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Abstract

Hydropower generation is a cost-effective and environmentally friendly energy source that converts the kinetic energy
of flowing water into electricity. However, temperature control in power generators, particularly in the conductor windings in
the stator, remains a significant challenge for maintaining power generation performance. Several factors influence
temperature, and their relationships are quite complex, making it difficult to solve the problem using standard theoretical
approaches. This research developed a deep learning model to monitor temperature trends in the conductor windings of a 125
MW hydropower plant in Thailand. Data collected between 2018 and 2021 on electricity generation, reservoir water levels,
water and air flow rates, inlet temperatures at the heat exchanger, and conductor winding temperatures were used to train and
validate the models. The study implemented three neural network models: a Feedforward Neural Network (FNN), a Multilayer
Feedforward Neural Network (MFNN), and a Long Short-Term Memory (LSTM) network. The results showed that the LSTM
model provided the most accurate predictions, with a Mean Squared Error (MSE) of 0.00373. Shapley Additive exPlanations
(SHAP) values were used to interpret the model predictions, identifying key variables such as electricity generation, water
temperature, and water flow rate as the most influential factors affecting system behavior. The findings suggest that deep
learning models can effectively predict temperature variations, enabling proactive maintenance and improving operational
efficiency in hydropower plants.

Keywords: deep learning; thermal behavior prediction; hydropower generator-stator

1. Introduction

Renewable energy is derived from natural
sources, such as solar, wind, hydropower, geothermal,
biomass, and biogas (Electricity Generating Authority
of Thailand, n.d.). Hydropower is commonly regarded
as a significant energy source for generating
electricity due to its origin from natural sources and
the lack of harmful waste production for the
environment. Hydropower generation converts the
kinetic energy of moving water into electricity using
turbines and generators (Aarons et al., 2015). In
electricity generation, the rotor generates a rotating
magnetic field within the stator windings, inducing an

electromotive force according to Faraday’s law.
During this process, copper and core losses occur,
which become heat losses in the generator, an
unavoidable factor. Controlling the temperature of the
stator windings is crucial (Desingu et al., 2018), as
inadequate temperature control can result in
emergency shutdowns and possible damages.
Typically, heat exchangers are installed around
the stator windings of the hydropower generator to
transfer heat between the warm air in the stator
windings chamber and the cool water in the heat
exchanger, which uses water from a reservoir, as
shown in Figure 1. The temperature inside the stator
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windings chamber of a hydropower generator can rise
due to various factors, including a sudden increase in
power generation load and fouling from the cooling
water in the heat exchanger (Khun et al., 2025).
Generally, the performance of the heat exchanger is
assessed through the UA coefficient or heat exchanger
effectiveness (), and if there is a significant decrease
in these values, maintenance and cleaning of the heat
exchanger are required (Asvapoositkul & Kuansathan,
2016; Nogueira & Nogueira, 2022). Additionally,
fluctuations in water flow rates, changes in water or
air temperature, local weather conditions, and
reservoir water level (Cui et al.,, 2021; Doost &
Majlessi, 2015; Navarro & Cabezas-Gomez, 2007)
can contribute to a rise in generator temperature and
potential failure of the hydropower system. It can be
observed that the factors affecting generator
temperature are quite numerous and complex, making
it unfeasible to analyze any single factor in isolation.

Deep learning, a subset of artificial intelligence
(Al), has proven effective in tackling complex
engineering challenges such as heat transfer, solving
Reynolds boundary value problems, and addressing
the shortcomings of traditional analytical methods
(Almqvist, 2021; Goharoodi et al., 2019; He et al.,,
2021; Kamble et al., 2014; Vadyala et al., 2022;
Zobeiry & Humfeld, 2021). Additionally, it has been
employed to forecast the required outputs in various
engineering applications (Bhattacharyya et al., 2021,
Krishnayatra et al., 2020; Milan et al., 2021; Wang et
al., 2020). Deep learning models are designed to
manage intricate and incomplete datasets, increasing
the reliability of solutions to engineering problems
(Xu & Saleh, 2021). As a result, deep learning has
minimized experimentation time while delivering
more precise outcomes (Nasiri et al., 2019; Nilpueng
et al., 2022).

