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Abstract  

Hydropower generation is a cost-effective and environmentally friendly energy source that converts the kinetic energy 

of flowing water into electricity. However, temperature control in power generators, particularly in the conductor windings in 

the stator, remains a significant challenge for maintaining power generation performance. Several factors influence 

temperature, and their relationships are quite complex, making it difficult to solve the problem using standard theoretical 

approaches. This research developed a deep learning model to monitor temperature trends in the conductor windings of a 125 

MW hydropower plant in Thailand. Data collected between 2018 and 2021 on electricity generation, reservoir water levels, 

water and air flow rates, inlet temperatures at the heat exchanger, and conductor winding temperatures were used to train and 

validate the models. The study implemented three neural network models: a Feedforward Neural Network (FNN), a Multilayer 

Feedforward Neural Network (MFNN), and a Long Short-Term Memory (LSTM) network. The results showed that the LSTM 

model provided the most accurate predictions, with a Mean Squared Error (MSE) of 0.00373. Shapley Additive exPlanations 

(SHAP) values were used to interpret the model predictions, identifying key variables such as electricity generation, water 

temperature, and water flow rate as the most influential factors affecting system behavior. The findings suggest that deep 

learning models can effectively predict temperature variations, enabling proactive maintenance and improving operational 

efficiency in hydropower plants. 
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1.  Introduction 

Renewable energy is derived from natural 

sources, such as solar, wind, hydropower, geothermal, 

biomass, and biogas (Electricity Generating Authority 

of Thailand, n.d.). Hydropower is commonly regarded 

as a significant energy source for generating 

electricity due to its origin from natural sources and 

the lack of harmful waste production for the 

environment. Hydropower generation converts the 

kinetic energy of moving water into electricity using 

turbines and generators (Aarons et al., 2015). In 

electricity generation, the rotor generates a rotating 

magnetic field within the stator windings, inducing an 

electromotive force according to Faraday’s law. 

During this process, copper and core losses occur, 

which become heat losses in the generator, an 

unavoidable factor. Controlling the temperature of the 

stator windings is crucial (Desingu et al., 2018), as 

inadequate temperature control can result in 

emergency shutdowns and possible damages. 

Typically, heat exchangers are installed around 

the stator windings of the hydropower generator to 

transfer heat between the warm air in the stator 

windings chamber and the cool water in the heat 

exchanger, which uses water from a reservoir, as 

shown in Figure 1. The temperature inside the stator 
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windings chamber of a hydropower generator can rise 

due to various factors, including a sudden increase in 

power generation load and fouling from the cooling 

water in the heat exchanger (Khun et al., 2025). 

Generally, the performance of the heat exchanger is 

assessed through the UA coefficient or heat exchanger 

effectiveness (ε), and if there is a significant decrease 

in these values, maintenance and cleaning of the heat 

exchanger are required (Asvapoositkul & Kuansathan, 

2016; Nogueira & Nogueira, 2022). Additionally, 

fluctuations in water flow rates, changes in water or 

air temperature, local weather conditions, and 

reservoir water level (Cui et al., 2021; Doost & 

Majlessi, 2015; Navarro & Cabezas-Gómez, 2007) 

can contribute to a rise in generator temperature and 

potential failure of the hydropower system. It can be 

observed that the factors affecting generator 

temperature are quite numerous and complex, making 

it unfeasible to analyze any single factor in isolation.  

Deep learning, a subset of artificial intelligence 

(AI), has proven effective in tackling complex 

engineering challenges such as heat transfer, solving 

Reynolds boundary value problems, and addressing 

the shortcomings of traditional analytical methods 

(Almqvist, 2021; Goharoodi et al., 2019; He et al., 

2021; Kamble et al., 2014; Vadyala et al., 2022; 

Zobeiry & Humfeld, 2021). Additionally, it has been 

employed to forecast the required outputs in various 

engineering applications (Bhattacharyya et al., 2021; 

Krishnayatra et al., 2020; Milan et al., 2021; Wang et 

al., 2020). Deep learning models are designed to 

manage intricate and incomplete datasets, increasing 

the reliability of solutions to engineering problems 

(Xu & Saleh, 2021). As a result, deep learning has 

minimized experimentation time while delivering 

more precise outcomes (Nasiri et al., 2019; Nilpueng 

et al., 2022). 

