019, May).

Optimal placement of in-memory

checkpoints under heterogeneous failure

likelihoods. In 2019 IEEE International

Parallel and Distributed Processing

Symposium (IPDPS) (pp. 900-910).

IEEE.

 https://doi.org/10.1109/IPDPS.2019.00098

IBM. (n.d.). Cloud Infrastructure Solutions.

Retrieved June 25, 2022, from

https://www.ibm.com/in-

en/cloud/infrastructure

Jangjaimon, I., & Tzeng, N. F. (2015). Effective

cost reduction for elastic clouds under

spot instance pricing through adaptive

checkpointing. IEEE Transactions on

Computers, 64(2), 396-409.

https://doi.org/10.1109/TC.2013.225

Jangjaimon, I., & Tzeng, N. F. (2013, May).

Adaptive incremental checkpointing via

delta compression for networked

multicore systems. In 2013 IEEE 27th

International Symposium on Parallel and

Distributed Processing (pp. 7-18). IEEE.
http://dx.doi.org/10.1109/IPDPS.2013.33

Javadi, B., Thulasiram, R. K., & Buyya, R. (2013).

Characterizing spot price dynamics in

public cloud environments. Future

Generation Computer Systems, 29(4),

988-999.
http://dx.doi.org/10.1016/j.future.2012.06

.012

Javadi, B., Thulasiramy, R. K., & Buyya, R.

(2011, December). Statistical modeling of

spot instance prices in public cloud

environments. In 2011 fourth IEEE

international conference on utility and

cloud computing (pp. 219-228). IEEE.

https://doi.org/10.1109/UCC.2011.37

Jung, D., Chin, S., Chung, K., Yu, H., & Gil, J.

(2011). An efficient checkpointing

scheme using price history of spot

instances in cloud computing

environment. In Network and Parallel

Computing: 8th IFIP International

Conference, NPC 2011, Changsha,

China, October 21-23, 2011. Proceedings

8 (pp. 185-200). Springer Berlin

Heidelberg.
http://dx.doi.org/10.1007/978-3-642-

24403-2_16

Liu, W., Wang, P., Meng, Y., Zhao, C., & Zhang,

Z. (2020). Cloud spot instance price

prediction using kNN regression. Human-

centric Computing and Information

Sciences, 10(1), 1-14.

https://doi.org/10.1186/s13673-020-

00239-5

Mattess, M., Vecchiola, C., & Buyya, R. (2010,

September). Managing peak loads by

leasing cloud infrastructure services from

a spot market. In 2010 IEEE 12th

International Conference on High

Performance Computing and

http://dx.doi.org/10.1109/CLOUD.2012.58
http://doi.acm.org/10.1145/2503210.2503217
http://doi.acm.org/10.1145/2503210.2503217
http://dx.doi.org/10.1109/IPDPS.2013.33
http://dx.doi.org/10.1016/j.future.2012.06.012
http://dx.doi.org/10.1016/j.future.2012.06.012
http://dx.doi.org/10.1007/978-3-642-24403-2_16
http://dx.doi.org/10.1007/978-3-642-24403-2_16

TOMAR ET AL

JCST Vol. 13 No. 2 May-Aug. 2023, pp. 412-427

427

Communications (HPCC) (pp. 180-188).

IEEE.

https://doi.org/10.1109/HPCC.2010.77

Mishra, A. K., Kesarwani, A., & Yadav, D. K.

(2019a, March). Short term price

prediction for preemptible vm instances

in cloud computing. In 2019 IEEE 5th

International Conference for

Convergence in Technology (I2CT) (pp.

1-9). IEEE.
https://doi.org/10.1109/I2CT45611.2019.

9033677

Mishra, A. K., Umrao, B. K., & Yadav, D. K. (2018).

A survey on optimal utilization of

preemptible VM instances in cloud

computing. The Journal of Supercomputing,

74, 5980-6032.
https://doi.org/10.1007/s11227-018-2509-0

Mishra, A. K., Yadav, D. K., Kumar, Y., & Jain, N.

