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____________________________________________________________________________________________________________ 

Abstract 
Recently, the zero-truncated Poisson-Lindley distribution has been proposed for studying count data containing 

non-zero values. However, the nonparametric bootstrap confidence interval estimation of the population mean has not 

yet been studied. In this study, confidence interval estimation based on percentile, simple, and biased-corrected bootstrap 

methods was compared in terms of coverage probability and average interval length via Monte Carlo simulation. The true 

values of parameter ( )  were set as 0.25, 0.5, 1, 1.5, and 2, and the population means   are approximate 7.7586, 4.0909, 

2.4000, 1.8817, and 1.6364, respectively. The bootstrap samples ( 1,000)B =  of size n  were generated from the original 

sample, and each simulation was repeated 1,000 times. The results indicate that attaining the nominal confidence level 

using the bootstrap confidence intervals was impossible for small sample sizes regardless of the other settings. Moreover, 

when the sample size was large, the performance of the nonparametric bootstrap confidence intervals was not substantially 

different. Overall, the bias-corrected bootstrap confidence interval outperformed the others, even for small sample sizes. 

Last, the nonparametric bootstrap confidence intervals were used to calculate the confidence interval for the population 

mean of the zero-truncated Poisson-Lindley distribution via two numerical examples, the results of which match those 

from the simulation study. 
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1.  Introduction 

Poisson distribution is a discrete distribution 

that measures the probability of a given number of 

events happening in specific regions of time or 

space (Kissell & Poserina, 2017; Siegel & Wanger, 

2022). Data such as the number of errors in a 

computer program submitted for the first time to a 

mainframe computer by each student, the number 

of people who will apply for a job tomorrow, the 

number of defects in a finished product, the number 

of heat stroke patients per day in summer, the 

number of bacteria in a higher organism, etc., 

follow a Poisson distribution (Siegel & Wanger, 

2022; Lefebvre, 2000).   

The probability mass function (pmf) of a 

Poisson distribution is defined as 

( ; ) ,
!

xe
p x

x




−

=  0,1, 2,...,x = 0,   (1) 

where e  is a constant approximately equal to 

2.71828 and   is the mean number of events within 

a given interval of time or space. This probability 

model can be used to analyze data containing zeros 

and positive values that have low occurrence 

probabilities within a predefined time or area range  

(Sangnawakij, 2021). However, probability models 

can become truncated when a range of possible 

values for the variables is either disregarded or 
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impossible to observe. Indeed, zero truncation is 

often enforced when one wants to analyze count 

data without zeros. David & Johnson (1952) 

developed the zero-truncated (ZT) Poisson (ZTP) 

distribution, which has been applied to datasets of 

the length of stay in hospitals, the number of 

published journal articles in various disciplines, the 

number of children ever born to a sample of mothers 

over 40 years old, and the number of passengers in 

cars (Hussain, 2020). A ZT distribution’s pmf can 

be derived as follows. 

0

0

( )
( ) , 1,2,3,...,

1 (0)

p x
p x x

p
= =

−
  (2) 

where 0 ( )p x  and 0 (0)p  are the pmf of the un-

truncated distribution for any value of x  and 

0,x =  respectively. Sankaran (1970) proposed the 

Poisson-Lindley (PL) distribution which has the 

pmf: 
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The mathematical and statistical properties 

of the PL distribution for modeling count data were 

established by Sankaran ( 1970) .  The PL 

distribution arises from the Poisson distribution 

when parameter   follows the Lindley distribution 

proposed by Lindley ( 1958)  with probability 

density function (pdf): 

2

( ; ) (1 ) , 0, 0.
1

f e 
    



−= +  
+

 (4) 

Shanker et al. (2015a) showed that the pdf in 

(4) is a better model than the exponential 

distribution for modeling lifetime data. Several 

distributions have been introduced as an alternative 

to the ZTP distribution for handling over-dispersion 

in data, such as ZT Poisson-Amarendra (ZTPA) 

(Shanker, 2017a), ZT Poisson-Akash (Shanker, 

2017b) and ZT Poisson-Ishita (Shukla et al., 2020) 

distributions. 

