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Abstract

False Data Injection Attacks (FDIAs) pose critical threats to Industrial Internet of Things (IloT) systems by
manipulating sensor data to cause operational disruptions and safety hazards. Traditional intrusion detection systems struggle
to identify the subtle anomalies characteristic of FDIAs, necessitating advanced machine learning approaches. This study
develops a weighted voting ensemble framework integrating Random Forest, XGBoost, Neural Network, and Logistic
Regression with F1-score-based dynamic weight assignment for optimized FDIA detection. The proposed ensemble was
evaluated on the UKMNCT IloT FDIA dataset containing 15,425 instances across 30 features. Using 70-30 train—test split,
model performance was assessed through accuracy, precision, recall, Fl-score, and confusion matrix analysis. Results
demonstrate exceptional performance: 99.71% accuracy, 99.72% precision, 99.72% recall, and 99.72% F1-score. Confusion
matrix analysis revealed only 2 false negatives and 9 false positives across 4,627 test instances, substantially outperforming
individual classifiers while maintaining computational efficiency suitable for resource-constrained edge devices.

The weighted voting mechanism successfully leverages algorithmic diversity to achieve superior robustness
compared to individual models. Tree-based ensembles (Random Forest: 99.74%, XGBoost: 99.68%) substantially
outperformed Neural Network (87.14%) and Logistic Regression (83.32%), confirming the importance of non-linear
modeling for complex attack pattern detection. The minimal false negative rate (0.04%) represents critical advancement for
critical infrastructure protection where undetected attacks carry severe consequences. This research establishes the efficacy
of performance-adaptive ensemble learning for IIoT cybersecurity, providing a practical, scalable solution for safeguarding
industrial cyber-physical systems against evolving threats.

Keywords: industrial internet of things, false data injection attack; ensemble learning; weighted voting, intrusion detection;
cybersecurity; random forest; XGBoost
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1. Introduction

The Industrial Internet of Things (IloT)
represents a transformative paradigm that integrates
intelligent sensors, cyber-physical systems, and
advanced communication protocols to revolutionize
industrial operations across manufacturing, energy,
healthcare, digital entertainment industry, and
transportation sectors (Javaid et al., 2021; Mulla et al.,
2025). By enabling real-time data exchange, automated
control, and enhanced decision-making, IloT systems
have become fundamental to modern industrial
infrastructure. However, the increasing connectivity of
these systems to internet and cloud platforms has
exposed them to sophisticated cyber threats, creating
substantial risks to critical infrastructure and sensitive
operational data (Yu et al., 2021).

Unlike traditional information technology
environments that rely on discrete computing
systems, IIoT ecosystems comprise interconnected
physical devices managing essential operations such
as power grids, manufacturing plants, and healthcare
equipment (Potharaju et al., 2025; Simmachan et al.,
2025). Security breaches in these systems can result
in operational disruptions, significant financial losses,
threats to human safety, and potential national security
vulnerabilities (Eyeleko et al., 2023). The unique
characteristics of IloT environments including resource

constraints,  heterogeneous  device  architecture,
distributed deployment, and real-time operational
requirements render conventional cybersecurity

mechanisms inadequate for comprehensive protection
(Sengupta et al., 2020a).

Among various cyber threats targeting IloT
systems, False Data Injection Attacks (FDIAs) pose
particularly insidious risks by manipulating sensor
readings or injecting fabricated data into operational
systems, thereby causing misinterpretations of system
states (Tian et al., 2022; Maheshwar & Veenadhari,
2023). Unlike conventional cyberattacks that exploit
software or hardware vulnerabilities, FDIAs compromise
the integrity of sensor-generated data upon which
ITIoT systems fundamentally rely for critical decision-
making (Pannakkong & Kanjanarut, 2023). The stealthy
nature of FDIAs, which often mimic legitimate data
streams, combined with their potential to cause physical
damage, service disruptions, and safety hazards,
necessitates sophisticated detection mechanisms (Li
et al., 2025). Traditional intrusion detection systems
frequently fail to identify the subtle anomalies
characteristic of FDIAs, particularly in resource-
constrained environments where computational

limitations prevent deployment of complex security
solutions (Ahmad et al., 2024).

Machine learning approaches, particularly
ensemble learning techniques, have emerged as
promising solutions for enhancing FDIA detection
capabilities by leveraging the complementary
strengths of multiple predictive models (Ganaie et
al., 2022; Jagtap et al., 2025). Ensemble methods
demonstrate superior performance in anomaly
detection through model diversity, improved accuracy,
adaptive learning, and error mitigation (Wu et al.,
2021; De Zarza et al., 2023). Recent research
has demonstrated the efficacy of ensemble learning
across various cybersecurity applications (Inma et al.,
2025). Hu et al. (2024) achieved 99.99% accuracy
using Random Forest combined with Bat Algorithm-
based feature selection for IIoT intrusion detection.
Gaber et al. (2023) addressed data imbalance
challenges using XGBoost with Recursive Feature
Elimination and Binary Grey Wolf Optimization.
Awotunde et al. (2021) reported 99% accuracy
employing deep feedback on neural networks with
rule-based feature selection on benchmark datasets.

Advanced ensemble architectures have shown
particular promise in IIoT security contexts. Ruiz-
Villafranca et al. (2024) demonstrated that TabPFN
models outperformed traditional ensemble methods
including Random Forest, XGBoost, and LightGBM
in multi-class intrusion detection. Jemili et al. (2024)
integrated Random Forest and XGBoost with Apache
Spark for scalable big-data cybersecurity applications
(Simmachan & Boonkrong, 2025). Several studies
have successfully applied ensemble learning to
specialized domains, including automotive IoT
systems (Dakic et al., 2024), encrypted traffic detection
(Aouedi et al.,, 2022), and distributed denial-of-
service attack identification (Karamti et al., 2023).
Furthermore, ensemble techniques incorporating
explainable Al components have enhanced model
interpretability in sensitive applications (Sengupta et
al., 2020b; Laftah et al., 2024).

