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Abstract 

False Data Injection Attacks (FDIAs) pose critical threats to Industrial Internet of Things (IIoT) systems by 

manipulating sensor data to cause operational disruptions and safety hazards. Traditional intrusion detection systems struggle 

to identify the subtle anomalies characteristic of FDIAs, necessitating advanced machine learning approaches. This study 

develops a weighted voting ensemble framework integrating Random Forest, XGBoost, Neural Network, and Logistic 

Regression with F1-score-based dynamic weight assignment for optimized FDIA detection. The proposed ensemble was 

evaluated on the UKMNCT_IIoT_FDIA dataset containing 15,425 instances across 30 features. Using 70–30 train–test split, 

model performance was assessed through accuracy, precision, recall, F1-score, and confusion matrix analysis. Results 

demonstrate exceptional performance: 99.71% accuracy, 99.72% precision, 99.72% recall, and 99.72% F1-score. Confusion 

matrix analysis revealed only 2 false negatives and 9 false positives across 4,627 test instances, substantially outperforming 

individual classifiers while maintaining computational efficiency suitable for resource-constrained edge devices. 

The weighted voting mechanism successfully leverages algorithmic diversity to achieve superior robustness 

compared to individual models. Tree-based ensembles (Random Forest: 99.74%, XGBoost: 99.68%) substantially 

outperformed Neural Network (87.14%) and Logistic Regression (83.32%), confirming the importance of non-linear 

modeling for complex attack pattern detection. The minimal false negative rate (0.04%) represents critical advancement for 

critical infrastructure protection where undetected attacks carry severe consequences. This research establishes the efficacy 

of performance-adaptive ensemble learning for IIoT cybersecurity, providing a practical, scalable solution for safeguarding 

industrial cyber-physical systems against evolving threats. 

 
Keywords: industrial internet of things; false data injection attack; ensemble learning; weighted voting; intrusion detection; 

cybersecurity; random forest; XGBoost 
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1.  Introduction 

The Industrial Internet of Things (IIoT) 

represents a transformative paradigm that integrates 

intelligent sensors, cyber-physical systems, and 

advanced communication protocols to revolutionize 

industrial operations across manufacturing, energy, 

healthcare, digital entertainment industry, and 

transportation sectors (Javaid et al., 2021; Mulla et al., 

2025). By enabling real-time data exchange, automated 

control, and enhanced decision-making, IIoT systems 

have become fundamental to modern industrial 

infrastructure. However, the increasing connectivity of 

these systems to internet and cloud platforms has 

exposed them to sophisticated cyber threats, creating 

substantial risks to critical infrastructure and sensitive 

operational data (Yu et al., 2021). 

Unlike traditional information technology 

environments that rely on discrete computing 

systems, IIoT ecosystems comprise interconnected 

physical devices managing essential operations such 

as power grids, manufacturing plants, and healthcare 

equipment (Potharaju et al., 2025; Simmachan et al., 

2025). Security breaches in these systems can result 

in operational disruptions, significant financial losses, 

threats to human safety, and potential national security 

vulnerabilities (Eyeleko et al., 2023). The unique 

characteristics of IIoT environments including resource 

constraints, heterogeneous device architecture, 

distributed deployment, and real-time operational 

requirements render conventional cybersecurity 

mechanisms inadequate for comprehensive protection 

(Sengupta et al., 2020a). 

Among various cyber threats targeting IIoT 

systems, False Data Injection Attacks (FDIAs) pose 

particularly insidious risks by manipulating sensor 

readings or injecting fabricated data into operational 

systems, thereby causing misinterpretations of system 

states (Tian et al., 2022; Maheshwar & Veenadhari, 

2023). Unlike conventional cyberattacks that exploit 

software or hardware vulnerabilities, FDIAs compromise 

the integrity of sensor-generated data upon which 

IIoT systems fundamentally rely for critical decision-

making (Pannakkong & Kanjanarut, 2023). The stealthy 

nature of FDIAs, which often mimic legitimate data 

streams, combined with their potential to cause physical 

damage, service disruptions, and safety hazards, 

necessitates sophisticated detection mechanisms (Li 

et al., 2025). Traditional intrusion detection systems 

frequently fail to identify the subtle anomalies 

characteristic of FDIAs, particularly in resource-

constrained environments where computational 

limitations prevent deployment of complex security 

solutions (Ahmad et al., 2024). 

Machine learning approaches, particularly 

ensemble learning techniques, have emerged as 

promising solutions for enhancing FDIA detection 

capabilities by leveraging the complementary 

strengths of multiple predictive models (Ganaie et 

al., 2022; Jagtap et al., 2025). Ensemble methods 

demonstrate superior performance in anomaly 

detection through model diversity, improved accuracy, 

adaptive learning, and error mitigation (Wu et al., 

2021; De Zarzà et al., 2023). Recent research  

has demonstrated the efficacy of ensemble learning 

across various cybersecurity applications (Inma et al., 

2025). Hu et al. (2024) achieved 99.99% accuracy 

using Random Forest combined with Bat Algorithm-

based feature selection for IIoT intrusion detection. 

Gaber et al. (2023) addressed data imbalance 

challenges using XGBoost with Recursive Feature 

Elimination and Binary Grey Wolf Optimization. 

Awotunde et al. (2021) reported 99% accuracy 

employing deep feedback on neural networks with 

rule-based feature selection on benchmark datasets. 

Advanced ensemble architectures have shown 

particular promise in IIoT security contexts. Ruiz-

Villafranca et al. (2024) demonstrated that TabPFN 

models outperformed traditional ensemble methods 

including Random Forest, XGBoost, and LightGBM 

in multi-class intrusion detection. Jemili et al. (2024) 

integrated Random Forest and XGBoost with Apache 

Spark for scalable big-data cybersecurity applications 

(Simmachan & Boonkrong, 2025). Several studies 

have successfully applied ensemble learning to 

specialized domains, including automotive IoT 

systems (Dakic et al., 2024), encrypted traffic detection 

(Aouedi et al., 2022), and distributed denial-of-

service attack identification (Karamti et al., 2023). 