Deep learning processes data in a way that
resembles the cognitive functions of the human brain.
It decomposes incoming data into smaller components
and systematically analyzes them through multiple
layers until output is generated. This output is then
validated for accuracy against practical actual data.
Deep learning models have diverse applications in
heat transfer problems. Cai et al. (2021) employed
deep learning methodologies to predict temperature
distributions, providing practical solutions to heat
transfer challenges characterized by ambiguous boundary
conditions. Ghettini et al. (2020) investigated the
efficacy of deep learning in assessing the performance
of air-cooled condensers, determining that neural
networks yield the most precise forecasts. Jadhav et

al. (2022) developed a neural network architecture
designed to monitor the operational status of air
preheaters (APH) in thermal power plants in real time,
enabling accurate predictions of temperature profiles
within the APH. Additionally, Chen et al. (2021)
employed machine learning models to anticipate and
enhance the performance of air-cooled condensers
(ACC) within large-scale power facilities, illustrating
that these models could deliver precise performance
assessments of the ACC.

This study explores the use of deep learning to
address the challenge of predicting stator winding
temperatures in a 125 MW hydropower plant in
Thailand. By applying artificial neural network
models to operational and environmental data, the
research demonstrates how data-driven approaches
can provide accurate forecasts of thermal behavior
and offer insights into the key factors influencing
system performance. Such predictive capability is
expected to support proactive maintenance and
enhance the overall efficiency and reliability of
hydropower operations.

2. Objectives

This research aims to develop and evaluate
deep learning-based artificial neural network (ANN)
models  for predicting conductor  winding
temperatures in a 125 MW hydropower generator in
Thailand. The study explores three ANN architectures
Feedforward Neural Network (FNN), Multilayer
Feedforward Neural Network (MFNN), and Long
Short-Term Memory (LSTM) using data from 2018 to
2021, which includes generator output, reservoir
head, flow rates, and thermal conditions. The model
with the highest prediction accuracy will be selected,
and the most influential input features will be
identified to enhance system interpretability. This
approach seeks to support proactive maintenance by
enabling early detection of thermal stress trends,
potentially reducing computational overhead and
improving operational efficiency in hydropower
applications.

3. Methodology
3.1 Data Preparation
This section analyzes the patterns and
distribution of daily electricity generation data
collected from 2018 to 2021, including:
1. Electricity generated GEN_ACT POWER)
2. Water flow rate in the heat exchanger
(WATER_FLOW)
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3. Water Inlet temperature of the heat exchanger
(WATER_INLET TEMP)

4. Reservoir water level (HEAD)

5. Proxy for sediment accumulation (MONTH)
classified step-by-step between 1-12 following
the month number: 1 represents minimum and
12 represents maximum.

6. Temperature of the conductor windings in the
generator (STATOR_WND TEMP)

7. Air inlet temperature of the heat exchanger
(GEN_AIR_IN)

8. Air outlet temperature of the heat exchanger
(GEN_AIR_OUT)

The raw data of these variables were recorded
at 5-minute intervals throughout the year as given
in Figure 2. Prior to use, these data were normalized
using the Min-Max Normalization technique (Kim
et al., 2025) to scale all values within the range of 0 to
1. This step was performed to prevent variables with
higher magnitudes from disproportionately influencing
the learning process. Subsequently, the normalized
data were transformed into a multidimensional
structure compatible with PyTorch, enabling efficient

Stator Winding Temperature

Air Outlet
Temperature

computation and preparation for inputs into the
model.