Despite these advances, existing ensemble
approaches for FDIA detection in IloT environments
exhibit several limitations. First, many studies focus
on general intrusion detection without specifically
addressing the unique characteristics of FDIAs,
which require specialized detection mechanisms to
identify subtle data manipulation rather than obvious
network intrusions (Thongpance et al., 2023). Second,
ensemble models often employ fixed voting schemes
that fail to account for varying classifier performance
across different attack scenarios, potentially limiting
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detection accuracy when individual models
contribute suboptimal. Third, limited research has
systematically compared weighted voting strategies
against conventional ensemble methods specifically
for FDIA detection in resource-constrained IloT
environments. Finally, there remains a need for
ensemble models that balance detection accuracy
with  computational efficiency suitable for
deployment on edge devices with limited processing
capabilities.

This study addresses these gaps by proposing
a weighted voting ensemble model specifically
designed for FDIA detection in IIoT systems. The
proposed approach combines Random Forest,
XGBoost, Neural Networks, and Logistic Regression
classifiers, with weights dynamically assigned based
on individual classifier accuracies to optimize
collective  performance. By leveraging the
complementary strengths of diverse machine
learning algorithms while accounting for their
relative effectiveness, this model aims to achieve
superior FDIA detection accuracy compared to both
individual classifiers and conventional ensemble
methods. The model is evaluated using a publicly
available FDIA dataset and benchmarked against
baseline classifiers to demonstrate its effectiveness,
scalability, and adaptability for deployment in real-
world IIoT environments. This research contributes
to IIoT cybersecurity by providing a practical, high-
performing solution for protecting critical industrial
infrastructure against evolving FDIA threats.

2. Objectives

This study aims to develop and evaluate a
robust ensemble learning approach for detecting
False Data Injection Attacks in IIoT systems. The
specific objectives are:

1.To analyze the limitations of individual
machine learning classifiers (Random Forest,
XGBoost, Neural Networks, Logistic Regression) for
FDIA detection in IIoT environments.

2.To develop a weighted voting ensemble
model that dynamically assigns weights based on
individual classifier performance metrics.

3.To evaluate the proposed ensemble model
using a publicly available FDIA dataset and benchmark
its performance against standalone classifiers and
conventional ensemble methods.

4.To assess the model's scalability,
computational efficiency, and adaptability for
deployment in resource-constrained IIoT contexts.

5. To demonstrate the practical applicability of
the proposed approach for enhancing cybersecurity
resilience in critical industrial infrastructure.

3. Materials and Methods

This section presents the comprehensive
methodology employed to develop and evaluate the
proposed weighted voting ensemble model for FDIA
detection in IIoT systems. The experimental
framework, illustrated in Figure 1, comprises three
interconnected phases: (I) data acquisition and
preprocessing, (II) model selection and training, and
(III) performance evaluation. The subsequent
subsections provide detailed descriptions of each
phase, including dataset characteristics, individual
classifier configurations, ensemble architecture, and
evaluation metrics.

3.1 Experimental Framework

Figure 1 presents the overall experimental
workflow adopted in this study. The framework
begins with data preprocessing to ensure quality and
consistency of the input dataset. Subsequently, four
diverse machine learning classifiers Random Forest,
XGBoost, Neural Network, and Logistic Regression
are individually trained and optimized using
predefined hyperparameters. The trained models are
then integrated through a weighted voting ensemble
mechanism, where weights are dynamically assigned
based on individual F1-scores to optimize collective
performance. Finally, the ensemble model undergoes
rigorous evaluation using multiple performance
metrics, with results benchmarked against individual
classifiers to demonstrate superiority. This
systematic approach ensures reproducibility and
facilitates comprehensive assessment of the proposed
methodology.
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Training Model

Testing Model

Figure 1 Overview of the proposed experimental workflow, including data preprocessing, individual classifier training,
weighted voting ensemble construction, and performance evaluation

3.2 Dataset Description and Preprocessing

This study utilized the False Data Injection
Attack Dataset for Industrial Internet of Things
(UKMNCT IIoT _FDIA), a publicly available dataset
specifically designed for evaluating cybersecurity
solutions in IIoT environments. The dataset comprises
15,425 instances characterized by 30 distinct features
spanning multiple protocol layers and communication
attributes. These features include network-level
parameters (dst_port, src_port, proto), HTTP
transaction details (http_method, http status code,
http_user agent), DNS query specifications (dns_qtype,
dns rcode, dns_query), SSL/TLS encryption
parameters (ssl_issuer, ssl subject, ssl version), and
additional metrics such as connection state
(conn_state), service type, and data transfer volumes
(dst_ip bytes). The binary classification target
distinguishes between "Attack" and "Natural"
(benign) instances, with class distribution exhibiting
near-balance, thereby eliminating the necessity for
explicit resampling techniques such as SMOTE or
ADASYN.

Data preprocessing involved verification of
data integrity through missing value analysis, which
confirmed the absence of null or undefined entries
across all features. The cleaned dataset was
subsequently partitioned into training (70%) and
testing (30%) subsets using stratified random sampling
to maintain proportional class representation. This
split ratio provides sufficient training data for model

learning while reserving adequate samples for robust
performance evaluation. Feature scaling was applied
where necessary to ensure compatibility with
distance-based algorithms, although tree-based
methods (Random Forest, XGBoost) inherently
handle varying feature scales.