Furthermore, ensemble techniques incorporating 

explainable AI components have enhanced model 

interpretability in sensitive applications (Sengupta et 

al., 2020b; Laftah et al., 2024). 

Despite these advances, existing ensemble 

approaches for FDIA detection in IIoT environments 

exhibit several limitations. First, many studies focus 

on general intrusion detection without specifically 

addressing the unique characteristics of FDIAs, 

which require specialized detection mechanisms to 

identify subtle data manipulation rather than obvious 

network intrusions (Thongpance et al., 2023). Second, 

ensemble models often employ fixed voting schemes 

that fail to account for varying classifier performance 

across different attack scenarios, potentially limiting 
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detection accuracy when individual models 

contribute suboptimal. Third, limited research has 

systematically compared weighted voting strategies 

against conventional ensemble methods specifically 

for FDIA detection in resource-constrained IIoT 

environments. Finally, there remains a need for 

ensemble models that balance detection accuracy 

with computational efficiency suitable for 

deployment on edge devices with limited processing 

capabilities. 

This study addresses these gaps by proposing 

a weighted voting ensemble model specifically 

designed for FDIA detection in IIoT systems. The 

proposed approach combines Random Forest, 

XGBoost, Neural Networks, and Logistic Regression 

classifiers, with weights dynamically assigned based 

on individual classifier accuracies to optimize 

collective performance. By leveraging the 

complementary strengths of diverse machine 

learning algorithms while accounting for their 

relative effectiveness, this model aims to achieve 

superior FDIA detection accuracy compared to both 

individual classifiers and conventional ensemble 

methods. The model is evaluated using a publicly 

available FDIA dataset and benchmarked against 

baseline classifiers to demonstrate its effectiveness, 

scalability, and adaptability for deployment in real-

world IIoT environments. This research contributes 

to IIoT cybersecurity by providing a practical, high-

performing solution for protecting critical industrial 

infrastructure against evolving FDIA threats. 

 

2.  Objectives 

This study aims to develop and evaluate a 

robust ensemble learning approach for detecting 

False Data Injection Attacks in IIoT systems. The 

specific objectives are: 

1. To analyze the limitations of individual 

machine learning classifiers (Random Forest, 

XGBoost, Neural Networks, Logistic Regression) for 

FDIA detection in IIoT environments. 

2. To develop a weighted voting ensemble 

model that dynamically assigns weights based on 

individual classifier performance metrics. 

3. To evaluate the proposed ensemble model 

using a publicly available FDIA dataset and benchmark 

its performance against standalone classifiers and 

conventional ensemble methods. 

4. To assess the model's scalability, 

computational efficiency, and adaptability for 

deployment in resource-constrained IIoT contexts. 

5. To demonstrate the practical applicability of 

the proposed approach for enhancing cybersecurity 

resilience in critical industrial infrastructure. 

 

3.  Materials and Methods 

This section presents the comprehensive 

methodology employed to develop and evaluate the 

proposed weighted voting ensemble model for FDIA 

detection in IIoT systems. The experimental 

framework, illustrated in Figure 1, comprises three 

interconnected phases: (I) data acquisition and 

preprocessing, (II) model selection and training, and 

(III) performance evaluation. The subsequent 

subsections provide detailed descriptions of each 

phase, including dataset characteristics, individual 

classifier configurations, ensemble architecture, and 

evaluation metrics. 

 

3.1 Experimental Framework 

Figure 1 presents the overall experimental 

workflow adopted in this study. The framework 

begins with data preprocessing to ensure quality and 

consistency of the input dataset. Subsequently, four 

diverse machine learning classifiers Random Forest, 

XGBoost, Neural Network, and Logistic Regression 

are individually trained and optimized using 

predefined hyperparameters. The trained models are 

then integrated through a weighted voting ensemble 

mechanism, where weights are dynamically assigned 

based on individual F1-scores to optimize collective 

performance. Finally, the ensemble model undergoes 

rigorous evaluation using multiple performance 

metrics, with results benchmarked against individual 

classifiers to demonstrate superiority. This 

systematic approach ensures reproducibility and 

facilitates comprehensive assessment of the proposed 

methodology.
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Figure 1 Overview of the proposed experimental workflow, including data preprocessing, individual classifier training, 

weighted voting ensemble construction, and performance evaluation 

 

3.2 Dataset Description and Preprocessing 

This study utilized the False Data Injection 

Attack Dataset for Industrial Internet of Things 

(UKMNCT_IIoT_FDIA), a publicly available dataset 

specifically designed for evaluating cybersecurity 

solutions in IIoT environments. The dataset comprises 

15,425 instances characterized by 30 distinct features 

spanning multiple protocol layers and communication 

attributes. These features include network-level 

parameters (dst_port, src_port, proto), HTTP 

transaction details (http_method, http_status_code, 

http_user_agent), DNS query specifications (dns_qtype, 

dns_rcode, dns_query), SSL/TLS encryption 

parameters (ssl_issuer, ssl_subject, ssl_version), and 

additional metrics such as connection state 

(conn_state), service type, and data transfer volumes 

(dst_ip_bytes). The binary classification target 

distinguishes between "Attack" and "Natural" 

(benign) instances, with class distribution exhibiting 

near-balance, thereby eliminating the necessity for 

explicit resampling techniques such as SMOTE or 

ADASYN. 

Data preprocessing involved verification of 

data integrity through missing value analysis, which 

confirmed the absence of null or undefined entries 

across all features. The cleaned dataset was 

subsequently partitioned into training (70%) and 

testing (30%) subsets using stratified random sampling 

to maintain proportional class representation. This 

split ratio provides sufficient training data for model 

learning while reserving adequate samples for robust 

performance evaluation. Feature scaling was applied 

where necessary to ensure compatibility with 

distance-based algorithms, although tree-based 

methods (Random Forest, XGBoost) inherently 

handle varying feature scales. 