In Figure 2, electricity generation, which
already captured the combined effect of voltage (V),
current (I), and power factor (PF) as V.LPF and
conductor winding temperature increased continuously
during the third and fourth quarters, then dropped in
the first quarter of the following year. This pattern is
repeated annually, corresponding with changes in
reservoir water level. The inlet water temperature
followed a trend opposite to the water level. Since
direct measurements of sediment accumulation in the
heat exchanger system were unavailable, an
alternative proxy was used. The values were
categorized incrementally from 1 to 12 following the
month of the year (1 representing the lowest and 12
the highest). The inlet air temperature for the heat
exchanger should remain below 60°C, while the outlet
air temperature for the hydropower plant was
designed to stay under 45°C. Notably, in the second
and third quarters of 2019, there was a sharp increase
in values due to high inlet water temperature and low
water level, leading to elevated conductor winding
temperatures and reduced electrical power generation.

Water Inlet

Air Cooler
(Heat Exchanger)

Figure 1 3D model of air cooler (heat exchanger) in stator windings of hydropower generator



DEEVIIT ET AL.
JCST Vol. 15 No. 4, October-December 2025, Article 145

GEN_ACT_POWER(MW)

125
l

100 RO AN MW‘MW —
s 2018 2019 g MM%;%MNMMMWMJ :;:»me Wt ) Wi

WATER_FLOW

7500 1
* 2500 2018 WN‘ 2019 | W’ L,an Ml m“h il ZWM ¥ JM,

WATER_INLET_TEMP

%30: Ww ﬂw*\MW | WW s

28{ 2018 2019 zozL,,,M'“’f
] HEAD ]
80 = J//‘ W
p T \\\\ . R o
60, 2018 2019 s 200 [T——0>p A 201 T
MONTH
—_ =] T
10
o 744r_:—’7 ,_r_f—‘ - il

is —— o e T

2018 _ 2019 | 2020 (2021 e

STATOR_WND_TEMP

i M, o ")rf’ WWW 3 W s comatr g LN i ) o

60| 2018 019
GEN_AIR_IN
601 /
2 “‘J%WW\J,M i L RS SN, S v
s0{ 2018 2019 W M NMMWW/NWM 2021 a WJ b
v GEN_AIR_OUT
501 IWL’
] o S | P
! 208 T e ‘..zuu/\mr// | 5620 O | Vz‘ou T
]an Apr Jul Oct Jan Abr Jul Oct jan Abr Jul Oct ]an Abr |£1I oct ]én
T

Figure 2 Data from 2018 to 2021

The graphs in Figure 2 used four distinct colors Table 1 Independent and Dependent Variables
to represent quarterly data for each year. Missing Independent (inputs) Unit
data points in the graph were due to either GEN_ACT POWER MW
irregular values or times when no electricity was WATER FLOW L/min
generated. There are eight variables in total, with WATER _INLET TEMP °C
five that can be specified: GEN_ACT POWER, HEAD m MSL
WATER_FLOW, WATER INLET TEMP, HEAD, MONTH -
and MONTH. These act as input parameters. Dependent (outputs) Unit
Consequently, the remaining variables, STATOR STAE%I; V/S\II{DI;EMP :g
_WND TEMP, GEN_AIR IN, and GEN_AIR GEN AIR OUT C

OUT, will function as output parameters to be
assessed. Table 1 shows the unit of all parameters.

The present study utilized data from 2018,
2019, and 2020. Data from 2018 was selected as the
training dataset due to the high-water levels in
reservoirs and the presumed absence of anomalies in
the power generation system. The model performance
was then validated using data from 2020.
Additionally, the accuracy of the constructed model
was further assessed using data from 2019, as it
presented abnormalities with high inlet water
temperatures and low water levels, leading to higher
conductor winding temperatures and reduced
electricity generation.

3.2 Neural Network Models

This section provides a comprehensive
overview of the neural network models, constructed
upon a foundational architecture consisting of
multiple layers, namely the input, hidden, and output
layers, as illustrated in Figure 3. The implementation
of these models was carried out using Python in
conjunction with the PyTorch framework (Paszke et
al., 2019). The three models under discussion include
the first model, identified as a Feedforward Neural
Network (FNN); the second model, categorized as a
Multilayer Feedforward Neural Network (MFNN);
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and the third model, characterized as a Long Short-
Term Memory (LSTM) Network.