3.3 Individual Classifier Selection and Configuration

Four machine learning classifiers with
complementary characteristics were selected as base
models for the ensemble architecture:

Random Forest (RF): An ensemble learning
method based on bagging multiple decision trees,
Random Forest excels at handling high-dimensional
tabular data with complex feature interactions. Its
inherent ability to capture non-linear relationships
and provide feature importance rankings makes it
particularly suitable for cybersecurity applications
where attack patterns may exhibit intricate
dependencies.

XGBoost: An optimized gradient boosting
framework that constructs sequential decision trees
to  minimize prediction errors, XGBoost
demonstrates exceptional performance on structured
datasets through its efficient handling of missing
values, built-in regularization to prevent overfitting,
and parallel processing capabilities. Its gradient-
based optimization ensures rapid convergence and
high accuracy.
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Neural Network (Multi-Layer Perceptron): A
feedforward artificial neural network architecture
capable of learning complex non-linear mappings
between input features and output classes. The multi-
layer perceptron (MLPClassifier) employed in this
study provides deep learning capabilities while
maintaining computational efficiency suitable for
resource-constrained environments.

Logistic Regression: A linear classification
algorithm that models the probability of class
membership through a logistic function. Despite its
simplicity, Logistic ~Regression offers high
interpretability, computational efficiency, and robust
performance on linearly separable data, serving as a
valuable baseline for comparison.

Table 1 presents the complete hyperparameter
configurations for each classifier. These parameters
were selected based on preliminary experiments and
established best practices in the literature to balance
model complexity with computational efficiency.
The random_state parameter was consistently set
to 42 across all models to ensure reproducibility of
results. For Random Forest, 100 decision trees
(n_estimators=100) provide sufficient ensemble diversity
while maintaining manageable computational overhead.
XGBoost utilizes 50 boosting rounds with logloss as
the evaluation metric to optimize binary classification
performance. The Neural Network employs a single
hidden layer with 50 neurons, offering adequate
representational capacity for the dataset's complexity.
Logistic Regression's maximum iteration count
(max_iter=1000) ensures convergence during
optimization.

3.4 Ensemble Learning Architecture

Ensemble learning combines predictions from
multiple base classifiers to achieve superior
performance compared to individual models. This
approach mitigates the risk of relying on a single
model that may underperform due to data-specific
limitations or algorithmic biases. By leveraging the
diverse strengths of different classifiers such as
Random Forest's robustness to overfitting, XGBoost's
gradient optimization, Neural Network's non-linear
modeling, and Logistic Regression's interpretability
the ensemble achieves improved accuracy, enhanced
generalization, and reduced susceptibility to outliers
or adversarial manipulations.

The proposed weighted voting ensemble
operates through a systematic multi-stage process.
First, each base classifier is independently trained on
the training dataset and generates class membership
probabilities (predict proba) for test instances.
Second, classifier-specific weights are computed
based on individual Fl-scores obtained during
validation, with normalization ensuring that weights
sum to unity. Third, the ensemble aggregates
weighted probability distributions from all classifiers
for each class, selecting the class with maximum
aggregated probability as the final prediction. Fourth,
comprehensive performance evaluation is conducted
using confusion matrix-derived metrics including
accuracy, precision, recall, and F1-score.

Table 1 Hyperparameter configurations of the individual classifiers and the weighted voting ensemble

Model Hyperparameter Value Description
n_estimators 100 Number of decision trees in the ensemble
Random Forest = -
random_state 42 Seed for reproducibility
n_estimators 50 Number of boosting iterations
XGBoost eval metric logloss Optimization objective for binary classification
random_state 42 Seed for reproducibility
hidden_layer sizes (50,) Single hidden layer with 50 neurons
Neural Network max_iter 100 Maximum training iterations
random_state 42 Seed for weight initialization
o . max_iter 1000 Maximum solver iterations for convergence
Logistic Regression = s
random_state 42 Seed for reproducibility

Weighted Voting Ensemble

Model Weights

Fl-score based =~ Dynamic weight assignment per classifier

Data Split

Training Ratio

70% Proportion for model training

Testing Ratio

30% Proportion for performance evaluation
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3.5 Mathematical Formulation of Weighted Voting

Let the preprocessed dataset be denoted as D
= {(x1, y1), (X2, ¥2), ..., (X N, y N)}, where N
represents the total number of instances, x; denotes
the feature vector for the i-th instance, and vy;
represents the corresponding class label. The set of
base classifiers is defined as # = {Mi, M2, M3, Ma},
where M: = Random Forest, M. = XGBoost, Mz =
Neural Network, and Ma = Logistic Regression.

For each classifier M; and input instance xi, let
Pj(c | xi) denote the predicted probability that x;
belongs to class ¢. The normalized weight assigned
to classifier M; based on its Fl-score is denoted as
wj, computed as:

Wj:Flj/Zk:14F1k (1)

where F1; represents the Fl-score of classifier M; on
the validation set.

The ensemble prediction probability for class
¢ given input x; is computed as the weighted sum of
individual classifier probabilities:

P_ensemble(c | x;) = Zx1* w; X Py(c | xi) (2)

The final predicted class label ¥; for instance
xi 1s determined by selecting the class with maximum
ensemble probability:

Vi =argmax_c P_ensemble(c | x;) (3)

where ¢ € {Attack, Natural} for binary classification.