Deep learning processes data in a way that 

resembles the cognitive functions of the human brain. 

It decomposes incoming data into smaller components 

and systematically analyzes them through multiple 

layers until output is generated. This output is then 

validated for accuracy against practical actual data. 

Deep learning models have diverse applications in 

heat transfer problems. Cai et al. (2021) employed 

deep learning methodologies to predict temperature 

distributions, providing practical solutions to heat 

transfer challenges characterized by ambiguous boundary 

conditions. Ghettini et al. (2020) investigated the 

efficacy of deep learning in assessing the performance 

of air-cooled condensers, determining that neural 

networks yield the most precise forecasts. Jadhav et 

al. (2022) developed a neural network architecture 

designed to monitor the operational status of air 

preheaters (APH) in thermal power plants in real time, 

enabling accurate predictions of temperature profiles 

within the APH. Additionally, Chen et al. (2021) 

employed machine learning models to anticipate and 

enhance the performance of air-cooled condensers 

(ACC) within large-scale power facilities, illustrating 

that these models could deliver precise performance 

assessments of the ACC.  

This study explores the use of deep learning to 

address the challenge of predicting stator winding 

temperatures in a 125 MW hydropower plant in 

Thailand. By applying artificial neural network 

models to operational and environmental data, the 

research demonstrates how data-driven approaches 

can provide accurate forecasts of thermal behavior 

and offer insights into the key factors influencing 

system performance. Such predictive capability is 

expected to support proactive maintenance and 

enhance the overall efficiency and reliability of 

hydropower operations. 

 

2.  Objectives 

This research aims to develop and evaluate 

deep learning-based artificial neural network (ANN) 

models for predicting conductor winding 

temperatures in a 125 MW hydropower generator in 

Thailand. The study explores three ANN architectures 

Feedforward Neural Network (FNN), Multilayer 

Feedforward Neural Network (MFNN), and Long 

Short-Term Memory (LSTM) using data from 2018 to 

2021, which includes generator output, reservoir 

head, flow rates, and thermal conditions. The model 

with the highest prediction accuracy will be selected, 

and the most influential input features will be 

identified to enhance system interpretability. This 

approach seeks to support proactive maintenance by 

enabling early detection of thermal stress trends, 

potentially reducing computational overhead and 

improving operational efficiency in hydropower 

applications.  

 

3.  Methodology 

3.1 Data Preparation  

This section analyzes the patterns and 

distribution of daily electricity generation data 

collected from 2018 to 2021, including: 

1. Electricity generated GEN_ACT_POWER) 

2. Water flow rate in the heat exchanger 

(WATER_FLOW) 
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3. Water Inlet temperature of the heat exchanger 

(WATER_INLET_TEMP) 

4. Reservoir water level (HEAD) 

5. Proxy for sediment accumulation (MONTH) 

classified step-by-step between 1-12 following 

the month number: 1 represents minimum and 

12 represents maximum.   

6. Temperature of the conductor windings in the 

generator (STATOR_WND_TEMP) 

7. Air inlet temperature of the heat exchanger 

(GEN_AIR_IN) 

8. Air outlet temperature of the heat exchanger 

(GEN_AIR_OUT) 

 

The raw data of these variables were recorded 

at 5-minute intervals throughout the year as given  

in Figure 2. Prior to use, these data were normalized 

using the Min-Max Normalization technique (Kim  

et al., 2025) to scale all values within the range of 0 to 

1. This step was performed to prevent variables with 

higher magnitudes from disproportionately influencing 

the learning process. Subsequently, the normalized 

data were transformed into a multidimensional 

structure compatible with PyTorch, enabling efficient 

computation and preparation for inputs into the 

model. 