(2019b). Improving reliability and reducing

cost of task execution on preemptible VM

instances using machine learning approach.

The Journal of Supercomputing, 75, 2149-

2180. https://doi.org/10.1007/s11227-018-

2717-7

Popovici, F. I., & Wilkes, J. (2005, November).

Profitable services in an uncertain world.

In SC'05: Proceedings of the 2005

ACM/IEEE conference on

Supercomputing (pp. 36-36). IEEE.

https://doi.org/10.1109/SC.2005.58

Ramesh, A., Pradhan, V., & Lamkuche, H. (2021,

July). Understanding and analysing

resource utilization, costing strategies and

pricing models in cloud computing. In

Journal of Physics: Conference Series,

1964(4), Article 042049.

https://doi.org/10.1088/1742-

6596/1964/4/042049

Sharma, P., Irwin, D. E., & Shenoy, P. J. (2016).

How Not to Bid the Cloud. In A.

Clements & T. Condie (Eds.), 8th

{USENIX} Workshop on Hot Topics in

Cloud Computing, HotCloud 2016,

Denver, CO, USA, June 20-21, 2016.

{USENIX} Association.

https://www.usenix.org/conference/hotcloud

16/workshop-program/presentation/sharma

Song, Y., Zafer, M., & Lee, K. W. (2012, March).

Optimal bidding in spot instance market.

In 2012 Proceedings IEEE Infocom (pp.

190-198). IEEE.

https://doi.org/10.1109/INFCOM.2012.61

95567

Toosi, A. N., Vanmechelen, K., Khodadadi, F., &

Buyya, R. (2016). An auction mechanism

for cloud spot markets. ACM

Transactions on Autonomous and

Adaptive Systems (TAAS), 11(1), 1-33.
https://doi.org/10.1145/2843945

Voorsluys, W., & Buyya, R. (2012, March).

Reliable provisioning of spot instances

for compute-intensive applications. In

2012 IEEE 26th international conference

on advanced information networking and

applications (pp. 542-549). IEEE.

https://doi.org/10.1109/AINA.2012.106

Wang, Y. M., Huang, Y., Vo, K. P., Chung, P. Y., &

Kintala, C. (1995, June). Checkpointing and

its applications. In Twenty-fifth

International Symposium on fault-tolerant

Computing. Digest of papers (pp. 22-31).

IEEE.

https://doi.org/10.1109/FTCS.1995.466999

Wu, L., Garg, S. K., & Buyya, R. (2012). SLA-

based admission control for a Software-

as-a-Service provider in Cloud computing

environments. Journal of Computer and

System Sciences, 78(5), 1280-1299.
https://doi.org/10.1016/j.jcss.2011.12.014

Yang, S., Khuller, S., Choudhary, S., Mitra, S., &

Mahadik, K. (2021, December).

Scheduling ML training on unreliable

spot instances. In Proceedings of the 14th

IEEE/ACM International Conference on

Utility and Cloud Computing Companion

(Article 29, pp. 1-8).

https://doi.org/10.1145/3492323.3495594

Yi, S., Andrzejak, A., & Kondo, D. (2012).

Monetary cost-aware checkpointing and

migration on amazon cloud spot

instances. IEEE Transactions on Services

Computing, 5(4), 512-524.

https://doi.org/10.1109/TSC.2011.44

Yi, S., Kondo, D., & Andrzejak, A. (2010, July).

Reducing costs of spot instances via

checkpointing in the amazon elastic

compute cloud. In 2010 IEEE 3rd

International Conference on Cloud

Computing (pp. 236-243). IEEE.

https://doi.org/10.1109/CLOUD.2010.35

https://doi.org/10.1109/I2CT45611.2019.9033677
https://doi.org/10.1109/I2CT45611.2019.9033677
https://doi.org/10.1088/1742-%206596/1964/4/042049
https://doi.org/10.1088/1742-%206596/1964/4/042049