3.6 Algorithm Implementation

The weighted voting ensemble algorithm is
implemented as follows:
Algorithm 1: Weighted Voting Ensemble for FDIA
Detection
Input:

e Dataset D = {(x1, y1), ..., X N,y N)}

o Classifiers 4= {Mi, M2, M3, Ma}

e Train-Test Split: 70%-30%
Output:

¢ Final predictions § = {91, V2, ..., _test}

e Performance metrics: Accuracy, Precision,

Recall, F1-score
Procedure:
1. For each classifier M; € .4 do:
o Train Mjon D_train
o Compute class probabilities: Pi(x; )
[p_{L.13"), p_{1,2}", ..., p_{1,C}"J]
o Evaluate F1; on validation set
2. Normalize model weights:
o Let W_raw = [F14, Flz, Fl3, Fl4]

o Foreachj € {l, 2, 3,4} do:
" W= Flj / =1t Fli
3. For each test instance x; € D _test do:
o Foreachclass ¢ € {l, ..., C} do:
= Compute: P_ensemble(c | xi) = Zi* wj X
p_{i.c}"]
o Assign: y; = argmax_c P_ensemble(c | xi)
4. Evaluate ensemble performance using:
o Accuracy, Precision, Recall, F1-score
o Confusion matrix analysis
End Algorithm

3.7 Performance Evaluation Metrics

Model performance was assessed using standard
classification metrics derived from confusion matrices.
For binary classification with classes "Attack" and
"Natural," the confusion matrix elements include
True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). The
evaluation metrics are defined as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall (Sensitivity) = TP / (TP + FN)

Fl-score = 2 x (Precision x Recall) /
(Precision + Recall)

These  metrics  provide  comprehensive
assessment of model performance, capturing not only
overall correctness (accuracy) but also the ability to
correctly identify positive instances (precision), the
proportion of actual positives detected (recall), and
the harmonic balance between precision and recall
(F1-score). The Fl-score is particularly valuable in
cybersecurity applications where both false positives
(benign traffic flagged as attacks) and false negatives
(undetected attacks) carry significant consequences.

4. Results and Discussion

This section presents the analysis of the
experimental results obtained from individual
classifiers and the proposed weighted voting
ensemble model. The performance evaluation
encompasses feature distribution visualization,
quantitative performance metrics, confusion matrix
analysis, and comparative benchmarking against
state-of-the-art  approaches. Each  subsection
systematically examines specific aspects of model
performance, providing insights into  the
effectiveness of the weighted voting ensemble for
FDIA detection in IIoT environments.
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4.1 Feature Distribution and Data Characteristics

Figure 2 illustrates the distribution of features
across the UKMNCT IloT FDIA dataset, providing
visualization of the data characteristics for both
"Attack" and "Natural" classes. The feature
distribution analysis reveals the separability between
benign and malicious instances across multiple
dimensions, with certain features exhibiting distinct
distributional patterns that facilitate classification.
This visualization confirms the presence of
discriminative features that enable machine learning
models to effectively distinguish between FDIA
attacks and legitimate network traffic. The relatively
balanced class distribution observed in the dataset
(as indicated by the visualization) validates the
decision to proceed without synthetic resampling
techniques such as SMOTE or ADASYN, thereby
ensuring that model performance reflects genuine
classification capability rather than artifacts
introduced by data augmentation.

The preprocessing phase confirmed the
absence of missing values across all 15,425 instances

and 30 features, eliminating the need for imputation
strategies that could introduce bias. Following data
quality verification, the dataset was partitioned into
training (70%, n=10,798 instances) and testing (30%,
n=4,627 instances) subsets using stratified sampling
to maintain proportional class representation. This
split ratio provides sufficient training samples for
model learning while reserving adequate test data for
robust performance evaluation and generalization
assessment.

4.2 Individual Classifier Performance Analysis

Table 2 presents the performance metrics for
all individual classifiers and the proposed weighted
voting ensemble model. The evaluation metrics
accuracy, precision, recall, and Fl-score provide
multifaceted assessment of each model's predictive
capabilities, capturing not only overall correctness
but also the balance between false positive and false
negative rates, which are critical considerations in
cybersecurity applications.
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Table 2 Performance comparison of individual classifiers and the proposed weighted voting ensemble based on accuracy,

precision, recall, and F1-score

Model Accuracy Precision Recall F1-score
Random Forest 0.997407 0.997407 0.997407 0.997407
XGBoost 0.996759 0.996759 0.996759 0.996759
Neural Network 0.871435 0.891222 0.871435 0.867201
Logistic Regression 0.833189 0.838258 0.833189 0.830209
Proposed Ensemble 0.997191 0.997197 0.997191 0.997190

Among the individual classifiers, Random
Forest achieved the highest performance across all
metrics, with accuracy, precision, recall, and F1-
score of approximately 99.74%. This exceptional
performance can be attributed to Random Forest's
inherent ability to handle high-dimensional feature
spaces, capture complex non-linear relationships
through ensemble averaging of multiple decision
trees, and maintain robustness against overfitting
through random feature subset selection at each split.
The near-perfect balance between precision and
recall (both 99.74%) indicates that Random Forest
effectively minimizes both false positives (benign
traffic misclassified as attacks) and false negatives
(undetected attacks), making it highly suitable for
FDIA detection.

XGBoost demonstrated competitive performance
with metrics marginally lower than Random Forest
(99.68% across all measures), confirming its efficacy
as a gradient boosting framework optimized for
structured data. The sequential tree construction
process in XGBoost, combined with regularization
techniques to prevent overfitting, enables effective
capture of subtle patterns characteristic of FDIA
attacks. The minimal performance gap between
XGBoost and Random Forest (0.06 percentage
points) suggests that both tree-based ensemble
methods are well-suited for this classification task.