In Figure 2, electricity generation, which 

already captured the combined effect of voltage (V), 

current (I), and power factor (PF) as V.I.PF and 

conductor winding temperature increased continuously 

during the third and fourth quarters, then dropped in 

the first quarter of the following year. This pattern is 

repeated annually, corresponding with changes in 

reservoir water level. The inlet water temperature 

followed a trend opposite to the water level. Since 

direct measurements of sediment accumulation in the 

heat exchanger system were unavailable, an 

alternative proxy was used. The values were 

categorized incrementally from 1 to 12 following the 

month of the year (1 representing the lowest and 12 

the highest). The inlet air temperature for the heat 

exchanger should remain below 60°C, while the outlet 

air temperature for the hydropower plant was 

designed to stay under 45°C. Notably, in the second 

and third quarters of 2019, there was a sharp increase 

in values due to high inlet water temperature and low 

water level, leading to elevated conductor winding 

temperatures and reduced electrical power generation.

 

 

 
Figure 1 3D model of air cooler (heat exchanger) in stator windings of hydropower generator 
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Figure 2 Data from 2018 to 2021 

The graphs in Figure 2 used four distinct colors 

to represent quarterly data for each year. Missing 

data points in the graph were due to either 

irregular values or times when no electricity was 

generated. There are eight variables in total, with 

five that can be specified: GEN_ACT_POWER, 

WATER_FLOW, WATER_INLET_TEMP, HEAD, 

and MONTH. These act as input parameters. 

Consequently, the remaining variables, STATOR 

_WND_TEMP, GEN_AIR_IN, and GEN_AIR_ 

OUT, will function as output parameters to be 

assessed. Table 1 shows the unit of all parameters. 

The present study utilized data from 2018, 

2019, and 2020. Data from 2018 was selected as the 

training dataset due to the high-water levels in 

reservoirs and the presumed absence of anomalies in 

the power generation system. The model performance 

was then validated using data from 2020. 

Additionally, the accuracy of the constructed model 

was further assessed using data from 2019, as it 

presented abnormalities with high inlet water 

temperatures and low water levels, leading to higher 

conductor winding temperatures and reduced 

electricity generation. 
 

Table 1 Independent and Dependent Variables 

Independent (inputs) Unit 

GEN_ACT_POWER MW 

WATER_FLOW L/min 

WATER_INLET_TEMP °C 

HEAD m MSL 

MONTH - 

Dependent (outputs) Unit 

STATOR_WND_TEMP °C 

GEN_AIR_IN °C 

GEN_AIR_OUT °C 

 

3.2 Neural Network Models 

This section provides a comprehensive 

overview of the neural network models, constructed 

upon a foundational architecture consisting of 

multiple layers, namely the input, hidden, and output 

layers, as illustrated in Figure 3. The implementation 

of these models was carried out using Python in 

conjunction with the PyTorch framework (Paszke et 

al., 2019). The three models under discussion include 

the first model, identified as a Feedforward Neural 

Network (FNN); the second model, categorized as a 

Multilayer Feedforward Neural Network (MFNN); 
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and the third model, characterized as a Long Short-

Term Memory (LSTM) Network.  

 

3.2.1 Feedforward Neural Network Model (Ojha et al., 

2017) 

In this neural network, data flowed from the 

input layer to the output layer through hidden layers 

in a single direction without feedback. This could be 

represented mathematically as: 
 

(1) (1)

,

1

)( ) ( ,i i j j

i

m

h j f x w b
=

 
= + 

 
    (1) 

 

where ( )h j  is the result of the jth node in Hidden 

Layer, f () is the Rectified Linear Unit (ReLU) 

activation function (Ding et al., 2018), ix is the input 

parameter in Input Layer (i = 1, 2, … m in this study), 

(1)

,i jw  is the synaptic weights matrix between the Input 

and Hidden Layers, 
(1)

jb  is the bias of the jth node in 

Hidden Layer. 
 

( )h j  from the Hidden Layer is then transferred 

to the Output Layer for calculating the final output  
( ˆ

ky ) where k is the number of considered output (k = 

0, 1, 2 in this study) as:  
 

(2) (2)

,

1

ˆ ( ( ) ) ,k

n

k j k

j

y h j w b
=

= +    (2)  

 

where ˆ
ky  is the considered output, 

(2)

,j kw  is the 

synaptic weights matrix between the Hidden Layers 

and Output Layer, 
(2)

kb  is the bias of the kth node in 

Output Layer, n  is the number of hidden layer nodes. 