 

3.3 Individual Classifier Selection and Configuration 

Four machine learning classifiers with 

complementary characteristics were selected as base 

models for the ensemble architecture: 

Random Forest (RF): An ensemble learning 

method based on bagging multiple decision trees, 

Random Forest excels at handling high-dimensional 

tabular data with complex feature interactions. Its 

inherent ability to capture non-linear relationships 

and provide feature importance rankings makes it 

particularly suitable for cybersecurity applications 

where attack patterns may exhibit intricate 

dependencies. 

XGBoost: An optimized gradient boosting 

framework that constructs sequential decision trees 

to minimize prediction errors, XGBoost 

demonstrates exceptional performance on structured 

datasets through its efficient handling of missing 

values, built-in regularization to prevent overfitting, 

and parallel processing capabilities. Its gradient-

based optimization ensures rapid convergence and 

high accuracy. 
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Neural Network (Multi-Layer Perceptron): A 

feedforward artificial neural network architecture 

capable of learning complex non-linear mappings 

between input features and output classes. The multi-

layer perceptron (MLPClassifier) employed in this 

study provides deep learning capabilities while 

maintaining computational efficiency suitable for 

resource-constrained environments. 

Logistic Regression: A linear classification 

algorithm that models the probability of class 

membership through a logistic function. Despite its 

simplicity, Logistic Regression offers high 

interpretability, computational efficiency, and robust 

performance on linearly separable data, serving as a 

valuable baseline for comparison. 

Table 1 presents the complete hyperparameter 

configurations for each classifier. These parameters 

were selected based on preliminary experiments and 

established best practices in the literature to balance 

model complexity with computational efficiency. 

The random_state parameter was consistently set  

to 42 across all models to ensure reproducibility of 

results. For Random Forest, 100 decision trees 

(n_estimators=100) provide sufficient ensemble diversity 

while maintaining manageable computational overhead. 

XGBoost utilizes 50 boosting rounds with logloss as 

the evaluation metric to optimize binary classification 

performance. The Neural Network employs a single 

hidden layer with 50 neurons, offering adequate 

representational capacity for the dataset's complexity. 

Logistic Regression's maximum iteration count 

(max_iter=1000) ensures convergence during 

optimization. 

3.4 Ensemble Learning Architecture 

Ensemble learning combines predictions from 

multiple base classifiers to achieve superior 

performance compared to individual models. This 

approach mitigates the risk of relying on a single 

model that may underperform due to data-specific 

limitations or algorithmic biases. By leveraging the 

diverse strengths of different classifiers such as 

Random Forest's robustness to overfitting, XGBoost's 

gradient optimization, Neural Network's non-linear 

modeling, and Logistic Regression's interpretability 

the ensemble achieves improved accuracy, enhanced 

generalization, and reduced susceptibility to outliers 

or adversarial manipulations. 

The proposed weighted voting ensemble 

operates through a systematic multi-stage process. 

First, each base classifier is independently trained on 

the training dataset and generates class membership 

probabilities (predict_proba) for test instances. 

Second, classifier-specific weights are computed 

based on individual F1-scores obtained during 

validation, with normalization ensuring that weights 

sum to unity. Third, the ensemble aggregates 

weighted probability distributions from all classifiers 

for each class, selecting the class with maximum 

aggregated probability as the final prediction. Fourth, 

comprehensive performance evaluation is conducted 

using confusion matrix-derived metrics including 

accuracy, precision, recall, and F1-score. 

 

 

 

Table 1 Hyperparameter configurations of the individual classifiers and the weighted voting ensemble 

Model Hyperparameter Value Description 

Random Forest 
n_estimators 100 Number of decision trees in the ensemble 

random_state 42 Seed for reproducibility 

XGBoost 

n_estimators 50 Number of boosting iterations 

eval_metric logloss Optimization objective for binary classification 

random_state 42 Seed for reproducibility 

Neural Network 

hidden_layer_sizes (50,) Single hidden layer with 50 neurons 

max_iter 100 Maximum training iterations 

random_state 42 Seed for weight initialization 

Logistic Regression 
max_iter 1000 Maximum solver iterations for convergence 

random_state 42 Seed for reproducibility 

Weighted Voting Ensemble Model Weights F1-score based Dynamic weight assignment per classifier 

Data Split 
Training Ratio 70% Proportion for model training 

Testing Ratio 30% Proportion for performance evaluation 
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3.5 Mathematical Formulation of Weighted Voting 

Let the preprocessed dataset be denoted as 𝔻 

= {(x₁, y₁), (x₂, y₂), ..., (x_N, y_N)}, where N 

represents the total number of instances, xᵢ  denotes 

the feature vector for the i-th instance, and yᵢ 

represents the corresponding class label. The set of 

base classifiers is defined as ℳ = {M₁, M₂, M₃, M₄}, 

where M₁ = Random Forest, M₂ = XGBoost, M₃ = 

Neural Network, and M₄ = Logistic Regression. 

For each classifier Mⱼ and input instance xᵢ, let 

Pⱼ(c | xᵢ ) denote the predicted probability that xᵢ 

belongs to class c. The normalized weight assigned 

to classifier Mⱼ based on its F1-score is denoted as 

wⱼ, computed as: 
 

wⱼ = F1ⱼ / Σₖ₌₁⁴ F1ₖ    (1) 
 

where F1ⱼ represents the F1-score of classifier Mⱼ on 

the validation set. 

The ensemble prediction probability for class 

c given input xᵢ is computed as the weighted sum of 

individual classifier probabilities: 
 

P_ensemble(c | xᵢ) = Σⱼ₌₁⁴ wⱼ × Pⱼ(c | xᵢ)  (2) 
 

The final predicted class label ŷᵢ for instance 

xᵢ is determined by selecting the class with maximum 

ensemble probability: 
 

ŷᵢ = argmax_c P_ensemble(c | xᵢ)  (3) 
 

where c ∈ {Attack, Natural} for binary classification. 