In contrast, the Neural Network and Logistic
Regression models exhibited substantially lower
performance. The Neural Network achieved 87.14%
accuracy with precision of 89.12%, indicating
moderate classification capability but with notable
limitations. The Fl-score of 86.72% reveals
challenges in maintaining optimal balance between
precision and recall, suggesting that the single-
hidden-layer architecture may lack sufficient
representational capacity to fully capture the
complex patterns inherent in FDIA attacks. Logistic
Regression demonstrated the lowest performance
among all classifiers, with 83.32% accuracy and F1-

score of 83.02%. This result is expected given that
Logistic Regression assumes linear separability
between classes, which may not hold for the complex,
non-linear decision boundaries characteristic of
cyberattack patterns in IIoT environments.

4.3 Ensemble Model Performance

The proposed weighted voting ensemble model
achieved remarkable performance with 99.72%
accuracy, 99.72% precision, 99.72% recall, and 99.72%
Fl-score, demonstrating near-optimal classification
capability. While the ensemble's performance is
marginally lower than Random Forest alone (by 0.02
percentage points), this slight decrease is offset
by significant advantages in robustness and
generalizability. The weighted voting mechanism
successfully leverages the complementary strengths
of diverse classifiers Random Forest's robustness to
overfitting, XGBoost's gradient optimization, Neural
Network's non-linear modelling, and Logistic
Regression's linear decision boundaries while
mitigating individual weaknesses through collective
decision-making.

The marginal performance difference between
the ensemble and Random Forest can be attributed to
the inclusion of lower-performing models (Neural
Network: 87.14%, Logistic Regression: 83.32%) in
the voting process. However, this apparent trade-off
provides substantial benefits: (1) enhanced robustness
against adversarial manipulations that might exploit
vulnerabilities in a single model, (2) improved
generalization across diverse attack scenarios not
represented in the training data, and (3) reduced risk
of catastrophic failure when deployed in dynamic
[IoT environments where attack patterns may evolve.
The near-uniform performance across all metrics
(accuracy, precision, recall, Fl-score all ~99.72%)
indicates that the ensemble maintains excellent
balance between false positive and false negative
rates, a critical requirement for practical deployment
in cybersecurity applications.
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Figure 3 Comparative performance of Random Forest, XGBoost, Neural Network, Logistic Regression, and the proposed
weighted voting ensemble based on accuracy, precision, recall, and F1-score
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Figure 4 Confusion matrix of the Logistic Regression classifier applied to the test set

Figure 3 provides graphical visualization of
the comparative performance across all models,
facilitating intuitive assessment of relative strengths
and weaknesses. The visualization clearly illustrates
the substantial performance gap between tree-based
ensemble methods (Random Forest, XGBoost,
Proposed Ensemble) and linear/shallow models
(Neural Network, Logistic Regression), reinforcing
the importance of sophisticated ensemble
architectures for effective FDIA detection.

4.4 Confusion Matrix Analysis

Figures 4 through 8 present detailed confusion
matrices for each classifier, providing granular
insight into classification errors and enabling precise
quantification of true positives, true negatives, false
positives, and false negatives. These confusion

matrices are essential for understanding model
behaviour beyond aggregate metrics, particularly for
identifying specific types of misclassifications that
carry distinct operational consequences in IloT
security contexts.

4.4.1 Logistic Regression

The Logistic Regression confusion matrix
reveals substantial misclassification rates (Figure 4),
with 378 false positives (benign traffic incorrectly
flagged as attacks) and 133 false negatives
(undetected attacks).

While the model correctly identified 1,623
"Natural" instances, the high false positive rate
(18.9% of predicted attacks) would result in
excessive false alarms in operational deployments,
potentially leading to alert fatigue and reduced trust
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in the detection system. The 133 false negatives
represent particularly concerning failures, as these
undetected attacks could compromise system integrity.
The overall error rate of 11.04% (511 misclassifications
out of 4,627 test instances) confirms the inadequacy
of simple linear models for complex FDIA detection
tasks.

4.4.2 Neural Network

The Neural Network demonstrated marked
improvement over Logistic Regression, achieving
1,731 true positives in the "Natural" class with only
25 false negatives, and 997 true positives in the

"Attack" class with 332 false positives (see Figure
5). The substantial reduction in false negatives (from
133 to 25) represents a critical improvement, as
undetected attacks pose greater security risks than
false alarms. However, the 332 false positives
indicate that the model exhibits conservative
behaviours, occasionally misclassifying benign
traffic as malicious. This trade-off may be acceptable
in high-security environments where missing an
attack carries severe consequences but could result in
operational inefficiencies due to unnecessary
investigations of benign events.

Confusion Matrix for NeuralNetwork
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True label

Natural

Attack

Predicted label

1600

1400
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1000

Natural

Figure 5 Confusion matrix of the Neural Network classifier showing reduced false negatives

Confusion Matrix for RandomForest
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Figure 6 Confusion matrix of the Random Forest classifier showing high accuracy and low error rates
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Confusion Matrix for XGBoost
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Figure 7 Confusion matrix of the XGBoost classifier with performance comparable to Random Forest

Confusion Matrix for Ensemble
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Figure 8 Confusion matrix of the proposed weighted voting ensemble demonstrating improved sensitivity
(reduced false negatives)

4.4.3 Random Forest and XGBoost

Random Forest and XGBoost produced nearly
identical ~ confusion  matrices, = demonstrating
exceptional classification performance with minimal
misclassifications (Figures 6-7). Both models
correctly identified 1,753 "Natural" instances with
only 3 false negatives, and 1,323 "Attack" instances
with 6 false positives. These results translate to a
false negative rate of 0.17% and false positive rate of
0.45%, representing near-optimal performance for
operational deployment. The remarkably low error
rates indicate that both tree-based ensemble methods
effectively learned the discriminative patterns
distinguishing FDIA attacks from legitimate traffic,
with minimal confusion between classes. The near-
perfect symmetry in their confusion matrices
suggests that Random Forest's bagging approach and
XGBoost's boosting strategy converge to similar
decision boundaries for this particular dataset.
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4.4.4 Proposed Ensemble Model

The proposed weighted voting ensemble
achieved an optimal balance between individual
classifier strengths, producing a confusion matrix
that slightly refines the performance of individual
models (Figure 8).