 

 

 

Figure 3 The structure of the neural network model 
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3.2.2 Multilayer Feedforward Neural Network Model 

(Le et al., 2023) 

This framework is built on the standard 

feedforward neural network architecture, with 

modifications that involve adding extra hidden layers 

between the input and output layers. These changes 

significantly boost the model’s ability to effectively 

capture complex features. In this study, two hidden 

layers were used, which can be expressed 

mathematically as: 
 

(1) (1)

1 ,

1

( ) ( ,)i i j j

i

m

h j f x w b
=

 
= + 

 
    (3) 

(2) (2)

2 1 ,

1

( ) ( ( ) ) ,j k

n

k

j

h k f h j w b
=

 
= + 

 
   (4) 

(3) (3)

2 ,

1

ˆ ( ( ) ,)
p

l k l l

k

y h k w b
=

= +   (5) 

 

where 1( )h j is the result of the jth node in Hidden 

Layer 1 and 2 ( )h k is the result of the kth node in 

Hidden Layer 2, 
(2)

kb  is the bias of the kth node in 

Hidden Layer 2, ˆ
ly  is the considered output, 

(2)

,j kw  is 

the synaptic weight matrix between the Hidden Layers 

1 and 2, 
(3)

,k lw  is the synaptic weight matrix between 

the Hidden Layer 2 and Output Layer, 
(3)

lb  is the bias 

of the lth node in Output Layer, m  and p  are the 

number of hidden layer nodes in Hidden Layer 1 and 

2, respectively.  

 

3.2.3 Long Short-Term Memory Model 

This model is built on the foundational 

structure of the Feedforward Neural Network (FNN) 

to enhance predictive performance. However, FNN 

algorithms face limitations in handling long data 

sequences with complex, continuous relationships, as 

they lack the ability to retain previous information for 

future computations (Zhang et al., 2018). To overcome 

this, Long Short-Term Memory (LSTM) networks are 

introduced, incorporating memory cells and gate 

mechanisms. These features enable LSTM networks 

to effectively retain essential information and discard 

irrelevant data in sequences. The flow of information 

in LSTM networks is controlled by three internal 

gates: the forget gate, the input gate, and the output 

gate, as shown in Figure 4. The forget gate determines 

which information in the cell state should be discarded, 

the input gate decides what new information to add, 

and the output gate regulates the output of the hidden 

layer. This gating mechanism allows LSTM networks 

to efficiently manage long-term dependencies by 

selectively updating and retaining information 

throughout the learning process. 
 

 

 
Figure 4 Schematic of the internal structure of an LSTM unit (Al-Selwi et al., 2024) 
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In this study, the calculation progresses from 

the Input Layer to the LSTM Layer (Hidden Layer), a 

linear transformation matches the input dimension 

from 5 to the size of the Hidden Layer with 200 nodes, 

and it is performed as: 
 

in in ,t tx xw b= +     (6) 
 

where tx is the input data at timestep t which consists 

of multiple timesteps:  

,0 ,1 ,2 ,3 ,4[ , , , , ]t t t t t tx x x x x x= , inw is the weight 

matrix for transforming the input data to the hidden 

layer, inb  is the bias vector for the transformation, tx

is the transformed input data. 

In the hidden layer of LSTM model, tx  is 

derived from linear transformations to perform 

computations through the forget gate, input gate, and 

output gate. These gates work together to update both 

the hidden state ( th ), and the cell state ( tc ) as follows: 

• Forget Gate: The forget gate determines how 

much information from the previous cell state (

1tc − ) should be retained or forgotten which can be 

evaluated by 
•  

1( [ , ] ),tt f t ff w h x b −
=  +    (7) 

 

where tf  is the forget gate value at timestep, fw  is 

the forget gate weights, fb  is the forget gate biases, 

1th −  is the hidden state from previous timestep t-1,   

represents the sigmoid activation function , which 

ensures that the forget gate values range between 0 

and 1. When the tf  value is close to 1, the cell state 

preserves the corresponding information. Conversely, 

when the tf  value is close to 0, the cell state forgets 

that information. 