 

3.6 Algorithm Implementation 

The weighted voting ensemble algorithm is 

implemented as follows: 

Algorithm 1: Weighted Voting Ensemble for FDIA 

Detection 

Input: 

• Dataset 𝔻 = {(x₁, y₁), ..., (x_N, y_N)} 

• Classifiers ℳ = {M₁, M₂, M₃, M₄} 

• Train-Test Split: 70%-30% 

Output: 

• Final predictions ŷ = {ŷ₁, ŷ₂, ..., ŷ_test} 

• Performance metrics: Accuracy, Precision, 

Recall, F1-score 

Procedure: 

1. For each classifier Mⱼ ∈ ℳ do: 

o Train Mⱼ on 𝔻_train 

o Compute class probabilities: Pⱼ(xᵢ ) = 

[p_{i,1}^j, p_{i,2}^j, ..., p_{i,C}^j] 

o Evaluate F1ⱼ on validation set 

2. Normalize model weights: 

o Let W_raw = [F1₁, F1₂, F1₃, F1₄] 

o For each j ∈ {1, 2, 3, 4} do:  

▪ wⱼ = F1ⱼ / Σₖ₌₁⁴ F1ₖ 

3. For each test instance xᵢ ∈ 𝔻_test do: 

o For each class c ∈ {1, ..., C} do:  

▪ Compute: P_ensemble(c | xᵢ ) = Σⱼ₌₁⁴ wⱼ × 

p_{i,c}^j 

o Assign: ŷᵢ = argmax_c P_ensemble(c | xᵢ) 

4. Evaluate ensemble performance using: 

o Accuracy, Precision, Recall, F1-score 

o Confusion matrix analysis 

End Algorithm 

 

3.7 Performance Evaluation Metrics 

Model performance was assessed using standard 

classification metrics derived from confusion matrices. 

For binary classification with classes "Attack" and 

"Natural," the confusion matrix elements include 

True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). The 

evaluation metrics are defined as follows: 
 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Precision = TP / (TP + FP) 

Recall (Sensitivity) = TP / (TP + FN) 

F1-score = 2 × (Precision × Recall) / 

(Precision + Recall) 
 

These metrics provide comprehensive 

assessment of model performance, capturing not only 

overall correctness (accuracy) but also the ability to 

correctly identify positive instances (precision), the 

proportion of actual positives detected (recall), and 

the harmonic balance between precision and recall 

(F1-score). The F1-score is particularly valuable in 

cybersecurity applications where both false positives 

(benign traffic flagged as attacks) and false negatives 

(undetected attacks) carry significant consequences. 

 

4.  Results and Discussion 

This section presents the analysis of the 

experimental results obtained from individual 

classifiers and the proposed weighted voting 

ensemble model. The performance evaluation 

encompasses feature distribution visualization, 

quantitative performance metrics, confusion matrix 

analysis, and comparative benchmarking against 

state-of-the-art approaches. Each subsection 

systematically examines specific aspects of model 

performance, providing insights into the 

effectiveness of the weighted voting ensemble for 

FDIA detection in IIoT environments. 
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4.1 Feature Distribution and Data Characteristics 

Figure 2 illustrates the distribution of features 

across the UKMNCT_IIoT_FDIA dataset, providing 

visualization of the data characteristics for both 

"Attack" and "Natural" classes. The feature 

distribution analysis reveals the separability between 

benign and malicious instances across multiple 

dimensions, with certain features exhibiting distinct 

distributional patterns that facilitate classification. 

This visualization confirms the presence of 

discriminative features that enable machine learning 

models to effectively distinguish between FDIA 

attacks and legitimate network traffic. The relatively 

balanced class distribution observed in the dataset 

(as indicated by the visualization) validates the 

decision to proceed without synthetic resampling 

techniques such as SMOTE or ADASYN, thereby 

ensuring that model performance reflects genuine 

classification capability rather than artifacts 

introduced by data augmentation. 

The preprocessing phase confirmed the 

absence of missing values across all 15,425 instances 

and 30 features, eliminating the need for imputation 

strategies that could introduce bias. Following data 

quality verification, the dataset was partitioned into 

training (70%, n=10,798 instances) and testing (30%, 

n=4,627 instances) subsets using stratified sampling 

to maintain proportional class representation. This 

split ratio provides sufficient training samples for 

model learning while reserving adequate test data for 

robust performance evaluation and generalization 

assessment. 

 

4.2 Individual Classifier Performance Analysis 

Table 2 presents the performance metrics for 

all individual classifiers and the proposed weighted 

voting ensemble model. The evaluation metrics 

accuracy, precision, recall, and F1-score provide 

multifaceted assessment of each model's predictive 

capabilities, capturing not only overall correctness 

but also the balance between false positive and false 

negative rates, which are critical considerations in 

cybersecurity applications. 

 

 
Figure 2 Distribution of selected features from the UKMNCT_IIoT_FDIA dataset, illustrating class-wise separability 

between benign (“Natural”) and attack instances 
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Table 2 Performance comparison of individual classifiers and the proposed weighted voting ensemble based on accuracy, 

precision, recall, and F1-score 

Model Accuracy Precision Recall F1-score 

Random Forest 0.997407 0.997407 0.997407 0.997407 

XGBoost 0.996759 0.996759 0.996759 0.996759 

Neural Network 0.871435 0.891222 0.871435 0.867201 

Logistic Regression 0.833189 0.838258 0.833189 0.830209 

Proposed Ensemble 0.997191 0.997197 0.997191 0.997190 

 

Among the individual classifiers, Random 

Forest achieved the highest performance across all 

metrics, with accuracy, precision, recall, and F1-

score of approximately 99.74%. This exceptional 

performance can be attributed to Random Forest's 

inherent ability to handle high-dimensional feature 

spaces, capture complex non-linear relationships 

through ensemble averaging of multiple decision 

trees, and maintain robustness against overfitting 

through random feature subset selection at each split. 

The near-perfect balance between precision and 

recall (both 99.74%) indicates that Random Forest 

effectively minimizes both false positives (benign 

traffic misclassified as attacks) and false negatives 

(undetected attacks), making it highly suitable for 

FDIA detection. 