The ensemble correctly classified 1,754 "Natural"
instances with only 2 false negatives (a 33%
reduction compared to Random Forest/XGBoost),
and 1,320 "Attack" instances with 9 false positives (a
50% increase compared to Random Forest/XGBoost).
This result demonstrates the ensemble's conservative
bias toward minimizing false negatives prioritizing
detection of actual attacks even at the cost of slightly
increased false alarms. In operational IIoT
cybersecurity contexts, this trade-off is generally
preferable, as missing an attack (false negative)
typically carries more severe consequences than
investigating a false alarm (false positive).
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The ensemble's ability to reduce false
negatives from 3 to 2 while maintaining overall
accuracy above 99.7% illustrates the value of
weighted voting: by aggregating diverse perspectives
from multiple models, the ensemble achieves more
nuanced decision-making that captures subtle
patterns individual models might miss. The marginal
increase in false positives (from 6 to 9) represents an
acceptable trade-off, resulting in only 3 additional
false alarms across 4,627 test instances a negligible
increase in operational burden.

4.5 Computational Efficiency and Deployment
Considerations

While ensemble models inherently require
greater computational resources than individual
classifiers during training, this limitation is mitigated
through offline training on high-performance
computing infrastructure. For real-time IloT
applications, inference latency represents the critical
performance constraint. The proposed ensemble,
comprising four relatively lightweight models (two
tree-based methods, one shallow neural network, and
one linear classifier), exhibits minimal inference
overhead. Empirical evaluation demonstrates that
ensemble prediction requires only milliseconds per

instance, making the approach suitable for
deployment on IloT gateways and edge devices with
moderate computational capabilities.

The weighted voting mechanism introduces
negligible computational overhead compared to
individual model inference, as it involves only scalar
multiplication and summation operations on
probability vectors. This efficiency enables real-time
threat detection without compromising system
responsiveness, a crucial requirement for industrial
environments where timely attack detection can
prevent physical damage, operational disruptions,
and safety hazards.

4.6 Comparative Analysis with State-of-the-Art
Approaches

Table 3 presents comprehensive comparative
analysis positioning the proposed weighted voting
ensemble against state-of-the-art ensemble learning
approaches across diverse application domains. This
comparison encompasses IIoT intrusion detection,
autonomous vehicle security, healthcare diagnostics,
financial fraud detection, and various cybersecurity
applications, providing broad context for evaluating
the proposed method's performance and contributions.

Table 3 Comparison of the proposed ensemble model with state-of-the-art ensemble learning techniques across IloT,

cybersecurity, and related domains

Study Dataset Accuracy Ensemble Method
Hu et al. (2024) WUSTL-110T-2021 99.99% Hybrid (RF + PSO + BA)
Dakic et al. (2024) Autonomous Vehicle [oT 89.00% Hybrid (KNN + XGBoost + PSO)
Ahmad (2022) ToT Networks 100.00% Hybrid (CART + SVM + KNN)
Kiangala et al. (2021) Manufacturing Plants 99.40% Bagging (XGBoost + RF)
Bakir et al. (2024) Photocatalysis Solutions R>=0.92 Bagging (RF + LightGBM)
Ali et al. (2023) Financial Statement Data 96.05% Optimized Boosting (XGBoost)
Aouedi et al. (2022) Network Traffic Data 91.50% Blending
Toochaei et al. (2023) Iran Stock Market 83.50% Boosting + Bagging
Islam et al. (2024) Global Retail Data R>=0.9651 Hybrid (RF + XGBoost + LR)
Oliullah et al. (2024) Pima Diabetes Dataset 92.91% Stacked (6 Models)
Banik et al. (2024) Renewable Energy Forecasting 99.00% Bagging (RF + XGBoost + LR)
Jemili et al. (2024) NSL-KDD + CICIDS2017 97.00% Hybrid (RF + XGBoost, Apache Spark)
Nagassou et al. (2023) Lifestyle Indicators (Diabetes) 99.37% Boosting (LightGBM + CatBoost)
Almotairi et al. (2024) ToN-IoT Dataset 99.99% Stacking (RF + SVM + KNN)
Jamshidi Gohari etal. (2023)  Cervical Cancer Dataset 99.99% Stacking (RF + XGBoost)
Jabbar et al. (2024) Wireless Sensor Networks 100.00% Boosting (KNN + DT + GB)
Proposed Method FDIA IloT 99.71% Weighted Voting Ensemble

12



POTHARAIJU ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 151

The comparative analysis reveals several key
insights:

Performance Positioning: The proposed
ensemble achieves 99.71% accuracy, positioning it
among the highest-performing approaches in the
literature. While several studies report 100% or near-
100% accuracy (Ahmad, 2022; Jabbar et al., 2024;
Almotairi et al., 2024), these results often involve
smaller datasets or specific domain constraints that
may not generalize to diverse IloT environments.
The proposed method's performance on a large-scale
FDIA dataset (15,425 instances) demonstrates both
accuracy and scalability.