• Input Gate: The input gate determines which 

new information should be added to the cell state, 

which computes the input gate activation by 
•  

1( [ , ] )t i t iti w h x b −
=  +

,   (8) 
 

and that of the candidate cell state by 
 

1tanh( [ , ] )t c cttc w h x b−
=  + ,    (9) 

 

then the cell state was updated by combining the 

retained information ( 1t tf c − ) and the new candidate 

cell state ( t ti c ) as: 

 

1t t t t tc f c i c−=  + 
,    (10) 

 

where ti  is the input gate value at timestep t, iw  is the 

input gate weights, ib  is the input gate biases, tc is the 

new cell state data at timestep t, cw is the candidate 

cell state weights, cb  is the candidate cell state biases, 

tc is the updated cell state at timestep t, 1tc − is the 

previous timestep cell state t-1. The hyperbolic 

tangent (tanh) activation function compresses values 

between -1 and 1, helping in balancing the updates to 

the cell state. If the ti  value is close to 1, it strongly 

contributes new information to the cell state, and if the 

ti value is near 0, the addition of new information is 

minimized. 

• Output Gate: The output gate determines the 

next hidden state ( th ) based on the updated cell state 

and the input, which calculates the output gate 

activation by 
•  

1( [ , ] )t o t oto w h x b −
=  +

,   (11) 
 

and computes the hidden state as: 
 

tanh( )t t th o c=  ,    (12) 
 

where to is the output gate value which is controlled 

by sigmoid function to pass from the cell state to 

hidden state, th is the updated hidden state at timestep 

t which is used as the input for the next timestep or 

passed to the output layer for prediction. tc is the 

updated cell state at the current timestep which is 

modulated with tanh to limit its range before 

multiplying with the output gate values. 

The gates collaboratively regulate the flow of 

information, ensuring long-term dependencies are 

effectively captured and short-term irrelevant 

information is forgotten.  

Finally, the final output of the LSTM unit ( ŷ ) is 

usually a function of the hidden state ( th ) from the 

LSTM layer and additional parameters ( outw ) as: 
 

ˆ
t out outy h w b= +

,    (13) 
 

where ˆ
ty  is the model output at timestep t. outw is the 

output layer weights, and outb is the output layer 

biases. 
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Once the predicted output is obtained from 

each model architecture, the training process aims to 

minimize the discrepancy between predicted and 

actual values through iterative updates of the model’s 

weights and biases. This optimization is performed 

using backpropagation and a gradient-based update 

method. 

During each epoch, a full pass through the 

training dataset, the model processes every example 

once and computes the loss by comparing the 

predicted values ( ˆ
iy ) with the true values ( iy ). The 

loss function used is the Mean Squared Error (MSE), 

defined as: 
 

2

1

1
ˆ( )

N

i i

i

Loss MSE y y
N =

= = − ,  (14) 

 

where N represents the number of samples used in 

each training iteration. 

 If the loss remains high, the model updates its 

parameters using the gradient of the loss with respect 

to each parameter. The conceptual update rules for the 

weights ( 1tw + ) and biases ( 1tb + ) are 
 

1t t

t

Loss
w w

w
+


= − 


,   (15) 

1t t

t

Loss
b b

b
+


= − 


,   (16) 

 

where  is the learning rate.  

The training parameters for the neural network 

models are configured using PyTorch Lightning within 

a supervised learning framework. Prior to training, the 

learning rate is selected using the lr_finder utility to 

identify a suitable range based on loss trends. 

The models were trained using the Adam 

optimizer with an initial learning rate of 0.001. The 

training process was set to run for up to 1000 epochs, 

with early stopping applied using a patience of 10 

epochs to halt training when the validation loss no 

longer showed improvement. In addition, a 

ReduceLROnPlateau scheduler was employed to 

dynamically adjust the learning rate. 

To preserve the best-performing model, 

ModelCheckpoint (PyTorch Lightning team, n.d.) was 

used to save the model with the lowest validation loss. 

Training initially began with 50 nodes in the hidden 

layer, which were then gradually increased until 

prediction accuracy stabilized typically around 100 

nodes. Parameters not explicitly mentioned were kept at 

their PyTorch Lightning default values.  