3.2.1 Feedforward Neural Network Model (Ojha et al,
2017)

In this neural network, data flowed from the
input layer to the output layer through hidden layers
in a single direction without feedback. This could be
represented mathematically as:

h(j) = f[(ixl-w:,?)+b,‘-”} M

where A(j) is the result of the j node in Hidden
Layer, f (-) is the Rectified Linear Unit (ReLU)
activation function (Ding et al., 2018), x, is the input

parameter in Input Layer (i =1, 2, ... m in this study),

Forward pass

1) - . . .
w; ; 1s the synaptic weights matrix between the Input
and Hidden Layers, b};” is the bias of the /" node in

Hidden Layer.

h(j) from the Hidden Layer is then transferred

to the Output Layer for calculating the final output
(,) where k is the number of considered output (k =

0, 1, 2 in this study) as:
o= QWD+, )
j=1
where ), is the considered output, wf,ﬁ is the
synaptic weights matrix between the Hidden Layers

and Output Layer, b,EQ) is the bias of the ™ node in

Output Layer, # is the number of hidden layer nodes.

Hidden Layer
Input Layer 1 1
J'“ " "
E ; %%z 2 - Output Layer
T
1 % 3 3 Yo
—_— I9
Inputs “ 4 4 :
hn
Iy é § ; '
. n
— . ¥ 2
. 1 Loss = — 1 Ui
J : Y2 A g (% = o)
T4 ] =
\ 100 100 7 /—/
NO T
Update Parameters < Minimun Loss >
Backpropagation l YES

Backward pass

Final Model

Figure 3 The structure of the neural network model
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3.2.2 Multilayer Feedforward Neural Network Model
(Leetal, 2023)

This framework is built on the standard
feedforward neural network architecture, with
modifications that involve adding extra hidden layers
between the input and output layers. These changes
significantly boost the model’s ability to effectively
capture complex features. In this study, two hidden

layers were used, which can be expressed
mathematically as:

()= f[(lel-w:,?) +b§-"} (3)

hy (k) = f((z;h. D +57 j “4)

=
~ Z 3 3)
Y :(Zh2(k)wlfl))+bl( > (5)
k=1

where /,(j)is the result of the j™ node in Hidden
Layer 1 and A, (k)is the result of the k" node in
Hidden Layer 2, b(z) is the bias of the " node in
Hidden Layer 2, , is the considered output, W(z,: is
the synaptic weight matrix between the Hidden Layers

1 and 2, w,(( ) is the synaptic weight matrix between

of the /™ node in Output Layer, m and p are the
number of hidden layer nodes in Hidden Layer 1 and
2, respectively.

3.2.3 Long Short-Term Memory Model

This model is built on the foundational
structure of the Feedforward Neural Network (FNN)
to enhance predictive performance. However, FNN
algorithms face limitations in handling long data
sequences with complex, continuous relationships, as
they lack the ability to retain previous information for
future computations (Zhang et al., 2018). To overcome
this, Long Short-Term Memory (LSTM) networks are
introduced, incorporating memory cells and gate
mechanisms. These features enable LSTM networks
to effectively retain essential information and discard
irrelevant data in sequences. The flow of information
in LSTM networks is controlled by three internal
gates: the forget gate, the input gate, and the output
gate, as shown in Figure 4. The forget gate determines
which information in the cell state should be discarded,
the input gate decides what new information to add,
and the output gate regulates the output of the hidden
layer. This gating mechanism allows LSTM networks
to efficiently manage long-term dependencies by

the Hidden Layer 2 and Output Layer, b( is the bias selectively updatm'g and _ retaining - information
throughout the learning process.
-h-t—z' 'hp_[. h!
T T A
— .,
Forget Input Output
_ ) | gate gate gate
Ci-3 Ci-2 Cir | .
—_ — »— X —— +) I »
T fu nh
LSTM Unit LSTM Unit 1 ; ( )t
Jt Rr | Cy |—>
X BB tanh i o
hi_s hi—2 heoy | A | A
— —— >— ' 1 >
\ \T /
T T LSTM Unit
N, N I."
Ty 2 Ty Lt