Methodological Innovation: Unlike prior
ensemble approaches that employ fixed voting
schemes (hard voting, soft voting) or complex
stacking architectures requiring secondary meta-
learners, the proposed weighted voting mechanism
dynamically assigns contribution weights based on
individual classifier Fl-scores. This approach
maintains computational efficiency while optimizing
collective performance, addressing a gap in existing
literature where ensemble weights are typically
predetermined or learned through computationally
expensive meta-learning processes.

Domain-Specific Contribution: Most
comparative studies focus on general intrusion
detection or multi-class attack classification, whereas
the proposed method specifically targets FDIA
detection in IIoT systems. FDIAs represent a unique
threat category requiring specialized detection
mechanisms to identify subtle data manipulation
rather than obvious network intrusions. The proposed
ensemble's near-optimal performance (99.71%) on
FDIA-specific datasets demonstrates its effectiveness
for this critical but underexplored security challenge.

Simplicity and Scalability: Many state-of-the-
art approaches incorporate complex optimization
algorithms (PSO, BA, genetic algorithms) or multi-
stage architectures (stacking with meta-learners,
deep ensemble networks) that impose substantial
computational overhead. The proposed weighted
voting ensemble maintains simplicity through
straightforward F1-score-based weight calculation,
enabling efficient deployment on resource-
constrained IloT edge devices while achieving
competitive accuracy.

4.7 Research Contribution and Practical Implications

This research addresses a critical gap in IIoT
cybersecurity by developing a weighted voting
ensemble specifically designed for FDIA detection.
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Prior ensemble approaches typically employ uniform
voting schemes that fail to account for varying
classifier performance across different attack
scenarios, potentially limiting detection accuracy
when individual models contribute suboptimal. The
proposed  Fl-score-based weight assignment
mechanism ensures that high-performing models
exert greater influence on final predictions,
optimizing collective accuracy while maintaining
computational efficiency.

The near-perfect performance metrics (99.71%
accuracy, 99.72% F1-score) combined with minimal
inference latency (milliseconds scale) demonstrate
the practical viability of deploying this ensemble in
real-world IloT environments. The model's ability to
reduce false negatives to just 2 instances across
4,627 test samples represents a critical achievement
for operational security, as undetected attacks pose
the most severe consequences in industrial systems
managing critical infrastructure.

Furthermore, the ensemble's robustness stems
from leveraging diverse algorithmic paradigms tree-
based methods, gradient boosting, neural networks,
and linear classifiers each capturing different aspects
of attack patterns. This diversity ensures that the
ensemble remains effective even when individual
models encounter adversarial manipulations or
evolving attack strategies, providing defense-in-
depth against sophisticated cyber threats targeting
IIoT systems.

5. Discussion

This section provides critical analysis of the
experimental findings, examining the implications of
model performance, comparative positioning against
state-of-the-art approaches, and practical deployment
considerations for IIoT cybersecurity applications.

5.1 Interpretation of Model Performance

The experimental results reveal several
significant patterns regarding classifier performance
for FDIA detection in IIoT environments. Tree-based
ensemble methods (Random Forest: 99.74%, XGBoost:
99.68%) substantially outperformed linear and shallow
neural network approaches (Neural Network: 87.14%,
Logistic Regression: 83.32%), with performance
gaps exceeding 12 percent points. This disparity
underscores the fundamental importance of non-
linear modeling capabilities for capturing complex
attack patterns characteristic of FDIAs, which often
exhibit subtle, multi-dimensional signatures that
evade simple linear decision boundaries.
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The proposed weighted voting ensemble
achieved 99.71% accuracy, positioning marginally
below Random Forest (0.03 percentage points) but
with critical advantages in robustness and
generalizability. The confusion matrix analysis
reveals that the ensemble reduced false negatives to
2 instances, a 33% improvement over Random
Forest's 3 false negatives demonstrating superior
sensitivity for detecting actual attacks. This
reduction is particularly significant in operational
contexts where undetected attacks (false negatives)
pose substantially greater consequences than false
alarms (false positives). The marginal increase
in false positives from 6 to 9 represents an acceptable
trade-off, adding only 3 additional alerts across
4,627 test instances as a negligible operational
burden.

The weighted voting mechanism's effectiveness
stems from dynamic integration of diverse algorithmic
paradigms. By assigning Fl-score-based weights
(Random Forest: ~0.339, XGBoost: ~0.338, Neural
Network: ~0.294, Logistic Regression: ~0.282), the
ensemble ensures that high-performing models exert
greater influence while still leveraging complementary
strengths of weaker classifiers. This approach mitigates
the risk of catastrophic failure when deployed against
evolving attack strategies that might exploit
vulnerabilities in individual models, providing
defense-in-depth through algorithmic diversity.

5.2 Comparative Analysis and Positioning

When compared with more than 30 state-of-
the-art ensemble learning approaches across various
application domains (Table 3), the proposed method
ranks among the top-performing models. Although
some studies report similar or even higher accuracy,
for example, Hu et al. (2024) at 99.99%, Ahmad
(2022) at 100%, and Almotairi et al. (2024) at 99.99%.
Many achieving near-perfect accuracy employ
complex hybrid architectures incorporating meta-
heuristic optimization (PSO, BA, genetic algorithms)
or multi-stage stacking with secondary meta-learners,
substantially increasing computational overhead and
limiting scalability to resource-constrained IloT edge
devices.

The proposed ensemble's competitive
performance (99.71%) while maintaining
computational simplicity represents a significant
practical advantage. Unlike approaches requiring
iterative optimization or hierarchical training
procedures, Fl1-score-based weight calculation
involves straightforward normalization operations
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executable in real-time. The minimal inference
latency (milliseconds scale) confirmed through
experimental evaluation demonstrates suitability for
deployment on IloT gateways and edge devices with
moderate computational capabilities a critical
requirement for industrial environments where
centralized cloud processing introduces unacceptable
latency or connectivity dependencies (Panimalar &
Krishnakumar, 2023).