XGBoost demonstrated competitive performance 

with metrics marginally lower than Random Forest 

(99.68% across all measures), confirming its efficacy 

as a gradient boosting framework optimized for 

structured data. The sequential tree construction 

process in XGBoost, combined with regularization 

techniques to prevent overfitting, enables effective 

capture of subtle patterns characteristic of FDIA 

attacks. The minimal performance gap between 

XGBoost and Random Forest (0.06 percentage 

points) suggests that both tree-based ensemble 

methods are well-suited for this classification task. 

In contrast, the Neural Network and Logistic 

Regression models exhibited substantially lower 

performance. The Neural Network achieved 87.14% 

accuracy with precision of 89.12%, indicating 

moderate classification capability but with notable 

limitations. The F1-score of 86.72% reveals 

challenges in maintaining optimal balance between 

precision and recall, suggesting that the single-

hidden-layer architecture may lack sufficient 

representational capacity to fully capture the 

complex patterns inherent in FDIA attacks. Logistic 

Regression demonstrated the lowest performance 

among all classifiers, with 83.32% accuracy and F1-

score of 83.02%. This result is expected given that 

Logistic Regression assumes linear separability 

between classes, which may not hold for the complex, 

non-linear decision boundaries characteristic of 

cyberattack patterns in IIoT environments. 

 

4.3 Ensemble Model Performance 

The proposed weighted voting ensemble model 

achieved remarkable performance with 99.72% 

accuracy, 99.72% precision, 99.72% recall, and 99.72% 

F1-score, demonstrating near-optimal classification 

capability. While the ensemble's performance is 

marginally lower than Random Forest alone (by 0.02 

percentage points), this slight decrease is offset  

by significant advantages in robustness and 

generalizability. The weighted voting mechanism 

successfully leverages the complementary strengths 

of diverse classifiers Random Forest's robustness to 

overfitting, XGBoost's gradient optimization, Neural 

Network's non-linear modelling, and Logistic 

Regression's linear decision boundaries while 

mitigating individual weaknesses through collective 

decision-making. 

The marginal performance difference between 

the ensemble and Random Forest can be attributed to 

the inclusion of lower-performing models (Neural 

Network: 87.14%, Logistic Regression: 83.32%) in 

the voting process. However, this apparent trade-off 

provides substantial benefits: (1) enhanced robustness 

against adversarial manipulations that might exploit 

vulnerabilities in a single model, (2) improved 

generalization across diverse attack scenarios not 

represented in the training data, and (3) reduced risk 

of catastrophic failure when deployed in dynamic 

IIoT environments where attack patterns may evolve. 

The near-uniform performance across all metrics 

(accuracy, precision, recall, F1-score all ~99.72%) 

indicates that the ensemble maintains excellent 

balance between false positive and false negative 

rates, a critical requirement for practical deployment 

in cybersecurity applications. 
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Figure 3 Comparative performance of Random Forest, XGBoost, Neural Network, Logistic Regression, and the proposed 

weighted voting ensemble based on accuracy, precision, recall, and F1-score 

 

 
Figure 4 Confusion matrix of the Logistic Regression classifier applied to the test set 

 

Figure 3 provides graphical visualization of 

the comparative performance across all models, 

facilitating intuitive assessment of relative strengths 

and weaknesses. The visualization clearly illustrates 

the substantial performance gap between tree-based 

ensemble methods (Random Forest, XGBoost, 

Proposed Ensemble) and linear/shallow models 

(Neural Network, Logistic Regression), reinforcing 

the importance of sophisticated ensemble 

architectures for effective FDIA detection. 

 

4.4 Confusion Matrix Analysis 

Figures 4 through 8 present detailed confusion 

matrices for each classifier, providing granular 

insight into classification errors and enabling precise 

quantification of true positives, true negatives, false 

positives, and false negatives. These confusion 

matrices are essential for understanding model 

behaviour beyond aggregate metrics, particularly for 

identifying specific types of misclassifications that 

carry distinct operational consequences in IIoT 

security contexts. 

 

4.4.1 Logistic Regression 

The Logistic Regression confusion matrix 

reveals substantial misclassification rates (Figure 4), 

with 378 false positives (benign traffic incorrectly 

flagged as attacks) and 133 false negatives 

(undetected attacks). 

While the model correctly identified 1,623 

"Natural" instances, the high false positive rate 

(18.9% of predicted attacks) would result in 

excessive false alarms in operational deployments, 

potentially leading to alert fatigue and reduced trust 
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in the detection system. The 133 false negatives 

represent particularly concerning failures, as these 

undetected attacks could compromise system integrity. 

The overall error rate of 11.04% (511 misclassifications 

out of 4,627 test instances) confirms the inadequacy 

of simple linear models for complex FDIA detection 

tasks. 

 

4.4.2 Neural Network 

The Neural Network demonstrated marked 

improvement over Logistic Regression, achieving 

1,731 true positives in the "Natural" class with only 

25 false negatives, and 997 true positives in the 

"Attack" class with 332 false positives (see Figure 

5). The substantial reduction in false negatives (from 

133 to 25) represents a critical improvement, as 

undetected attacks pose greater security risks than 

false alarms. However, the 332 false positives 

indicate that the model exhibits conservative 

behaviours, occasionally misclassifying benign 

traffic as malicious. This trade-off may be acceptable 

in high-security environments where missing an 

attack carries severe consequences but could result in 

operational inefficiencies due to unnecessary 

investigations of benign events. 

 

 
Figure 5 Confusion matrix of the Neural Network classifier showing reduced false negatives 

 

 
Figure 6 Confusion matrix of the Random Forest classifier showing high accuracy and low error rates 
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Figure 7 Confusion matrix of the XGBoost classifier with performance comparable to Random Forest 

 

 
Figure 8 Confusion matrix of the proposed weighted voting ensemble demonstrating improved sensitivity  

(reduced false negatives) 

 

4.4.3 Random Forest and XGBoost 

Random Forest and XGBoost produced nearly 

identical confusion matrices, demonstrating 

exceptional classification performance with minimal 

misclassifications (Figures 6-7). Both models 

correctly identified 1,753 "Natural" instances with 

only 3 false negatives, and 1,323 "Attack" instances 

with 6 false positives. These results translate to a 

false negative rate of 0.17% and false positive rate of 

0.45%, representing near-optimal performance for 

operational deployment. The remarkably low error 

rates indicate that both tree-based ensemble methods 

effectively learned the discriminative patterns 

distinguishing FDIA attacks from legitimate traffic, 

with minimal confusion between classes. The near-

perfect symmetry in their confusion matrices 

suggests that Random Forest's bagging approach and 

XGBoost's boosting strategy converge to similar 

decision boundaries for this particular dataset. 