Figure 4 Schematic of the internal structure of an LSTM unit (Al-Selwi et al., 2024)
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In this study, the calculation progresses from
the Input Layer to the LSTM Layer (Hidden Layer), a
linear transformation matches the input dimension
from 5 to the size of the Hidden Layer with 200 nodes,
and it is performed as:

X =w,x, +b,, (6)

in"*t
where x, is the input data at timestep ¢ which consists

of multiple timesteps:
X =X 05X X0 %55 X 4], W

. 1s the weight
matrix for transforming the input data to the hidden

layer, b, is the bias vector for the transformation, x,

is the transformed input data.
In the hidden layer of LSTM model, x; is

derived from linear transformations to perform
computations through the forget gate, input gate, and
output gate. These gates work together to update both
the hidden state ( 4, ), and the cell state (¢, ) as follows:

e Forget Gate: The forget gate determines how
much information from the previous cell state (
¢, ) should be retained or forgotten which can be

evaluated by
fr=0o(w, [, x ]+ b,), 7

where f, is the forget gate value at timestep, W, is

the forget gate weights, b, is the forget gate biases,
h,_, is the hidden state from previous timestep #-1, o
represents the sigmoid activation function , which

ensures that the forget gate values range between 0
and 1. When the f, value is close to 1, the cell state

t
preserves the corresponding information. Conversely,
when the f, value is close to 0, the cell state forgets

that information.

e Input Gate: The input gate determines which
new information should be added to the cell state,
which computes the input gate activation by

i, =o(w [h_,x1+b,) , )
and that of the candidate cell state by
¢, =tanh(w, -[h_,,x/1+b,), Q)

then the cell state was updated by combining the
retained information ( f, - ¢, ;) and the new candidate

cell state (i, -¢,) as:

G :ft'cr—l-'_it'at (10)

b

where i, is the input gate value at timestep ¢, w, is the
input gate weights, b, is the input gate biases, ¢, is the
new cell state data at timestep ¢, w,is the candidate
cell state weights, b, is the candidate cell state biases,
c,is the updated cell state at timestep ¢, ¢, ,is the

previous timestep cell state #-1. The hyperbolic
tangent (tanh) activation function compresses values
between -1 and 1, helping in balancing the updates to
the cell state. If the i, value is close to 1, it strongly

contributes new information to the cell state, and if the
i, value is near 0, the addition of new information is
minimized.

e Output Gate: The output gate determines the
next hidden state (#,) based on the updated cell state

and the input, which calculates the output gate
activation by

01 = G(Wo ' [ht—l > xz’] + bo)

an
and computes the hidden state as:
h, = o, -tanh(c,), (12)

where o, is the output gate value which is controlled

by sigmoid function to pass from the cell state to
hidden state, #, is the updated hidden state at timestep

t which is used as the input for the next timestep or
passed to the output layer for prediction. c,is the

updated cell state at the current timestep which is
modulated with tanh to limit its range before
multiplying with the output gate values.

The gates collaboratively regulate the flow of
information, ensuring long-term dependencies are
effectively captured and short-term irrelevant
information is forgotten.

Finally, the final output of the LSTM unit ( 7 ) is

usually a function of the hidden state (#,) from the
LSTM layer and additional parameters (w,,, ) as:

y= htWaut +bout 5 (13)

where J, is the model output at timestep 7. w,, is the

ut

output layer weights, and b

out

is the output layer
biases.



DEEVIIT ET AL.
JCST Vol. 15 No. 4, October-December 2025, Article 145

Once the predicted output is obtained from
each model architecture, the training process aims to
minimize the discrepancy between predicted and
actual values through iterative updates of the model’s
weights and biases. This optimization is performed
using backpropagation and a gradient-based update
method.

During each epoch, a full pass through the
training dataset, the model processes every example
once and computes the loss by comparing the
predicted values ( ;) with the true values ( y,). The

loss function used is the Mean Squared Error (MSE),
defined as:

1 & -
Loss = MSE =N2(y,- -3, (14)
i=1

where N represents the number of samples used in
each training iteration.