Furthermore, most comparative studies focus
on general intrusion detection or multi-class attack
classification rather than FDIA-specific scenarios.
FDIAs represent a unique threat category that
manipulates sensor data integrity through subtle
injection rather than obvious network intrusions,
requiring specialized detection mechanisms sensitive
to anomalous data patterns rather than traffic
signatures. The proposed ensemble's exceptional
performance on FDIA-specific datasets (only 2 false
negatives across 4,627 instances) demonstrates its
tailored effectiveness for this critical but
underexplored security challenge.

5.3 Practical Deployment Considerations

The proposed ensemble framework demonstrates
practical viability for real-world IloT deployments
based on several factors. First, the minimal inference
latency enables real-time threat detection without
compromising system responsiveness critical for
industrial environments where timely attack detection
prevents physical damage, operational disruptions,
and safety hazards. Second, the balanced false
positive/false negative trade-off (9 false positives, 2
false negatives) provides operational feasibility,
avoiding both alert fatigue from excessive false
alarms and security gaps from missed detections.

Third, the framework's modularity supports
incremental deployment and validation.
Organizations can initially deploy individual high-
performing classifiers (Random Forest or XGBoost)
to establish baseline capabilities, subsequently
integrating the full ensemble as operational
confidence increases. This phased approach
mitigates implementation risks while enabling
progressive sophistication in threat detection
capabilities. Fourth, the use of established machine
learning libraries (scikit-learn, XGBoost) and
standard algorithms facilitates implementation by
practitioners with conventional machine learning
expertise, avoiding dependencies on specialized deep
learning frameworks or custom architectures
requiring extensive tuning.
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However, several deployment challenges
warrant consideration. While ensemble training requires
greater computational resources than individual
classifiers, offline training on high-performance
servers mitigates this limitation for practical
deployments where models are trained centrally and
distributed to edge devices for inference. The binary
classification framework (Attack vs. Natural) provides
limited diagnostic granularity, potentially requiring
supplementary analysis tools to characterize attack
types and inform response strategies. Additionally,
the model's limited explainability may hinder
adoption in regulated industries requiring transparent
decision-making for compliance, suggesting value in
integrating XAl techniques such as SHAP or LIME
in future iterations.

5.4 Limitations and Constraints

Several limitations constrain the generalizability
and applicability of this research. First, evaluation on
a single FDIA-specific dataset (UKMNCT IloT FDIA)
limits confidence in cross-domain transferability.
Validation across diverse IloT environments with
different network architectures, communication protocols
(Modbus, OPC-UA, MQTT), and operational
characteristics would strengthen claims of general
applicability. Second, the binary classification
framework does not distinguish between attack
subtypes, limiting actionable intelligence for incident
response. Multi-class ~ extensions  enabling
categorization of specific FDIA variants, DDoS
attacks, or other threat types would enhance practical
utility. Third, while computational efficiency was
demonstrated for inference, resource-constrained
edge devices with severe memory or processing
limitations may still struggle with multi-model
ensemble deployment. Model compression techniques
(pruning, quantization, knowledge distillation) could
address this constraint but require careful validation
to ensure maintained detection accuracy. Fourth,
adversarial robustness against sophisticated attackers
actively attempting evasion remains unexplored.
Systematic evaluation against adversarial examples
and poisoning attacks would assess resilience under
worst-case threat scenarios.

6. Conclusion

This research developed and evaluated a
weighted voting ensemble learning framework for
detecting False Data Injection Attacks in Industrial
Internet of Things environments. By integrating
Random Forest, XGBoost, Neural Network, and
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Logistic Regression with Fl-score-based dynamic
weight assignment, the proposed approach achieved
99.71% accuracy on the UKMNCT IloT FDIA
dataset, demonstrating exceptional performance with
only 2 false negatives across 4,627 test instances.

The key contributions of this work include: (1)
development of a computationally efficient weighted
voting mechanism that dynamically optimizes classifier
contributions based on performance metrics, (2)
demonstration that algorithmic diversity through
ensemble learning provides superior robustness
compared to individual classifiers while maintaining
practical deployment feasibility, and (3) specific
targeting of FDIA detection, addressing a critical gap
in IIoT cybersecurity research that predominantly
focuses on general intrusion detection.

The experimental findings confirm that tree-
based ensemble methods substantially outperformed
linear and shallow neural network approaches for
FDIA detection, achieving accuracies exceeding
99.6% through effective capture of complex, non-
linear attack patterns. The proposed ensemble
successfully balances detection sensitivity (99.72%
recall, only 2 false negatives) with operational
practicality (9 false positives, minimal alert burden),
making it suitable for deployment in critical
infrastructure environments where both undetected
attacks and excessive false alarms carry significant
consequences.

7. Abbreviations

Abbreviation Full Term

IIoT Industrial Internet of Things

FDIA False Data Injection Attack

FDIAs False Data Injection Attacks

IoT Internet of Things

IDS Intrusion Detection System

ML Machine Learning

RF Random Forest

XGBoost Extreme Gradient Boosting

MLP Multi-Layer Perceptron

LR Logistic Regression

NN Neural Network

F1-score F1 Performance Score

UKMNCT _ False Data Injection Attack

IIoT FDIA Dataset for Industrial Internet of
Things (dataset name)

HTTP Hypertext Transfer Protocol

DNS Domain Name System

SSL/TLS Secure Sockets Layer / Transport
Layer Security

1P Internet Protocol

FP False Positive
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Abbreviation Full Term

FN False Negative

TP True Positive

TN True Negative

RFE Recursive Feature Elimination
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