4. Results 

4.1 Prediction Results  

4.1.1 Results of the FNN Model  

Figure 5 provides a comparison between 

empirical data and predictions generated by the 

FNN model (Model 1) utilizing 100 and 200 nodes 

in the hidden layer for the variables 

STATOR_WND_TEMP, GEN_AIR_IN, and 

GEN_AIR_OUT. The findings indicated that the 

model with a greater number of nodes demonstrated 

an enhanced ability to capture complex patterns. 

Specifically, the analysis revealed that the 200-node 

model achieved superior predictive performance 

compared to the 100-node model. However, the 

improvement was marginal, suggesting that the 200-

node model remained sufficiently accurate for the 

given task. The predictive performance was 

quantified using the Mean Squared Error (MSE), with 

the 100 and 200-node models (FNN) achieving 

average MSE value of 0.02868 and 0.02580, 

respectively, highlighting their satisfactory accuracy. 

 

4.1.2 Results of the MFNN Model 

The MFNN model (Model 2) was constructed as 

an extension of the FNN model, incorporating two 

hidden layers with 100 nodes in each layer. This 

architectural enhancement proved effective across  

a range of variables, including those exhibiting lower 

volatility, such as STATOR_WND_TEMP and 

GEN_AIR_IN_TEMP, as well as the more variable 

GEN_AIR_OUT_TEMP. As shown in Figure 6, Model 

2 demonstrated a markedly improved ability to capture 

and track data trends across all variables compared to 

Model 1. Furthermore, the MFNN model achieved a 

lower average Mean Squared Error (MSE) of 0.02278, 

signifying a notable improvement in predictive 

accuracy. The increased complexity of the model's 

architecture enabled enhanced data processing 

capabilities, particularly under conditions of higher 

variability. 

 

4.1.3 Results of the LSTM Model 

The LSTM model (Model 3), which also 

featured 200 nodes in its hidden layer, was utilized to 

generate predictions for STATOR_WND_TEMP, 

GEN_AIR_IN, and GEN_AIR_OUT. Model 3 

demonstrated exceptional proficiency in producing 

predictions closely aligned with the observed data. 

This performance was attributed to its recurrent neural 

network (RNN) architecture, which enabled the 

model to effectively learn and capture sequential 

relationships within the dataset, distinguishing it from 
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traditional feedforward neural network (FNN) 

architectures, as illustrated in Figure 7. The LSTM 

model achieved the lowest average Mean Squared 

Error (MSE) of 0.00373, establishing itself as the 

most accurate predictive model among those 

evaluated. Its architecture showcased significant 

potential for handling time-series data, effectively 

identifying patterns and trends with a level of 

precision superior to that of the other models.

 

 

 

Figure 5 Prediction results of the first model (FNN) with 100 and 200 nodes in the year 2019 
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Figure 6 Prediction results of the MFNN model (Model 2) in the year 2019 
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Figure 7 Prediction results in the LSTM model (Model 3) in the year 2019 

 

 The LSTM model was further evaluated 

through forward testing using data from the year 2021, 

which represented unseen data. The results 

demonstrated high predictive accuracy, with a Mean 

Squared Error (MSE) of less than 0.0053, highlighting 

the model reliability and robustness in forecasting 

future thermal behavior. 

 

4.2 Effects of Parameter Inputs on Outputs 

  Identifying the input parameters that most 

significantly influence model outputs is a complex 

task when utilizing ANN models. The Shapley Additive 

exPlanations (SHAP) method is a commonly adopted 

approach to address this challenge (Rodríguez-Pérez 

& Bajorath, 2020). By calculating absolute SHAP 

values, the contribution of individual features to 

model predictions can be systematically evaluated. In 

this study, the analysis utilizes predicted data obtained 

from the LSTM model outlined in the preceding 

section. The SHAP values can be computed as follows 

(Chen et al., 2022): 
 

ϕ
i
=∑

|S|!(|F|-|S|-1)!

|F|!S⊆F∖{i} [f(S∪{i})-f(S)]’  (17) 
 

where i  is the SHAP value of input parameter i, 

representing its average contribution to the model 

prediction. F denotes the set of all input parameters in 

the model, and S is a subset of F that excludes the 

input parameter i, with |S| indicating its cardinality. 