Ghitany et al. (2008) proposed the ZT 

Poisson-Lindley (ZTPL) distribution and its 

properties, such as the moment, coefficient of 

variation, skewness, kurtosis, and the index of 

dispersion. The method of moments and the 

maximum likelihood have also been derived for 

estimating its parameter. Furthermore, when the 

ZTPL distribution was applied to real data sets, it 

was more suitable than the ZTP distribution. 

In statistics, the population refers to a group 

or collection of various entities such as numbers, 

people, or objects. The population mean represents 

the average value within this group. To the best of 

our knowledge, no research has been conducted on 

estimating the confidence interval for the 

population mean of the ZTPL distribution. It is 

essential to note that the score function of ZTPL 

distribution is complicated, and the maximum 

likelihood estimator has no closed form. Therefore, 

likelihood-based, score, and Wald-type confidence 

intervals have no closed forms. In such cases, 

finding these confidence intervals can be 

challenging; alternative methods, such as numerical 

techniques or resampling methods like the 

nonparametric bootstrap method, can be utilized. 

Nonparametric bootstrap confidence intervals 

provide a way of quantifying the uncertainties in 

statistical inferences based on a sample of data. The 

concept is to run a simulation study based on the 

actual data to estimate the likely extent of sampling 

error (Wood, 2004).  

 

2.  Objective  

The objective of the current study is to assess 

the efficiencies of three nonparametric bootstrap 

confidence intervals, namely the percentile 

bootstrap (PB), the simple bootstrap (SB), and the 

bias-corrected (BC) bootstrap methods, to estimate 

the population mean of the ZTPL distribution. 

Additionally, none of the nonparametric bootstrap 

confidence intervals will be exact (i.e., the actual 

confidence level is exactly equal to the nominal 

confidence level 1 )−  but they will all be 

consistent, meaning that the confidence level 

approaches 1 −  as the sample size gets large 

(Chernick & LaBudde, 2011). In light of the 

impossibility of a theoretical comparison of these 

nonparametric bootstrap confidence intervals, we 

conducted a simulated study to evaluate their 

relative merits. Moreover, several studies have 

compared the nonparametric bootstrap confidence 

intervals through simulation studies (see Reiser et 

al., 2017; Flowers-Cano et al., 2018). In this study, 

a Monte Carlo simulation study is conducted to 

compare their performance and use the results to 

determine the best-performing method based on the 

coverage probability and the average length. 
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Figure 1 The plots of the pmf of the ZTPL distribution with  = 0.5, 1, 1.5 and 2. 

 

3.  Methodology  

3.1 Theoretical background 

To obtain new probability distributions, 

compounding of probability distributions is an 

innovative approach to fit data sets inadequately fit 

by common distributions. Ghitany et al. (2008) 

proposed a novel mixture distribution by 

compounding Poisson distribution with the Lindley 

distribution, as there is a need to find a more flexible 

model for analyzing statistical data. The pmf of the 

PL distribution is given in Eq.(3). 

Let X  be a random variable which follow 

the ZTPL distribution (Ghitany et al., 2008) with 

parameter ,  it is denoted as X~ ZTPL(θ). Using 

Eqs. (2) and (3), the pmf of the ZTPL distribution 

can be obtained as: 
2

2

( 2 )
( ; ) , 1,2,3,..., 0.

3 1 ( 1)x

x
p x x

 
 

  

+ +
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+ + +  

The plots of the pmf of the ZTPL distribution 

with some specified parameter values   are shown 

in Figure 1.  It is clear that the shape of Figure 1 

depends on the parameter values .  From Figure 1, 

when the parameter value is larger, the (1)p  is 

larger and ( ) 0p x →  for the large value of .x  

The expected value and variance of X  are as 

follows: 

( )

2

2
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The point estimator of   is obtained by 

maximizing the log-likelihood function 

log ( ; )iL x   or the logarithm of joint pmf of 

1,..., .nX X  Therefore, the maximum likelihood 

(ML) estimator for   of the ZTPL distribution is 

derived by the following processes: 
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Solving the equation log ( ; ) 0iL x 



=


 for ,  

we have the non-linear equation. 
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x x n
=

=  denotes the sample mean.  
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Since the ML estimator for   does not 

provide a closed- form, the non- linear equation can 

be solved by the numerical iteration methods such 

as Newton-Raphson method, bisection method and 

Ragula-Falsi method.  In this research, we use the 

maxLik package ( Henningsen & Toomet, 2011) 

with the Newton- Raphson method for ML 

estimation in the statistical software R. 