If the loss remains high, the model updates its
parameters using the gradient of the loss with respect
to each parameter. The conceptual update rules for the

weights (w,,, ) and biases (b,,, ) are
OLoss
W =W, —a: 8Wt > (15)
OLoss
bt+1 =b,—a~ b (16)

t

where « is the learning rate.

The training parameters for the neural network
models are configured using PyTorch Lightning within
asupervised learning framework. Prior to training, the
learning rate is selected using the Ir_finder utility to
identify a suitable range based on loss trends.

The models were trained using the Adam
optimizer with an initial learning rate of 0.001. The
training process was set to run for up to 1000 epochs,
with early stopping applied using a patience of 10
epochs to halt training when the validation loss no
longer showed improvement. In addition, a
ReduceLROnPlateau scheduler was employed to
dynamically adjust the learning rate.

To preserve the best-performing model,
ModelCheckpoint (PyTorch Lightning team, n.d.) was
used to save the model with the lowest validation loss.
Training initially began with 50 nodes in the hidden
layer, which were then gradually increased until
prediction accuracy stabilized typically around 100
nodes. Parameters not explicitly mentioned were kept at
their PyTorch Lightning default values.

4. Results
4.1 Prediction Results
4.1.1 Results of the FNN Model

Figure 5 provides a comparison between
empirical data and predictions generated by the
FNN model (Model 1) utilizing 100 and 200 nodes
in the hidden layer for the variables
STATOR_WND TEMP,  GEN_AIR_IN,  and
GEN_AIR OUT. The findings indicated that the
model with a greater number of nodes demonstrated
an enhanced ability to capture complex patterns.
Specifically, the analysis revealed that the 200-node
model achieved superior predictive performance
compared to the 100-node model. However, the
improvement was marginal, suggesting that the 200-
node model remained sufficiently accurate for the
given task. The predictive performance was
quantified using the Mean Squared Error (MSE), with
the 100 and 200-node models (FNN) achieving
average MSE value of 0.02868 and 0.02580,
respectively, highlighting their satisfactory accuracy.

4.1.2 Results of the MFNN Model

The MFNN model (Model 2) was constructed as
an extension of the FNN model, incorporating two
hidden layers with 100 nodes in each layer. This
architectural enhancement proved effective across
a range of variables, including those exhibiting lower
volatility, such as STATOR WND TEMP and
GEN_AIR IN TEMP, as well as the more variable
GEN_AIR OUT TEMP. As shown in Figure 6, Model
2 demonstrated a markedly improved ability to capture
and track data trends across all variables compared to
Model 1. Furthermore, the MFNN model achieved a
lower average Mean Squared Error (MSE) of 0.02278,
signifying a notable improvement in predictive
accuracy. The increased complexity of the model's
architecture enabled enhanced data processing
capabilities, particularly under conditions of higher
variability.

4.1.3 Results of the LSTM Model

The LSTM model (Model 3), which also
featured 200 nodes in its hidden layer, was utilized to
generate predictions for STATOR WND_ TEMP,
GEN_AIR IN, and GEN_AIR OUT. Model 3
demonstrated exceptional proficiency in producing
predictions closely aligned with the observed data.
This performance was attributed to its recurrent neural
network (RNN) architecture, which enabled the
model to effectively learn and capture sequential
relationships within the dataset, distinguishing it from
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traditional feedforward neural network (FNN)
architectures, as illustrated in Figure 7. The LSTM
model achieved the lowest average Mean Squared
Error (MSE) of 0.00373, establishing itself as the
most accurate predictive model among those

evaluated. Its architecture showcased significant
potential for handling time-series data, effectively
identifying patterns and trends with a level of
precision superior to that of the other models.

1st Prediction Year 2019 (Testing Data)
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Figure 5 Prediction results of the first model (FNN) with 100 and 200 nodes in the year 2019
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2nd Model Prediction Year 2019 (Testing Data)
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Figure 6 Prediction results of the MEFNN model (Model 2) in the year 2019
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3rd Model Prediction Year 2019 (Testing Data)
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Figure 7 Prediction results in the LSTM model (Model 3) in the year 2019

The LSTM model was further evaluated
through forward testing using data from the year 2021,
which represented unseen data. The results
demonstrated high predictive accuracy, with a Mean
Squared Error (MSE) of less than 0.0053, highlighting
the model reliability and robustness in forecasting
future thermal behavior.