The function f(S) corresponds to the model prediction 
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based on the subset S, while f(S∪{i}) represents the 

model prediction when i is included in the subset S. 

Additionally, 
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
 is a weighting factor 

applied to ensure a fair distribution of contributions 

across different subsets. 

Figure 8 displays the SHAP value plots, 

highlighting the mean SHAP values assigned to each 

input parameter to reflect their relative importance in 

the model's predictive analysis. Additionally, a color 

gradient is used to visually convey the influence of 

these parameters on various output variables: 

GEN_AIR_OUT (illustrated in blue), GEN_AIR_IN 

(depicted in pink), and STATOR_WND_TEMP 

(represented in green). Figure 8a, 8b, 8c, and 8d 

illustrate the impacts of input parameters on the 

prediction values for the years 2018, 2019, 2020, and 

2021, respectively. 

The Figures illustrate that the STATOR_WND 

_TEMP and GEN_AIR_OUT are predominantly 

influenced by the GEN_ACT_POWER, WATER_ 

FLOW, and WATER_INLET_TEMP. In particular, 

the GEN_AIR_OUT temperature is primarily 

impacted by the WATER_FLOW and WATER_ 

INLET_TEMP. However, in 2019, the WATER 

_INLET_TEMP had the most significant effect on the 

STATOR_WND_ TEMP. This was due to a mismatch 

between the water flow rate adjustment and the power 

generation capacity, coupled with an increase in 

WATER_INLET_TEMP during the seasonal period 

(see Figure 2, April–October 2019). Furthermore, 

during this period, the GEN_AIR_IN temperature 

rose, leading to a corresponding increase in GEN_ 

AIR_OUT. The combined effect of these temperature 

increases likely contributed to a shutdown of the 

hydroelectric power plant. In contrast, in 2020 and 

2021, the synchronization of WATER_FLOW 

adjustments with GEN_ACT_POWER and WATER 

_INLET_TEMP could avoid similar issues. 

As mentioned above, it is evident that the 

model derived from the Artificial Neural Network 

(ANN) can accurately predict the GEN_AIR_IN, 

GEN_AIR_OUT, and Stator winding temperatures of 

the hydropower plant. Additionally, the SHAP value 

data can be utilized to analyze the impact of input 

variables on these three outputs, providing valuable 

insights for improving the generator's cooling system 

efficiency. Furthermore, this analysis can support the 

planning of preventive maintenance strategies, 

ensuring the optimal operation and performance of the 

power generation system.

 

 

  

(a) 

 

(b) 

 

  

(c) (d) 

  
Figure 8 The impacts of input parameters on the prediction values: (a) Data in year 2018, (b) Data in year 2019 (c) Data 

in year 2020, (d) Data in year 2021 
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5.  Conclusion 

Deep learning can be applied to analyze stator 

winding temperature variations and cooling air 

temperature in the heat exchanger of a 125 MW 

hydropower plant in Thailand. Given the numerous 

interrelated variables and their complex relationships, 

conventional analytical methods are insufficient for 

effectively addressing this challenge. The 

implementation of deep learning provides an 

innovative approach, enabling operators to gain 

deeper insights into the factors influencing stator 

winding temperature and identify potential 

operational issues. The key findings of this study are 

summarized as follows: 

• In hydropower generation, copper and core 

losses at the stator windings convert to heat, making 

temperature control essential to prevent shutdowns 

and damage. Stator temperature can rise due to factors 

like load surges, cooling water fouling, water flow 

fluctuations, temperature changes, weather conditions, 

and reservoir levels. These complex interactions make 

it impractical to analyze any single factor in isolation. 

Artificial Neural Network models can predict 

temperature trends and identify critical factors 

affecting system behavior. This helps administrators 

and maintenance teams anticipate issues and optimize 

operations before problems arise.  

• The FNN model with 100 and 200 nodes in 

the hidden layer was trained on 2018 data and 

validated with 2020 data to learn complex patterns. 