The point estimator of the population mean 

  can be estimated by replacing the parameter   

with the ML estimator for   shown in Eq.  ( 5) . 

Therefore, the point estimator of the population 

mean   is given by: 

( )

2

2

ˆ ˆ( 1) ( 2)
ˆ ,

ˆ ˆ ˆ3 1

 


  

+ +
=

+ +
 

where ̂  is the ML estimator for .  

 

3.2 Nonparametric bootstrap confidence intervals 

In this study, we focus on the three 
nonparametric bootstrap confidence intervals for 
the population mean of the ZTPL distribution. In 
practice, the popular nonparametric bootstrap 
confidence intervals are the percentile bootstrap, 
the simple bootstrap, and the bias-corrected 
bootstrap methods. The computer-intensive 
bootstrap methods described in this study provide 
an alternative for constructing approximate 
confidence intervals for the population mean 
without having to make an assumption about the 
underlying distribution (Meeker et al., 2017). 
 

3.2.1 Percentile Bootstrap (PB) confidence interval 
The percentile bootstrap confidence interval 

is the interval between the ( / 2) 100   and 
(1 ( / 2)) 100−   percentiles of the distribution of 
  estimates obtained from resampling or the 
distribution of 

*ˆ ,  where   represents a 
parameter of interest and   is the level of 
significance (e.g.,  = 0.05 for 95% confidence 
intervals) (Efron, 1982). A percentile bootstrap 
confidence interval for   can be obtained as 
follows:  

1) B random bootstrap samples are generated,  
2) a parameter estimate 

*̂  is calculated from 
each bootstrap sample,  

3) all B bootstrap parameter estimates are 
ordered from the lowest to highest, and  

4) the (1 )100%−  percentile bootstrap 
confidence interval is constructed as follows: 

* *

( ) ( )
ˆ ˆ, ,PB r sCI   =      (6) 

where 
*

( )
ˆ
  denotes the 

th  percentile of the 

distribution of 
*̂  and 0 100.r s    For 

example, a 95% percentile bootstrap confidence 

interval with 1,000 bootstrap samples is the interval 

between the 2.5 percentile value and the 97.5 

percentile value of the 1,000 bootstrap parameter 

estimates. 

 

3.2.2 Simple Bootstrap (SB) confidence interval 
The simple bootstrap confidence interval, 

sometimes called the basic bootstrap confidence 
interval, is a method as easy to apply as the 
percentile bootstrap method. Suppose that the 
quantity of interest is   and that the estimator of 
  is ˆ .  The simple bootstrap method assumes that 
the distributions of ̂ −  and 

*ˆ ˆ −  are 
approximately the same (Meeker et al., 2017). The 
(1 )100%−  simple bootstrap confidence interval 
for   is: 

* *

( ) ( )
ˆ ˆ ˆ ˆ2 , 2 ,SB s rCI     = − −    (7) 

where the quantiles 
*

( )
ˆ

r  and 
*

( )
ˆ

s  are the same 

percentile of empirical distribution of bootstrap 

estimates 
*̂  used in (6) for the percentile bootstrap 

method. 
 