4.2 Effects of Parameter Inputs on OQutputs
Identifying the input parameters that most
significantly influence model outputs is a complex
task when utilizing ANN models. The Shapley Additive
exPlanations (SHAP) method is a commonly adopted
approach to address this challenge (Rodriguez-Pérez
& Bajorath, 2020). By calculating absolute SHAP

values, the contribution of individual features to
model predictions can be systematically evaluated. In
this study, the analysis utilizes predicted data obtained
from the LSTM model outlined in the preceding
section. The SHAP values can be computed as follows
(Chen et al., 2022):

SI'(E-[SI-1)!

[F1!

0= Xscr\ i} [fSU{iH-{SI* (A7)

where ¢, is the SHAP value of input parameter i,
representing its average contribution to the model
prediction. F denotes the set of all input parameters in
the model, and S is a subset of F that excludes the
input parameter i, with |S] indicating its cardinality.
The function f($S) corresponds to the model prediction
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based on the subset S, while f(SU{i}) represents the
model prediction when i is included in the subset S.

Additionally, —'S“('Fl';l',s"”!

applied to ensure a fair distribution of contributions
across different subsets.

Figure 8 displays the SHAP value plots,
highlighting the mean SHAP values assigned to each
input parameter to reflect their relative importance in
the model's predictive analysis. Additionally, a color
gradient is used to visually convey the influence of
these parameters on various output variables:
GEN_AIR OUT (illustrated in blue), GEN_AIR IN
(depicted in pink), and STATOR_WND TEMP
(represented in green). Figure 8a, 8b, 8c, and 8d
illustrate the impacts of input parameters on the
prediction values for the years 2018, 2019, 2020, and
2021, respectively.

The Figures illustrate that the STATOR WND
_TEMP and GEN AIR OUT are predominantly
influenced by the GEN ACT POWER, WATER
FLOW, and WATER INLET TEMP. In particular,
the GEN_AIR OUT temperature is primarily
impacted by the WATER FLOW and WATER
INLET TEMP. However, in 2019, the WATER
_INLET TEMP had the most significant effect on the
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STATOR_WND_TEMP. This was due to a mismatch
between the water flow rate adjustment and the power
generation capacity, coupled with an increase in
WATER INLET TEMP during the seasonal period
(see Figure 2, April-October 2019). Furthermore,
during this period, the GEN_AIR IN temperature
rose, leading to a corresponding increase in GEN
AIR OUT. The combined effect of these temperature
increases likely contributed to a shutdown of the
hydroelectric power plant. In contrast, in 2020 and
2021, the synchronization of WATER FLOW
adjustments with GEN_ ACT POWER and WATER
_INLET TEMP could avoid similar issues.

As mentioned above, it is evident that the
model derived from the Artificial Neural Network
(ANN) can accurately predict the GEN_ AIR IN,
GEN_AIR OUT, and Stator winding temperatures of
the hydropower plant. Additionally, the SHAP value
data can be utilized to analyze the impact of input
variables on these three outputs, providing valuable
insights for improving the generator's cooling system
efficiency. Furthermore, this analysis can support the
planning of preventive maintenance strategies,
ensuring the optimal operation and performance of the
power generation system.
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Figure 8 The impacts of input parameters on the prediction values: (a) Data in year 2018, (b) Data in year 2019 (c) Data
in year 2020, (d) Data in year 2021
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5. Conclusion