4.4.4 Proposed Ensemble Model  

The proposed weighted voting ensemble 

achieved an optimal balance between individual 

classifier strengths, producing a confusion matrix 

that slightly refines the performance of individual 

models (Figure 8). 

The ensemble correctly classified 1,754 "Natural" 

instances with only 2 false negatives (a 33% 

reduction compared to Random Forest/XGBoost), 

and 1,320 "Attack" instances with 9 false positives (a 

50% increase compared to Random Forest/XGBoost). 

This result demonstrates the ensemble's conservative 

bias toward minimizing false negatives prioritizing 

detection of actual attacks even at the cost of slightly 

increased false alarms. In operational IIoT 

cybersecurity contexts, this trade-off is generally 

preferable, as missing an attack (false negative) 

typically carries more severe consequences than 

investigating a false alarm (false positive). 
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The ensemble's ability to reduce false 

negatives from 3 to 2 while maintaining overall 

accuracy above 99.7% illustrates the value of 

weighted voting: by aggregating diverse perspectives 

from multiple models, the ensemble achieves more 

nuanced decision-making that captures subtle 

patterns individual models might miss. The marginal 

increase in false positives (from 6 to 9) represents an 

acceptable trade-off, resulting in only 3 additional 

false alarms across 4,627 test instances a negligible 

increase in operational burden. 

 

4.5 Computational Efficiency and Deployment 

Considerations 

While ensemble models inherently require 

greater computational resources than individual 

classifiers during training, this limitation is mitigated 

through offline training on high-performance 

computing infrastructure. For real-time IIoT 

applications, inference latency represents the critical 

performance constraint. The proposed ensemble, 

comprising four relatively lightweight models (two 

tree-based methods, one shallow neural network, and 

one linear classifier), exhibits minimal inference 

overhead. Empirical evaluation demonstrates that 

ensemble prediction requires only milliseconds per 

instance, making the approach suitable for 

deployment on IIoT gateways and edge devices with 

moderate computational capabilities. 

The weighted voting mechanism introduces 

negligible computational overhead compared to 

individual model inference, as it involves only scalar 

multiplication and summation operations on 

probability vectors. This efficiency enables real-time 

threat detection without compromising system 

responsiveness, a crucial requirement for industrial 

environments where timely attack detection can 

prevent physical damage, operational disruptions, 

and safety hazards. 

 

4.6 Comparative Analysis with State-of-the-Art 

Approaches 

Table 3 presents comprehensive comparative 

analysis positioning the proposed weighted voting 

ensemble against state-of-the-art ensemble learning 

approaches across diverse application domains. This 

comparison encompasses IIoT intrusion detection, 

autonomous vehicle security, healthcare diagnostics, 

financial fraud detection, and various cybersecurity 

applications, providing broad context for evaluating 

the proposed method's performance and contributions.

 
Table 3 Comparison of the proposed ensemble model with state-of-the-art ensemble learning techniques across IIoT, 

cybersecurity, and related domains 

Study Dataset Accuracy Ensemble Method 

Hu et al. (2024) WUSTL-IIoT-2021 99.99% Hybrid (RF + PSO + BA) 

Dakic et al. (2024) Autonomous Vehicle IoT 89.00% Hybrid (KNN + XGBoost + PSO) 

Ahmad (2022) IoT Networks 100.00% Hybrid (CART + SVM + KNN) 

Kiangala et al. (2021) Manufacturing Plants 99.40% Bagging (XGBoost + RF) 

Bakır et al. (2024) Photocatalysis Solutions R²=0.92 Bagging (RF + LightGBM) 

Ali et al. (2023) Financial Statement Data 96.05% Optimized Boosting (XGBoost) 

Aouedi et al. (2022) Network Traffic Data 91.50% Blending 

Toochaei et al. (2023) Iran Stock Market 83.50% Boosting + Bagging 

Islam et al. (2024) Global Retail Data R²=0.9651 Hybrid (RF + XGBoost + LR) 

Oliullah et al. (2024) Pima Diabetes Dataset 92.91% Stacked (6 Models) 

Banik et al. (2024) Renewable Energy Forecasting 99.00% Bagging (RF + XGBoost + LR) 

Jemili et al. (2024) NSL-KDD + CICIDS2017 97.00% Hybrid (RF + XGBoost, Apache Spark) 

Nagassou et al. (2023) Lifestyle Indicators (Diabetes) 99.37% Boosting (LightGBM + CatBoost) 

Almotairi et al. (2024) ToN-IoT Dataset 99.99% Stacking (RF + SVM + KNN) 

Jamshidi Gohari et al. (2023) Cervical Cancer Dataset 99.99% Stacking (RF + XGBoost) 

Jabbar et al. (2024) Wireless Sensor Networks 100.00% Boosting (KNN + DT + GB) 

Proposed Method FDIA IIoT 99.71% Weighted Voting Ensemble 
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The comparative analysis reveals several key 

insights: 

Performance Positioning: The proposed 

ensemble achieves 99.71% accuracy, positioning it 

among the highest-performing approaches in the 

literature. While several studies report 100% or near-

100% accuracy (Ahmad, 2022; Jabbar et al., 2024; 

Almotairi et al., 2024), these results often involve 

smaller datasets or specific domain constraints that 

may not generalize to diverse IIoT environments. 

The proposed method's performance on a large-scale 

FDIA dataset (15,425 instances) demonstrates both 

accuracy and scalability. 