3.2.3 Bias-Corrected (BC) bootstrap confidence 

interval 
To overcome the over-coverage issues in 

percentile bootstrap confidence intervals (Efron & 
Tibshirani, 1993), the BC bootstrap method corrects 
for the bias of the bootstrap parameter estimates by 
incorporating a bias-correction factor (Efron, 1987; 
Efron & Tibshirani, 1993). The bias-correction 
factor 0ẑ  is estimated as the proportion of the 
bootstrap estimates less than the original parameter 
estimate ˆ ,  

 *

1

0

ˆ ˆ#
ˆ ,z

B

 −
 

=   
 

 

where 1−  is the inverse function of a standard 

normal cumulative distribution function (e.g., 
1(0.975) 1.96).−   With the value of 0

ˆ ,z  the 

values 1  and 2  are calculated, 

 1 0 /2
ˆ2z z =  +  and  2 0 1 /2

ˆ2 ,z z  −=  +  

where / 2z  is the   quantile of the standard 

normal distribution (e.g. 0.05/2 1.96).z  −  Then, the 

(1 )100%−  BC bootstrap confidence interval for 

  is as follows: 

1 2

* *

( ) ( )
ˆ ˆ, ,BCCI    =      (8) 

where *

( )
ˆ
  denotes the th  percentile of the 

distribution of *ˆ .  
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4.  Result 

4.1 Simulation study 

The nonparametric bootstrap confidence 

intervals for the population mean of a ZTPL 

distribution was considered in this study. Due to the 

unavailability of a direct theoretical comparison, a 

Monte Carlo simulation study was designed using 

R (Ihaka & Gentleman, 1996) version 4.2.2 to cover 

cases with different sample sizes ( n  = 10, 30, 50, 

100, 200, and 500). To observe the effect of small 

and large variances, the true values of parameter 

( )  were set as 0.25, 0.5, 1, 1.5, and 2 and the 

population means   are approximate 7.7586, 

4.0909, 2.4000, 1.8817 and 1.6364, respectively. 

B = 1,000 bootstrap samples of size n  were 

generated from the original sample and each 

simulation was repeated 1,000 times. Without loss 

of generality, the nominal confidence level (1 )−  

was set at 0.95. The performance of the 

nonparametric bootstrap confidence intervals was 

compared in terms of their empirical coverage 

probabilities and average lengths; the one with a 

coverage probability greater than or close to the 

nominal confidence level (meaning that it contains 

the true value). From this study, we conclude that 

the coverage probability is greater than or equal to 

the nominal confidence level when the empirical 

coverage probability exceeds 0.936, as determined 

using the one-proportion z-test with a significance 

level of 0.95. Additionally, using the shortest 

average length enables a more accurate estimation 

of the nonparametric bootstrap confidence interval 

for the population mean.  

The simulation results of the study were 

reported in Table 1. For n = 10, 30 and 50, the 

empirical coverage probabilities of all three 

bootstrap confidence intervals tended to be less than 

0.95 and thus did not reach the nominal confidence 

level. Nevertheless, the BC bootstrap confidence 

interval outperformed the other in these situations. 

For n = 100, all bootstrap methods provided 

empirical coverage probabilities less than the 

nominal confidence level in several cases. For n 

200, all of the nonparametric bootstrap confidence 

intervals attained empirical coverage probabilities 

close to the nominal confidence level and provided 

similarly average length. Therefore, as the sample 

size was increased, the empirical coverage 

probabilities of the confidence intervals tended to 

increase and approach the nominal confidence level 

of 0.95. 

Moreover, the average lengths of the 

confidence intervals decreased when the value of 

  was decreased because of the relationship 

between the variance and .  Unsurprisingly, as the 

sample size was increased, the average lengths of 

all three bootstrap confidence intervals decreased. 

Although the average length of the PB and SB 

confidence intervals was the shortest when the 

sample size was small, it provided a poor empirical 

coverage probability value significantly below the 

nominal confidence level. In summary, the BC 

bootstrap confidence interval performs best in 

terms of empirical coverage probability even with 

small sample sizes as long as the population mean 

of the ZTPL distribution is not too large.  

 

4.2 Empirical application of the nonparametric 

bootstrap confidence intervals 

We used two real-world count data sets to 

demonstrate the applicability of the nonparametric 

bootstrap confidence intervals for estimating the 

population mean of the ZTPL distribution. 