Deep learning can be applied to analyze stator
winding temperature variations and cooling air
temperature in the heat exchanger of a 125 MW
hydropower plant in Thailand. Given the numerous
interrelated variables and their complex relationships,
conventional analytical methods are insufficient for
effectively  addressing  this  challenge. The
implementation of deep learning provides an
innovative approach, enabling operators to gain
deeper insights into the factors influencing stator
winding temperature and identify potential
operational issues. The key findings of this study are
summarized as follows:

e In hydropower generation, copper and core
losses at the stator windings convert to heat, making
temperature control essential to prevent shutdowns
and damage. Stator temperature can rise due to factors
like load surges, cooling water fouling, water flow
fluctuations, temperature changes, weather conditions,
and reservoir levels. These complex interactions make
it impractical to analyze any single factor in isolation.
Artificial Neural Network models can predict
temperature trends and identify critical factors
affecting system behavior. This helps administrators
and maintenance teams anticipate issues and optimize
operations before problems arise.

e The FNN model with 100 and 200 nodes in
the hidden layer was trained on 2018 data and
validated with 2020 data to learn complex patterns.
Training, conducted using PyTorch Lightning within
a supervised framework, was tested from 10 to 1000
epochs until the predictions stabilized and closely
aligned with the actual data. A learning rate finder
dynamically adjusted the rate, and early stopping
prevented overfitting. The analysis revealed that the
200-node model slightly outperformed the 100-node
model. Both models achieved satisfactory accuracy,
with MSE values of 0.02580 for the 200-node model
and 0.02868 for the 100-node model.

e The MFNN and LSTM models followed a
similar training process as the FNN model, using 200
nodes in the hidden layer. Designed specifically for
time-series data, the LSTM model exhibited the
highest predictive accuracy, achieving the lowest
Mean Squared Error of 0.00373, compared to 0.02868
for the FNN model and 0.02278 for the MFNN model.

e Shapley Additive Explanations is an effective
method for assessing the variables influencing stator
winding temperature in a hydropower generator. The
study indicates that under normal operating
conditions, the most significant factor affecting stator
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winding temperature is the generated active power,
followed by water flow rate and inlet water
temperature, respectively. However, under abnormal
operating conditions, the influence of these variables
may shift. For instance, in 2019, the inlet water
temperature was identified as the primary factor
impacting stator winding temperature.

5.1 Further Studies
This study can be expanded to practical

applications under various conditions within
hydropower plants, including:
e Modeling operations across  various

scenarios: The model can simulate plant performance
under different conditions, including changes in
reservoir water levels, water temperature, and power
generation. This allows operators to proactively
assess and mitigate potential impacts.

e Improving efficiency and optimizing
performance: The model can be applied to predict and
enhance energy generation efficiency by estimating
power output based on water flow adjustments and by
optimizing heat exchanger cooling performance.
Furthermore, it can aid in implementing proactive
maintenance strategies.
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The biases term at iteration #+1, updated via gradient descent

The updated cell state at timestep ¢
The previous timestep cell state 7-1
The new cell state data at timestep ¢

The set of all input parameters in the model
The forget gate value at timestep

The result of the /" node in Hidden Layer
The result of the /' node in Hidden Layer 1
The result of the £ node in Hidden Layer 2
The updated hidden state at timestep #

The hidden state from previous timestep -1

The input gate value at timestep ¢

The loss value that measures the discrepancy between the actual value and the predicted value
The Mean Squared Error is used to evaluate the loss

The output gate value at timestep ¢

The subset of F that excludes the input parameter i

The hyperbolic tangent activation function

The synaptic weights matrix between The Input and Hidden Layers

The synaptic weight matrix between The Hidden Layers 1 and 2 (Also used to denote the weights
between Hidden Layer 2 and the Output Layer in another equation.)
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The synaptic weight matrix between The Hidden Layer 2 and Output Layer

The weight matrix for transforming the input data to the hidden layer
The forget gate weights

The input gate weights

The candidate cell state weights

The output gate weights

The output layer weights

The weights at the /" iteration

The weights term at iteration #+1, updated via gradient descent
The input parameter in Input Layer (i =0, 1, 2, ... m in this study)
The input data at timestep, which consists of multiple timesteps
The transformed input data

FNN output

MFNN output

LSTM output

The predicted values at position i

The actual values at position i

The SHAP value of an input parameter i

The sigmoid activation function
The learning rate
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