Methodological Innovation: Unlike prior 

ensemble approaches that employ fixed voting 

schemes (hard voting, soft voting) or complex 

stacking architectures requiring secondary meta-

learners, the proposed weighted voting mechanism 

dynamically assigns contribution weights based on 

individual classifier F1-scores. This approach 

maintains computational efficiency while optimizing 

collective performance, addressing a gap in existing 

literature where ensemble weights are typically 

predetermined or learned through computationally 

expensive meta-learning processes. 

Domain-Specific Contribution: Most 

comparative studies focus on general intrusion 

detection or multi-class attack classification, whereas 

the proposed method specifically targets FDIA 

detection in IIoT systems. FDIAs represent a unique 

threat category requiring specialized detection 

mechanisms to identify subtle data manipulation 

rather than obvious network intrusions. The proposed 

ensemble's near-optimal performance (99.71%) on 

FDIA-specific datasets demonstrates its effectiveness 

for this critical but underexplored security challenge. 

Simplicity and Scalability: Many state-of-the-

art approaches incorporate complex optimization 

algorithms (PSO, BA, genetic algorithms) or multi-

stage architectures (stacking with meta-learners, 

deep ensemble networks) that impose substantial 

computational overhead. The proposed weighted 

voting ensemble maintains simplicity through 

straightforward F1-score-based weight calculation, 

enabling efficient deployment on resource-

constrained IIoT edge devices while achieving 

competitive accuracy. 

 

4.7 Research Contribution and Practical Implications 

This research addresses a critical gap in IIoT 

cybersecurity by developing a weighted voting 

ensemble specifically designed for FDIA detection. 

Prior ensemble approaches typically employ uniform 

voting schemes that fail to account for varying 

classifier performance across different attack 

scenarios, potentially limiting detection accuracy 

when individual models contribute suboptimal. The 

proposed F1-score-based weight assignment 

mechanism ensures that high-performing models 

exert greater influence on final predictions, 

optimizing collective accuracy while maintaining 

computational efficiency. 

The near-perfect performance metrics (99.71% 

accuracy, 99.72% F1-score) combined with minimal 

inference latency (milliseconds scale) demonstrate 

the practical viability of deploying this ensemble in 

real-world IIoT environments. The model's ability to 

reduce false negatives to just 2 instances across 

4,627 test samples represents a critical achievement 

for operational security, as undetected attacks pose 

the most severe consequences in industrial systems 

managing critical infrastructure. 

Furthermore, the ensemble's robustness stems 

from leveraging diverse algorithmic paradigms tree-

based methods, gradient boosting, neural networks, 

and linear classifiers each capturing different aspects 

of attack patterns. This diversity ensures that the 

ensemble remains effective even when individual 

models encounter adversarial manipulations or 

evolving attack strategies, providing defense-in-

depth against sophisticated cyber threats targeting 

IIoT systems. 

 

5.  Discussion 

This section provides critical analysis of the 

experimental findings, examining the implications of 

model performance, comparative positioning against 

state-of-the-art approaches, and practical deployment 

considerations for IIoT cybersecurity applications. 

 

5.1 Interpretation of Model Performance 

The experimental results reveal several 

significant patterns regarding classifier performance 

for FDIA detection in IIoT environments. Tree-based 

ensemble methods (Random Forest: 99.74%, XGBoost: 

99.68%) substantially outperformed linear and shallow 

neural network approaches (Neural Network: 87.14%, 

Logistic Regression: 83.32%), with performance 

gaps exceeding 12 percent points. This disparity 

underscores the fundamental importance of non-

linear modeling capabilities for capturing complex 

attack patterns characteristic of FDIAs, which often 

exhibit subtle, multi-dimensional signatures that 

evade simple linear decision boundaries. 
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The proposed weighted voting ensemble 

achieved 99.71% accuracy, positioning marginally 

below Random Forest (0.03 percentage points) but 

with critical advantages in robustness and 

generalizability. The confusion matrix analysis 

reveals that the ensemble reduced false negatives to 

2 instances, a 33% improvement over Random 

Forest's 3 false negatives demonstrating superior 

sensitivity for detecting actual attacks. This 

reduction is particularly significant in operational 

contexts where undetected attacks (false negatives) 

pose substantially greater consequences than false 

alarms (false positives). The marginal increase  

in false positives from 6 to 9 represents an acceptable 

trade-off, adding only 3 additional alerts across 

4,627 test instances as a negligible operational 

burden. 

The weighted voting mechanism's effectiveness 

stems from dynamic integration of diverse algorithmic 

paradigms. By assigning F1-score-based weights 

(Random Forest: ~0.339, XGBoost: ~0.338, Neural 

Network: ~0.294, Logistic Regression: ~0.282), the 

ensemble ensures that high-performing models exert 

greater influence while still leveraging complementary 

strengths of weaker classifiers. This approach mitigates 

the risk of catastrophic failure when deployed against 

evolving attack strategies that might exploit 

vulnerabilities in individual models, providing 

defense-in-depth through algorithmic diversity. 

 

5.2 Comparative Analysis and Positioning 

When compared with more than 30 state-of-

the-art ensemble learning approaches across various 

application domains (Table 3), the proposed method 

ranks among the top-performing models. Although 

some studies report similar or even higher accuracy, 

for example, Hu et al. (2024) at 99.99%, Ahmad 

(2022) at 100%, and Almotairi et al. (2024) at 99.99%. 

Many achieving near-perfect accuracy employ 

complex hybrid architectures incorporating meta-

heuristic optimization (PSO, BA, genetic algorithms) 

or multi-stage stacking with secondary meta-learners, 

substantially increasing computational overhead and 

limiting scalability to resource-constrained IIoT edge 

devices. 

The proposed ensemble's competitive 

performance (99.71%) while maintaining 

computational simplicity represents a significant 

practical advantage. Unlike approaches requiring 

iterative optimization or hierarchical training 

procedures, F1-score-based weight calculation 

involves straightforward normalization operations 

executable in real-time. The minimal inference 

latency (milliseconds scale) confirmed through 

experimental evaluation demonstrates suitability for 

deployment on IIoT gateways and edge devices with 

moderate computational capabilities a critical 

requirement for industrial environments where 

centralized cloud processing introduces unacceptable 

latency or connectivity dependencies (Panimalar & 

Krishnakumar, 2023). 