Training, conducted using PyTorch Lightning within 

a supervised framework, was tested from 10 to 1000 

epochs until the predictions stabilized and closely 

aligned with the actual data. A learning rate finder 

dynamically adjusted the rate, and early stopping 

prevented overfitting. The analysis revealed that the 

200-node model slightly outperformed the 100-node 

model. Both models achieved satisfactory accuracy, 

with MSE values of 0.02580 for the 200-node model 

and 0.02868 for the 100-node model. 

• The MFNN and LSTM models followed a 

similar training process as the FNN model, using 200 

nodes in the hidden layer. Designed specifically for 

time-series data, the LSTM model exhibited the 

highest predictive accuracy, achieving the lowest 

Mean Squared Error of 0.00373, compared to 0.02868 

for the FNN model and 0.02278 for the MFNN model. 

• Shapley Additive Explanations is an effective 

method for assessing the variables influencing stator 

winding temperature in a hydropower generator. The 

study indicates that under normal operating 

conditions, the most significant factor affecting stator 

winding temperature is the generated active power, 

followed by water flow rate and inlet water 

temperature, respectively. However, under abnormal 

operating conditions, the influence of these variables 

may shift. For instance, in 2019, the inlet water 

temperature was identified as the primary factor 

impacting stator winding temperature. 

 

5.1 Further Studies 

This study can be expanded to practical 

applications under various conditions within 

hydropower plants, including: 

• Modeling operations across various 

scenarios: The model can simulate plant performance 

under different conditions, including changes in 

reservoir water levels, water temperature, and power 

generation. This allows operators to proactively 

assess and mitigate potential impacts. 

• Improving efficiency and optimizing 

performance: The model can be applied to predict and 

enhance energy generation efficiency by estimating 

power output based on water flow adjustments and by 

optimizing heat exchanger cooling performance. 

Furthermore, it can aid in implementing proactive 

maintenance strategies. 
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9.  Nomenclature 
(1)

jb  The bias of the jth node in Hidden Layer 

(3)

lb  The bias of the lth node in Output Layer 

inb  The bias vector for the transformation 

fb  The forget gate biases 

ib  The input gate biases 

cb  The candidate cell state biases 

ob  The output gate biases 

outb  The output layer biases 

tb  The biases at the tth iteration 

1tb +  The biases term at iteration t+1, updated via gradient descent 

tc  The updated cell state at timestep t 

1tc −  The previous timestep cell state t-1 

tc  The new cell state data at timestep t 

F  The set of all input parameters in the model 

tf  The forget gate value at timestep 
( )h j  The result of the jth node in Hidden Layer 

1( )h j  The result of the jth node in Hidden Layer 1  

2 ( )h k  The result of the kth node in Hidden Layer 2  

th  The updated hidden state at timestep t 

1th −  The hidden state from previous timestep t-1 

ti  The input gate value at timestep t 

Loss  The loss value that measures the discrepancy between the actual value and the predicted value 
MSE  The Mean Squared Error is used to evaluate the loss 

to  The output gate value at timestep t 

S  The subset of F that excludes the input parameter i 

tanh The hyperbolic tangent activation function 
(1)

,i jw  The synaptic weights matrix between The Input and Hidden Layers 

(2)

,j kw  The synaptic weight matrix between The Hidden Layers 1 and 2 (Also used to denote the weights 

between Hidden Layer 2 and the Output Layer in another equation.) 
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(3)

,k lw  The synaptic weight matrix between The Hidden Layer 2 and Output Layer 

inw  The weight matrix for transforming the input data to the hidden layer 

fw  The forget gate weights 

iw  The input gate weights 

cw  The candidate cell state weights 

ow  The output gate weights 

outw  The output layer weights 

tw  The weights at the tth iteration 

1tw +  The weights term at iteration t+1, updated via gradient descent 

ix  The input parameter in Input Layer (i = 0, 1, 2, … m in this study) 

tx  The input data at timestep, which consists of multiple timesteps 

tx  The transformed input data 

ˆ
ky  FNN output  

ˆ
ly  MFNN output  

ˆ
ty  LSTM output  

iy  The predicted values at position i  

ˆ
iy  The actual values at position i  

i  The SHAP value of an input parameter i 

  The sigmoid activation function 

  The learning rate  
 