 

4.2.1 Immunogold assay example 

The number of counts of sites with particles 

from immunogold assay data collected by Cullen et 

al. (1990) was used for this example. The data 

consisted of 198 observations were reported in 

Table 2. For this dataset, the sample mean, and the 

standard deviation were 1.576 and 0.891, 

respectively. For the Chi-squared goodness-of-fit 

test (Turhan, 2020), the Chi-squared statistic was 

0.5467 and the p-value was 0.7608. Thus, a ZTPL 

distribution with ̂ = 2.1831 was suitable for this 

dataset. The point estimator of the population mean 

was 1.5765. Table 3 reported the 95% non-

parametric bootstrap confidence intervals for the 

population mean of a ZTPL distribution. The 

estimated parameter ̂  was near to 2. The results 

corresponded with the simulation results because 

the average lengths of the PB and SB confidence 

intervals were shorter than those of the BC 

bootstrap confidence interval.  
 
4.2.2 Demographic example 

Table 4 showed the demographic data on the 

number of fertile mothers who have experienced at 

least one child death (Shanker et al., 2015b). The 

total sample size was 135. For the Chi-squared 

goodness-of-fit test (Turhan, 2020), the Chi-

squared statistic was 3.3797 and the p-value was 
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0.1845. Thus, a ZTPL distribution with ̂ = 2.0891 

was suitable for this dataset. The point estimator of 

the population mean was 1.6058. The 95% 

nonparametric bootstrap confidence intervals for 

the population mean of a ZTPL distribution are 

reported in Table 5. The results correspond with the 

simulation results for n = 100 and  = 2 because 

the average lengths of the PB confidence interval 

were shorter than those of the BC bootstrap 

confidence interval.

  
Table 1 Empirical coverage probability and average length of the 95% nonparametric bootstrap confidence intervals for 

the population mean of a ZTPL distribution. 

n      
Coverage probability Average length 

PB SB BC PB SB BC 

10 0.25 7.7586 0.868 0.843 0.874 6.6393 6.6272 6.7193 

0.5 4.0909 0.871 0.844 0.878 3.4392 3.4355 3.4970 

1 2.4000 0.883 0.862 0.902 1.9051 1.9044 1.9561 

1.5 1.8817 0.882 0.862 0.925 1.3753 1.3731 1.4347 

2 1.6364 0.864 0.824 0.930 1.0913 1.0899 1.1535 

30 0.25 7.7586 0.928 0.914 0.934 4.1799 4.1815 4.2155 

0.5 4.0909 0.927 0.912 0.928 2.2176 2.2201 2.2391 

1 2.4000 0.911 0.908 0.917 1.2031 1.2033 1.2121 

1.5 1.8817 0.910 0.899 0.928 0.8495 0.8504 0.8603 

2 1.6364 0.924 0.895 0.938* 0.6708 0.6709 0.6812 

50 0.25 7.7586 0.932 0.925 0.935 3.3074 3.3059 3.3264 

0.5 4.0909 0.937* 0.936* 0.944* 1.7466 1.7434 1.7546 

1 2.4000 0.929 0.922 0.924 0.9532 0.9547 0.9631 

1.5 1.8817 0.923 0.916 0.925 0.6743 0.6726 0.6774 

2 1.6364 0.926 0.912 0.935 0.5364 0.5378 0.5432 

100 0.25 7.7586 0.953* 0.956 0.952* 2.3512 2.3489 2.3498 

0.5 4.0909 0.930 0.927 0.934 1.2428 1.2435 1.2446 

1 2.4000 0.928 0.907 0.921 0.6641 0.6646 0.6667 

1.5 1.8817 0.940* 0.930 0.945* 0.4830 0.4835 0.4866 

2 1.6364 0.933 0.924 0.933 0.3857 0.3854 0.3874 

200 0.25 7.7586 0.934 0.939* 0.939* 1.6788 1.6770 1.6812 

0.5 4.0909 0.949* 0.944* 0.953* 0.8790 0.8789 0.8802 

1 2.4000 0.943* 0.945* 0.942* 0.4823 0.4820 0.4834 

1.5 1.8817 0.939* 0.939* 0.940* 0.3439 0.3440 0.3451 

2 1.6364 0.947* 0.943* 0.942* 0.2750 0.2749 0.2757 

500 0.25 7.7586 0.941* 0.944* 0.945* 1.0692 1.0685 1.0707 

0.5 4.0909 0.938* 0.940* 0.942* 0.5598 0.5589 0.5596 

1 2.4000 0.938* 0.931 0.943* 0.3030 0.3031 0.3030 

1.5 1.8817 0.947* 0.947* 0.944* 0.2177 0.2178 0.2184 

2 1.6364 0.945* 0.946* 0.942* 0.1758 0.1753 0.1757 
* Represents the empirical coverage probability is greater than the nominal confidence level by using the one-proportion 