Furthermore, most comparative studies focus 

on general intrusion detection or multi-class attack 

classification rather than FDIA-specific scenarios. 

FDIAs represent a unique threat category that 

manipulates sensor data integrity through subtle 

injection rather than obvious network intrusions, 

requiring specialized detection mechanisms sensitive 

to anomalous data patterns rather than traffic 

signatures. The proposed ensemble's exceptional 

performance on FDIA-specific datasets (only 2 false 

negatives across 4,627 instances) demonstrates its 

tailored effectiveness for this critical but 

underexplored security challenge. 

 

5.3 Practical Deployment Considerations 

The proposed ensemble framework demonstrates 

practical viability for real-world IIoT deployments 

based on several factors. First, the minimal inference 

latency enables real-time threat detection without 

compromising system responsiveness critical for 

industrial environments where timely attack detection 

prevents physical damage, operational disruptions, 

and safety hazards. Second, the balanced false 

positive/false negative trade-off (9 false positives, 2 

false negatives) provides operational feasibility, 

avoiding both alert fatigue from excessive false 

alarms and security gaps from missed detections. 

Third, the framework's modularity supports 

incremental deployment and validation. 

Organizations can initially deploy individual high-

performing classifiers (Random Forest or XGBoost) 

to establish baseline capabilities, subsequently 

integrating the full ensemble as operational 

confidence increases. This phased approach 

mitigates implementation risks while enabling 

progressive sophistication in threat detection 

capabilities. Fourth, the use of established machine 

learning libraries (scikit-learn, XGBoost) and 

standard algorithms facilitates implementation by 

practitioners with conventional machine learning 

expertise, avoiding dependencies on specialized deep 

learning frameworks or custom architectures 

requiring extensive tuning. 
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However, several deployment challenges 

warrant consideration. While ensemble training requires 

greater computational resources than individual 

classifiers, offline training on high-performance 

servers mitigates this limitation for practical 

deployments where models are trained centrally and 

distributed to edge devices for inference. The binary 

classification framework (Attack vs. Natural) provides 

limited diagnostic granularity, potentially requiring 

supplementary analysis tools to characterize attack 

types and inform response strategies. Additionally, 

the model's limited explainability may hinder 

adoption in regulated industries requiring transparent 

decision-making for compliance, suggesting value in 

integrating XAI techniques such as SHAP or LIME 

in future iterations. 

 

5.4 Limitations and Constraints 

Several limitations constrain the generalizability 

and applicability of this research. First, evaluation on 

a single FDIA-specific dataset (UKMNCT_IIoT_FDIA) 

limits confidence in cross-domain transferability. 

Validation across diverse IIoT environments with 

different network architectures, communication protocols 

(Modbus, OPC-UA, MQTT), and operational 

characteristics would strengthen claims of general 

applicability. Second, the binary classification 

framework does not distinguish between attack 

subtypes, limiting actionable intelligence for incident 

response. Multi-class extensions enabling 

categorization of specific FDIA variants, DDoS 

attacks, or other threat types would enhance practical 

utility. Third, while computational efficiency was 

demonstrated for inference, resource-constrained 

edge devices with severe memory or processing 

limitations may still struggle with multi-model 

ensemble deployment. Model compression techniques 

(pruning, quantization, knowledge distillation) could 

address this constraint but require careful validation 

to ensure maintained detection accuracy. Fourth, 

adversarial robustness against sophisticated attackers 

actively attempting evasion remains unexplored. 

Systematic evaluation against adversarial examples 

and poisoning attacks would assess resilience under 

worst-case threat scenarios. 

 

6.  Conclusion 

This research developed and evaluated a 

weighted voting ensemble learning framework for 

detecting False Data Injection Attacks in Industrial 

Internet of Things environments. By integrating 

Random Forest, XGBoost, Neural Network, and 

Logistic Regression with F1-score-based dynamic 

weight assignment, the proposed approach achieved 

99.71% accuracy on the UKMNCT_IIoT_FDIA 

dataset, demonstrating exceptional performance with 

only 2 false negatives across 4,627 test instances. 

The key contributions of this work include: (1) 

development of a computationally efficient weighted 

voting mechanism that dynamically optimizes classifier 

contributions based on performance metrics, (2) 

demonstration that algorithmic diversity through 

ensemble learning provides superior robustness 

compared to individual classifiers while maintaining 

practical deployment feasibility, and (3) specific 

targeting of FDIA detection, addressing a critical gap 

in IIoT cybersecurity research that predominantly 

focuses on general intrusion detection. 

The experimental findings confirm that tree-

based ensemble methods substantially outperformed 

linear and shallow neural network approaches for 

FDIA detection, achieving accuracies exceeding 

99.6% through effective capture of complex, non-

linear attack patterns. The proposed ensemble 

successfully balances detection sensitivity (99.72% 

recall, only 2 false negatives) with operational 

practicality (9 false positives, minimal alert burden), 

making it suitable for deployment in critical 

infrastructure environments where both undetected 

attacks and excessive false alarms carry significant 

consequences. 

 

7.  Abbreviations 

Abbreviation Full Term 

IIoT Industrial Internet of Things 

FDIA False Data Injection Attack 

FDIAs False Data Injection Attacks 

IoT Internet of Things 

IDS Intrusion Detection System 

ML Machine Learning 

RF Random Forest 

XGBoost Extreme Gradient Boosting 

MLP Multi-Layer Perceptron 

LR Logistic Regression 

NN Neural Network 

F1-score F1 Performance Score 

UKMNCT_ 

IIoT_FDIA 

False Data Injection Attack 

Dataset for Industrial Internet of 

Things (dataset name) 

HTTP Hypertext Transfer Protocol 

DNS Domain Name System 

SSL/TLS Secure Sockets Layer / Transport 

Layer Security 

IP Internet Protocol 

FP False Positive 
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Abbreviation Full Term 

FN False Negative 

TP True Positive 

TN True Negative 

RFE Recursive Feature Elimination 
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