z-test. 

 
Table 2 The number of counts of sites with particles from immunogold assay data 

Number of particles 1 2 3  4 

Observed frequency 122 50 18 8 

Expected frequency 124.7689 46.7604 17.0663 9.4044 

 
Table 3 The 95% nonparametric bootstrap confidence intervals and corresponding lengths using all intervals for the 

population mean in the immunogold assay example 

Methods Confidence intervals Lengths 

PB (1.4556, 1.7034) 0.2478 

SB (1.4556, 1.6974) 0.2418 

BC (1.4647, 1.7243) 0.2596 
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Table 4 The number of fertile mothers who have experienced at least one child death 

Number of child deaths 1 2 3  4 

Observed frequency 89 25 11 10 

Expected frequency 83.4486 32.3222 12.1818 7.0474 

 
Table 5 The 95% nonparametric bootstrap confidence intervals and corresponding lengths using all intervals for the 

population mean in the demographic example 

Methods Confidence intervals Lengths 

PB (1.4423, 1.7777) 0.3354 

SB (1.4207, 1.7752) 0.3545 

BC (1.4434, 1.7914) 0.3480 

 

5.  Discussion and conclusion 

 Herein, we propose three nonparametric 

bootstrap confidence intervals, namely the PB, SB, 

and BC bootstrap methods, to estimate the 

population mean of a ZTPL distribution. When the 

sample size was 10, 30, or 50, the coverage 

probabilities of all three were substantially lower 

than 0.95. When the sample size was large enough 

( 100),n   the coverage probabilities and average 

lengths using three nonparametric bootstrap 

confidence intervals were not markedly different. 

According to our findings, the BC bootstrap 

confidence interval performed the best even for 

small sample sizes and parameter settings tested in 

both the simulation study and using real data sets. 

Confidence intervals are obtained from a 

parametric estimator of the standard errors of a 

quantity of interest .  Then, the (1 )100%−  

confidence interval for   is obtained by adding or 

subtracting the standard error multiplied by a 

critical value (for example, 1 ( /2)
ˆ ˆ( )).z SE −  

This calculation assumes that the distribution of the 

estimator of   is approximately normal (Flowers-

Cano et al., 2018). However, there are several 

situations in which the assumption of normality is 

violated. In these cases, or when the standard error 

is very difficult to be estimated, an alternative is to 

use techniques based on the nonparametric 

bootstrap method. The nonparametric bootstrap 

methods described in this study provide an 

alternative for constructing approximate 

confidence intervals without assuming the 

underlying distribution (Meeker et al., 2017). This 

is an advantage of this study. 

On the other hand, the limitation of this 

study is the fact that none of the nonparametric 

bootstrap confidence intervals were exact, but they 

would be consistent, meaning that the coverage 

probability approaches 0.95 as the sample sizes get 

larger. In addition, three bootstrap confidence 

intervals are not easy to compute and are computer 

intensive. However, there are numerous available 

packages in R for computing the bootstrap 

confidence intervals such as boot package (Canty 

& Ripley, 2021), bootstrap package (Kostyshak, 

2019), semEff package (Murphy, 2022) and 

BootES package (Kirby & Gerlanc, 2013). Since R 

is open-source, users are free to download these 

packages. Future research could focus on the 

construction of the confidence intervals for the 

parameter functions such as the population mean, 

variance, and coefficient of variation. Moreover, 

there is no research on hypothesis testing for the 

parameter of the ZTPL distribution. These issues 

can be studied in future work. 
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